コード例 #1
0
ファイル: slam.py プロジェクト: programath/mhjcbb
def mhjcbb(sim,
           num_tracks=10,
           prob=0.95,
           posterior_pose_md_threshold=1.5,
           prune2_skip=10,
           max_observed_diff=3):
    slams = [[gtsam.ISAM2(), set()]]

    prune2_count = 1
    observed = set()
    for x, (odom, obs) in enumerate(sim.step()):
        for isam2, observed in slams:
            graph = gtsam.NonlinearFactorGraph()
            values = gtsam.Values()
            if x == 0:
                prior_model = gtsam.noiseModel_Diagonal.Sigmas(
                    np.array([sim.sigma_x, sim.sigma_y, sim.sigma_theta]))
                prior_factor = gtsam.PriorFactorPose2(X(0), odom, prior_model)
                graph.add(prior_factor)
                values.insert(X(0), odom)
            else:
                odom_model = gtsam.noiseModel_Diagonal.Sigmas(
                    np.array([sim.sigma_x, sim.sigma_y, sim.sigma_theta]))
                odom_factor = gtsam.BetweenFactorPose2(X(x - 1), X(x), odom,
                                                       odom_model)
                graph.add(odom_factor)
                pose0 = isam2.calculateEstimatePose2(X(x - 1))
                values.insert(X(x), pose0.compose(odom))

            isam2.update(graph, values)

        ################################################################################
        mhjcbb = gtsam.da_MHJCBB2(num_tracks, prob,
                                  posterior_pose_md_threshold)
        for isam2, observed, in slams:
            mhjcbb.initialize(isam2)

        for l, br in obs.items():
            br_model = gtsam.noiseModel_Diagonal.Sigmas(
                np.array([sim.sigma_bearing, sim.sigma_range]))
            mhjcbb.add(gtsam.Rot2(br[0]), br[1], br_model)

        mhjcbb.match()
        ################################################################################

        new_slams = []
        for i in range(mhjcbb.size()):
            track, keys = mhjcbb.get(i)
            keys = [gtsam.symbolIndex(keys.at(i)) for i in range(keys.size())]

            isam2 = gtsam.ISAM2()
            isam2.update(slams[track][0].getFactorsUnsafe(),
                         slams[track][0].calculateEstimate())
            graph = gtsam.NonlinearFactorGraph()
            values = gtsam.Values()
            observed = set(slams[track][1])
            for (l_true, br), l in zip(obs.items(), keys):
                br_model = gtsam.noiseModel_Diagonal.Sigmas(
                    np.array([sim.sigma_bearing, sim.sigma_range]))
                br_factor = gtsam.BearingRangeFactor2D(X(x), L(l),
                                                       gtsam.Rot2(br[0]),
                                                       br[1], br_model)

                graph.add(br_factor)
                if l not in observed:
                    pose1 = isam2.calculateEstimatePose2(X(x))
                    point = gtsam.Point2(br[1] * np.cos(br[0]),
                                         br[1] * np.sin(br[0]))
                    values.insert(L(l), pose1.transform_from(point))
                    observed.add(l)
            isam2.update(graph, values)
            new_slams.append([isam2, observed])
        slams = new_slams
        slams = prune1(slams, x, posterior_pose_md_threshold)

        if len(slams[0][1]) > prune2_count * prune2_skip:
            slams = prune2(slams, max_observed_diff)
            prune2_count += 1

    result = []
    for isam2, observed in slams:
        traj_est = [
            isam2.calculateEstimatePose2(X(x)) for x in range(len(sim.traj))
        ]
        traj_est = np.array([(p.x(), p.y(), p.theta()) for p in traj_est])
        landmark_est = [isam2.calculateEstimatePoint2(L(l)) for l in observed]
        landmark_est = np.array([(p.x(), p.y()) for p in landmark_est])
        result.append((traj_est, landmark_est))
    return result
コード例 #2
0
ファイル: slam.py プロジェクト: programath/mhjcbb
def slam(sim, da='jcbb', prob=0.95):
    isam2 = gtsam.ISAM2()
    graph = gtsam.NonlinearFactorGraph()
    values = gtsam.Values()

