コード例 #1
0
ファイル: nuc_models.py プロジェクト: tsibley/treetime
def JC69(mu=1.0, alphabet="nuc", **kwargs):
    """
    Jukes-Cantor 1969 model. This model assumes equal concentrations
    of the nucleotides and equal transition rates between nucleotide states.
    For more info, see: Jukes and Cantor (1969). Evolution of Protein Molecules.
                        New York: Academic Press. pp. 21–132

    Parameters
    -----------

     mu : float
        substitution rate

     alphabet : str
        specify alphabet to use.
        Available alphabets are:

         'nuc' - nucleotides only, gaps ignored

         'nuc_gap' - nucleotide alphabet with gaps, gaps can be ignored optionally

    """
    from gtr import GTR
    num_chars = len(alphabets[alphabet])
    W, pi = np.ones((num_chars, num_chars)), np.ones(num_chars)
    gtr = GTR(alphabet=alphabet)
    gtr.assign_rates(mu=mu, pi=pi, W=W)
    return gtr
コード例 #2
0
ファイル: nuc_models.py プロジェクト: tsibley/treetime
def K80(mu=1., kappa=0.1, **kwargs):
    """
    Kimura 1980 model. Assumes equal concentrations across nucleotides, but
    allows different rates between transitions and transversions. The ratio
    of the transversion/transition rates is given by kappa parameter.
    For more info, see
    Kimura (1980),  J. Mol. Evol. 16 (2): 111–120. doi:10.1007/BF01731581.

    Current implementation of the model does not account for the gaps.

    Parameters
    -----------

     mu : float
        Overall substitution rate

     kappa : float
        Ratio of transversion/transition rates
    """

    from gtr import GTR
    num_chars = len(alphabets['nuc_nogap'])
    pi = np.ones(len(alphabets['nuc_nogap']), dtype=float) / len(
        alphabets['nuc_nogap'])
    W = _create_transversion_transition_W(kappa)
    gtr = GTR(alphabet=alphabets['nuc_nogap'])
    gtr.assign_rates(mu=mu, pi=pi, W=W)
    return gtr
コード例 #3
0
ファイル: nuc_models.py プロジェクト: tsibley/treetime
def T92(mu=1.0, pi_GC=0.5, kappa=0.1, **kwargs):
    """
    Tamura 1992 model. Extending Kimura  (1980) model for the case where a
    G+C-content bias exists. Link:
    Tamura K (1992),  Mol.  Biol. Evol. 9 (4): 678–687.  DOI: 10.1093/oxfordjournals.molbev.a040752

    Current implementation of the model does not account for the gaps

    Parameters
    -----------

     mu : float
        substitution rate

     pi_GC : float
        relative GC content

     kappa : float
        relative transversion/transition rate

    """

    from gtr import GTR

    W = _create_transversion_transition_W(kappa)
    # A C G T
    if pi_CG >= 1.:
        raise ValueError(
            "The relative CG content specified is larger than 1.0!")
    pi = np.array([(1. - pi_CG) * 0.5, pi_CG * 0.5, pi_CG * 0.5,
                   (1 - pi_CG) * 0.5])
    gtr = GTR(alphabet=alphabets['nuc_nogap'])
    gtr.assign_rates(mu=mu, pi=pi, W=W)
    return gtr
コード例 #4
0
ファイル: nuc_models.py プロジェクト: tsibley/treetime
def TN93(mu=1.0, kappa1=1., kappa2=1., pi=None, **kwargs):
    """
    Tamura and Nei 1993. The model distinguishes between the two different types of
    transition: (A <-> G) is allowed to have a different rate to (C<->T).
    Transversions have the same rate. The frequencies of the nucleotides are allowed
    to be different. Link:
    Tamura, Nei (1993), MolBiol Evol. 10 (3): 512–526. DOI:10.1093/oxfordjournals.molbev.a040023

    Parameters
    -----------

     mu : float
        Substitution rate

     kappa1 : float
        relative A<-->C, A<-->T, T<-->G and G<-->C rates

     kappa2 : float
        relative C<-->T rate

    Note
    ----

     Rate of A<-->G substitution is set to one. All other rates (kappa1, kappa2)
    are specified relative to this rate

    """

    from gtr import GTR
    if pi is None:
        pi = 0.25 * np.ones(4, dtype=float)
    W = np.ones((4, 4))
    W = np.array([[1, kappa1, 1, kappa1], [kappa1, 1, kappa1, kappa2],
                  [1, kappa1, 1, kappa1], [kappa1, kappa2, kappa1, 1]],
                 dtype=float)

    pi /= pi.sum()
    num_chars = len(alphabets['nuc_nogap'])
    if num_chars != pi.shape[0]:
        pi = np.ones((num_chars, ), dtype=float)
        print(
            "GTR: Warning!The number of the characters in the alphabet does not match the "
            "shape of the vector of equilibrium frequencies Pi -- assuming equal frequencies for all states."
        )

    gtr = GTR(alphabet=alphabets['nuc'])
    gtr.assign_rates(mu=mu, pi=pi, W=W)
    return gtr
コード例 #5
0
ファイル: treeanc.py プロジェクト: asmmhossain/treetime
    def infer_gtr(self, print_raw=False, **kwargs):

        self.logger("TreeAnc inferring the GTR model from the tree...", 1)
        self._ml_anc(**kwargs)
        alpha = list(self.gtr.alphabet)
        n = len(alpha)
        nij = np.zeros((n, n))
        Ti = np.zeros(n)
        for node in self.tree.find_clades():

            if hasattr(node, 'mutations'):
                for a, pos, d in node.mutations:
                    i, j = alpha.index(a), alpha.index(d)
                    nij[i, j] += 1
                    Ti[i] += 0.5 * self._branch_length_to_gtr(node)
                    Ti[j] -= 0.5 * self._branch_length_to_gtr(node)
                for nuc in node.sequence:
                    i = alpha.index(nuc)
                    Ti[i] += self._branch_length_to_gtr(node)
        if print_raw:
            print('alphabet:', alpha)
            print('n_ij:', nij)
            print('T_i:', Ti)
        root_state = np.array(
            [np.sum(self.tree.root.sequence == nuc) for nuc in alpha])
        self._gtr = GTR.infer(nij,
                              Ti,
                              root_state,
                              pc=5.0,
                              alphabet=self.gtr.alphabet,
                              logger=self.logger)
        return self._gtr
コード例 #6
0
ファイル: nuc_models.py プロジェクト: tsibley/treetime
def F81(mu=1.0, pi=None, alphabet="nuc", **kwargs):
    """
    Felsenstein 1981 model. Assumes non-equal concentrations across nucleotides,
    but the transition rate between all states is assumed to be equal. See
    Felsenstein (1981), J. Mol. Evol. 17  (6): 368–376. doi:10.1007/BF01734359
    for details.

    Current implementation of the model does not account for the gaps (treatment of
    gaps as characters is possible if specify alphabet='nuc_gap').

    Parameters
    -----------


     mu : float
        Substitution rate

     pi : numpy.array
        Nucleotide concentrations

     alphabet : str
        Alphabet to use. POsiible values are: ['nuc', 'nuc_gap'] Default 'nuc', which discounts al gaps.
        'nuc_gap' alphabet enables treatmen of gaps as characters.
    """

    from gtr import GTR
    if pi is None:
        pi = 0.25 * np.ones(4, dtype=float)
    num_chars = len(alphabets[alphabet])

    pi = np.array(pi, dtype=float)

    if num_chars != len(pi):
        pi = np.ones((num_chars, ), dtype=float)
        print(
            "GTR: Warning!The number of the characters in the alphabet does not match the "
            "shape of the vector of equilibrium frequencies Pi -- assuming equal frequencies for all states."
        )

    W = np.ones((num_chars, num_chars))
    pi /= (1.0 * np.sum(pi))
    gtr = GTR(alphabet=alphabets[alphabet])
    gtr.assign_rates(mu=mu, pi=pi, W=W)
    return gtr
コード例 #7
0
ファイル: treeanc.py プロジェクト: asmmhossain/treetime
 def gtr(self, in_gtr):
     if type(in_gtr) == str:
         self._gtr = GTR.standard(model=in_gtr, logger=self.logger)
     elif isinstance(in_gtr, GTR):
         self._gtr = in_gtr
         self._gtr.logger = self.logger
     else:
         self.logger("TreeAnc.gtr_setter: can't interpret GTR model",
                     1,
                     warn=True)
コード例 #8
0
ファイル: treeanc.py プロジェクト: hcdenbakker/treetime
 def gtr(self, in_gtr):
     if type(in_gtr) == str:
         self._gtr = GTR.standard(model=in_gtr, logger=self.logger)
     elif isinstance(in_gtr, GTR):
         self._gtr = in_gtr
         self._gtr.logger = self.logger
     else:
         self.logger("TreeAnc.gtr_setter: can't interpret GTR model",
                     1,
                     warn=True)
     if self._gtr.ambiguous is None:
         self.fill_overhangs = False
コード例 #9
0
ファイル: nuc_models.py プロジェクト: tsibley/treetime
def HKY85(mu=1.0, pi=None, kappa=0.1, **kwargs):
    """
    Hasegawa, Kishino and Yano 1985 model. Allows different concentrations of the
    nucleotides (as in F81) + distinguishes between transition/transversionsubstitutions
    (similar to K80). Link:
    Hasegawa, Kishino, Yano (1985), J. Mol. Evol. 22 (2): 160–174. doi:10.1007/BF02101694

    Current implementation of the model does not account for the gaps

    Parameters
    -----------


     mu : float
        Substitution rate

     pi : numpy.array
        Nucleotide concentrations

     kappa : float
        Ratio of transversion/transition substitution rates

    """

    from gtr import GTR
    if pi is None:
        pi = 0.25 * np.ones(4, dtype=float)
    num_chars = len(alphabets['nuc_nogap'])
    if num_chars != pi.shape[0]:
        pi = np.ones((num_chars, ), dtype=float)
        print(
            "GTR: Warning!The number of the characters in the alphabet does not match the "
            "shape of the vector of equilibrium frequencies Pi -- assuming equal frequencies for all states."
        )

    W = _create_transversion_transition_W(kappa)
    pi /= pi.sum()
    gtr = GTR(alphabet=alphabets['nuc_nogap'])
    gtr.assign_rates(mu=mu, pi=pi, W=W)
    return gtr
コード例 #10
0
ファイル: treeanc.py プロジェクト: hcdenbakker/treetime
    def infer_gtr(self,
                  print_raw=False,
                  marginal=False,
                  normalized_rate=True,
                  fixed_pi=None,
                  **kwargs):

        # decide which type of the Maximum-likelihood reconstruction use
        # (marginal) or (joint)
        if marginal:
            _ml_anc = self._ml_anc_marginal
        else:
            _ml_anc = self._ml_anc_joint

        self.logger("TreeAnc inferring the GTR model from the tree...", 1)
        _ml_anc(**kwargs)  # call one of the reconstruction types
        alpha = list(self.gtr.alphabet)
        n = len(alpha)
        nij = np.zeros((n, n))
        Ti = np.zeros(n)

        self.logger("TreeAnc.infer_gtr: counting mutations...", 2)
        for node in self.tree.find_clades():
            if hasattr(node, 'mutations'):
                for a, pos, d in node.mutations:
                    i, j = alpha.index(a), alpha.index(d)
                    nij[i, j] += 1
                    Ti[i] += 0.5 * self._branch_length_to_gtr(node)
                    Ti[j] -= 0.5 * self._branch_length_to_gtr(node)
                for nuc in node.sequence:
                    i = alpha.index(nuc)
                    Ti[i] += self._branch_length_to_gtr(node)
        self.logger("TreeAnc.infer_gtr: counting mutations...done", 3)
        if print_raw:
            print('alphabet:', alpha)
            print('n_ij:', nij)
            print('T_i:', Ti)
        root_state = np.array(
            [np.sum(self.tree.root.sequence == nuc) for nuc in alpha])
        self._gtr = GTR.infer(nij,
                              Ti,
                              root_state,
                              fixed_pi=fixed_pi,
                              pc=5.0,
                              alphabet=self.gtr.alphabet,
                              logger=self.logger)
        if normalized_rate:
            self.logger("TreeAnc.infer_gtr: setting overall rate to 1.0...", 2)
            self._gtr.mu = 1.0
        return self._gtr
コード例 #11
0
ファイル: treeanc.py プロジェクト: pausag/treetime
 def infer_gtr(self, alphabet_type='nuc', **kwargs):
     self._ml_anc(**kwargs)
     if alphabet_type in seq_utils.alphabets:
         alpha = "".join(seq_utils.alphabets[alphabet_type])
     n=len(alpha)
     nij = np.zeros((n,n))
     Ti = np.zeros(n)
     for node in self.tree.find_clades():
         if hasattr(node,'mutations'):
             for a,pos, d in node.mutations:
                 i,j = alpha.index(a), alpha.index(d)
                 nij[i,j]+=1
                 Ti[i] += 0.5*node.branch_length
                 Ti[j] -= 0.5*node.branch_length
             for nuc in node.sequence:
                 i = alpha.index(nuc)
                 Ti[i]+=node.branch_length
     root_state = np.array([np.sum(self.tree.root.sequence==nuc) for nuc in alpha])
     self._gtr = GTR.infer(nij, Ti, root_state, pc=5.0)
     return self._gtr
コード例 #12
0
ファイル: treeanc.py プロジェクト: nickloman/treetime
 def infer_gtr(self, print_raw=False, **kwargs):
     self._ml_anc(**kwargs)
     alpha = list(self.gtr.alphabet)
     n=len(alpha)
     nij = np.zeros((n,n))
     Ti = np.zeros(n)
     for node in self.tree.find_clades():
         if hasattr(node,'mutations'):
             for a,pos, d in node.mutations:
                 i,j = alpha.index(a), alpha.index(d)
                 nij[i,j]+=1
                 Ti[i] += 0.5*node.branch_length
                 Ti[j] -= 0.5*node.branch_length
             for nuc in node.sequence:
                 i = alpha.index(nuc)
                 Ti[i]+=node.branch_length
     if print_raw:
         print('alphabet:',alpha)
         print('n_ij:', nij)
         print('T_i:', Ti)
     root_state = np.array([np.sum(self.tree.root.sequence==nuc) for nuc in alpha])
     self._gtr = GTR.infer(nij, Ti, root_state, pc=5.0, alphabet=self.gtr.alphabet)
     return self._gtr
コード例 #13
0
def JTT92(mu=1.0):
    from gtr import GTR
    # stationary concentrations:
    pis = np.array([
        0.07674789, 0.05169087, 0.04264509, 0.05154407, 0.01980301, 0.04075195,
        0.06182989, 0.07315199, 0.02294399, 0.05376110, 0.09190390, 0.05867583,
        0.02382594, 0.04012589, 0.05090097, 0.06876503, 0.05856501, 0.01426057,
        0.03210196, 0.06600504
    ])

    # attempt matrix (FIXME)
    Q = np.array([[
        -1.247831, 0.044229, 0.041179, 0.061769, 0.042704, 0.043467, 0.08007,
        0.136501, 0.02059, 0.027453, 0.022877, 0.02669, 0.041179, 0.011439,
        0.14794, 0.288253, 0.362223, 0.006863, 0.008388, 0.227247
    ],
                  [
                      0.029789, -1.025965, 0.023112, 0.008218, 0.058038,
                      0.159218, 0.014895, 0.070364, 0.168463, 0.011299,
                      0.019517, 0.33179, 0.022599, 0.002568, 0.038007,
                      0.051874, 0.032871, 0.064714, 0.010272, 0.008731
                  ],
                  [
                      0.022881, 0.019068, -1.280568, 0.223727, 0.014407,
                      0.03644, 0.024576, 0.034322, 0.165676, 0.019915,
                      0.005085, 0.11144, 0.012712, 0.004237, 0.006356,
                      0.213134, 0.098304, 0.00339, 0.029661, 0.00678
                  ],
                  [
                      0.041484, 0.008194, 0.270413, -1.044903, 0.005121,
                      0.025095, 0.392816, 0.066579, 0.05736, 0.005634,
                      0.003585, 0.013316, 0.007682, 0.002049, 0.007682,
                      0.030217, 0.019462, 0.002049, 0.023559, 0.015877
                  ],
                  [
                      0.011019, 0.022234, 0.00669, 0.001968, -0.56571,
                      0.001771, 0.000984, 0.011609, 0.013577, 0.003345,
                      0.004526, 0.001377, 0.0061, 0.015348, 0.002755, 0.043878,
                      0.008264, 0.022628, 0.041124, 0.012199
                  ],
                  [
                      0.02308, 0.125524, 0.034823, 0.019841, 0.003644,
                      -1.04415, 0.130788, 0.010528, 0.241735, 0.003644,
                      0.029154, 0.118235, 0.017411, 0.00162, 0.066406,
                      0.021461, 0.020651, 0.007288, 0.009718, 0.008098
                  ],
                  [
                      0.064507, 0.017816, 0.035632, 0.471205, 0.003072,
                      0.198435, -0.944343, 0.073107, 0.015973, 0.007372,
                      0.005529, 0.111197, 0.011058, 0.003072, 0.011058,
                      0.01843, 0.019659, 0.006143, 0.0043, 0.027646
                  ],
                  [
                      0.130105, 0.099578, 0.058874, 0.09449, 0.042884,
                      0.018898, 0.086495, -0.647831, 0.016717, 0.004361,
                      0.004361, 0.019625, 0.010176, 0.003634, 0.017444,
                      0.146096, 0.023986, 0.039976, 0.005815, 0.034162
                  ],
                  [
                      0.006155, 0.074775, 0.089138, 0.025533, 0.01573, 0.1361,
                      0.005927, 0.005243, -1.135695, 0.003648, 0.012767,
                      0.010259, 0.007523, 0.009119, 0.026217, 0.016642,
                      0.010487, 0.001824, 0.130629, 0.002508
                  ],
                  [
                      0.01923, 0.011752, 0.025106, 0.005876, 0.009081,
                      0.004808, 0.00641, 0.003205, 0.008547, -1.273602,
                      0.122326, 0.011218, 0.25587, 0.047542, 0.005342,
                      0.021367, 0.130873, 0.004808, 0.017094, 0.513342
                  ],
                  [
                      0.027395, 0.0347, 0.010958, 0.006392, 0.021003, 0.065748,
                      0.008219, 0.005479, 0.051137, 0.209115, -0.668139,
                      0.012784, 0.354309, 0.226465, 0.093143, 0.053877,
                      0.022829, 0.047485, 0.021916, 0.16437
                  ],
                  [
                      0.020405, 0.376625, 0.153332, 0.015158, 0.004081,
                      0.170239, 0.105525, 0.015741, 0.026235, 0.012243,
                      0.008162, -0.900734, 0.037896, 0.002332, 0.012243,
                      0.027401, 0.06005, 0.00583, 0.004664, 0.008162
                  ],
                  [
                      0.012784, 0.010416, 0.007102, 0.003551, 0.007339,
                      0.01018, 0.004261, 0.003314, 0.007812, 0.113397,
                      0.091854, 0.015388, -1.182051, 0.01018, 0.003788,
                      0.006865, 0.053503, 0.005682, 0.004261, 0.076466
                  ],
                  [
                      0.00598, 0.001993, 0.003987, 0.001595, 0.031098,
                      0.001595, 0.001993, 0.001993, 0.015948, 0.035484,
                      0.098877, 0.001595, 0.017144, -0.637182, 0.006778,
                      0.03668, 0.004784, 0.021131, 0.213701, 0.024719
                  ],
                  [
                      0.098117, 0.037426, 0.007586, 0.007586, 0.007081,
                      0.082944, 0.009104, 0.012138, 0.058162, 0.005058,
                      0.051587, 0.010621, 0.008092, 0.008598, -0.727675,
                      0.144141, 0.059679, 0.003035, 0.005058, 0.011632
                  ],
                  [
                      0.258271, 0.069009, 0.343678, 0.040312, 0.152366,
                      0.036213, 0.020498, 0.137334, 0.049878, 0.02733,
                      0.040312, 0.032113, 0.019814, 0.06286, 0.194728,
                      -1.447863, 0.325913, 0.023914, 0.043045, 0.025964
                  ],
                  [
                      0.276406, 0.037242, 0.135003, 0.022112, 0.02444,
                      0.029677, 0.018621, 0.019203, 0.026768, 0.142567,
                      0.014548, 0.059936, 0.131511, 0.006983, 0.068665,
                      0.27757, -1.335389, 0.006983, 0.01222, 0.065174
                  ],
                  [
                      0.001275, 0.017854, 0.001134, 0.000567, 0.016295,
                      0.002551, 0.001417, 0.007793, 0.001134, 0.001275,
                      0.007368, 0.001417, 0.003401, 0.00751, 0.00085, 0.004959,
                      0.0017, -0.312785, 0.010061, 0.003542
                  ],
                  [
                      0.003509, 0.006379, 0.022328, 0.014673, 0.066664,
                      0.007655, 0.002233, 0.002552, 0.182769, 0.010207,
                      0.007655, 0.002552, 0.005741, 0.170967, 0.00319,
                      0.020095, 0.006698, 0.022647, -0.605978, 0.005103
                  ],
                  [
                      0.195438, 0.011149, 0.010493, 0.020331, 0.040662,
                      0.013117, 0.029512, 0.030824, 0.007214, 0.630254,
                      0.11805, 0.009182, 0.211834, 0.040662, 0.015084,
                      0.024922, 0.073453, 0.016396, 0.010493, -1.241722
                  ]])

    Spis = np.sqrt(pis[None, :] / pis[:, None])
    W = Q * Spis

    gtr = GTR(alphabet=alphabets['aa_nogap'])
    gtr.assign_rates(mu=mu, pi=pis, W=W)
    return gtr
コード例 #14
0
ファイル: treeanc.py プロジェクト: hcdenbakker/treetime
        return new_aln

if __name__ == "__main__":
    from Bio import Phylo
    from StringIO import StringIO
    from Bio import Phylo, AlignIO

    tiny_tree = Phylo.read(StringIO("((A:.0060,B:.30)C:.030,D:.020)E:.004;"),
                           'newick')
    tiny_aln = AlignIO.read(
        StringIO(
            ">A\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT\n"
            ">B\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT\n"
            ">C\nAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTAAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTT\n"
            ">D\nAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTTAAAACCCCGGGGTTTT\n"
            ">E\nACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGT\n"
        ), 'fasta')

    mygtr = GTR.custom(alphabet=np.array(['A', 'C', 'G', 'T']),
                       pi=np.array([0.25, 0.95, 0.005, 0.05]),
                       W=np.ones((4, 4)))

    myTree = TreeAnc(gtr=mygtr, tree=tiny_tree, aln=tiny_aln, verbose=4)

    logLH = myTree.ancestral_likelihood()
    LH = np.exp(logLH)
    print("Net probability (for all possible realizations): " +
          str(np.exp(logLH).sum()))
    print(np.exp(logLH))