    observed = set()
    for x, (odom, obs) in enumerate(sim.step()):
        if x == 0:
            prior_model = gtsam.noiseModel_Diagonal.Sigmas(
                np.array([sim.sigma_x, sim.sigma_y, sim.sigma_theta]))
            prior_factor = gtsam.PriorFactorPose2(X(0), odom, prior_model)
            graph.add(prior_factor)
            values.insert(X(0), odom)
        else:
            odom_model = gtsam.noiseModel_Diagonal.Sigmas(
                np.array([sim.sigma_x, sim.sigma_y, sim.sigma_theta]))
            odom_factor = gtsam.BetweenFactorPose2(X(x - 1), X(x), odom,
                                                   odom_model)
            graph.add(odom_factor)
            pose0 = isam2.calculateEstimatePose2(X(x - 1))
            values.insert(X(x), pose0.compose(odom))

        isam2.update(graph, values)
        graph.resize(0)
        values.clear()
        estimate = isam2.calculateEstimate()

        if da == 'dr':
            for l_true, br in obs.items():
                l = len(observed)
                br_model = gtsam.noiseModel_Diagonal.Sigmas(
                    np.array([sim.sigma_bearing, sim.sigma_range]))
                br_factor = gtsam.BearingRangeFactor2D(X(x), L(l),
                                                       gtsam.Rot2(br[0]),
                                                       br[1], br_model)
                graph.add(br_factor)
                if l not in observed:
                    pose1 = isam2.calculateEstimatePose2(X(x))
                    point = gtsam.Point2(br[1] * np.cos(br[0]),
                                         br[1] * np.sin(br[0]))
                    values.insert(L(l), pose1.transform_from(point))
                    observed.add(l)
        elif da == 'perfect':
            for l_true, br in obs.items():
                br_model = gtsam.noiseModel_Diagonal.Sigmas(
                    np.array([sim.sigma_bearing, sim.sigma_range]))
                br_factor = gtsam.BearingRangeFactor2D(X(x), L(l_true),
                                                       gtsam.Rot2(br[0]),
                                                       br[1], br_model)
                graph.add(br_factor)
                if l_true not in observed:
                    pose1 = isam2.calculateEstimatePose2(X(x))
                    point = gtsam.Point2(br[1] * np.cos(br[0]),
                                         br[1] * np.sin(br[0]))
                    values.insert(L(l_true), pose1.transform_from(point))
                    observed.add(l_true)
        elif da == 'jcbb':
            ################################################################################
            jcbb = gtsam.da_JCBB2(isam2, prob)
            for l, br in obs.items():
                br_model = gtsam.noiseModel_Diagonal.Sigmas(
                    np.array([sim.sigma_bearing, sim.sigma_range]))
                jcbb.add(gtsam.Rot2(br[0]), br[1], br_model)

            keys = jcbb.match()
            ################################################################################

            keys = [gtsam.symbolIndex(keys.at(i)) for i in range(keys.size())]
            for (l_true, br), l in zip(obs.items(), keys):
                br_model = gtsam.noiseModel_Diagonal.Sigmas(
                    np.array([sim.sigma_bearing, sim.sigma_range]))
                br_factor = gtsam.BearingRangeFactor2D(X(x), L(l),
                                                       gtsam.Rot2(br[0]),
                                                       br[1], br_model)
                graph.add(br_factor)
                if l not in observed:
                    pose1 = isam2.calculateEstimatePose2(X(x))
                    point = gtsam.Point2(br[1] * np.cos(br[0]),
                                         br[1] * np.sin(br[0]))
                    values.insert(L(l), pose1.transform_from(point))
                    observed.add(l)

        isam2.update(graph, values)
        graph.resize(0)
        values.clear()

    traj_est = [
        isam2.calculateEstimatePose2(X(x)) for x in range(len(sim.traj))
    ]
    traj_est = np.array([(p.x(), p.y(), p.theta()) for p in traj_est])
    landmark_est = [isam2.calculateEstimatePoint2(L(l)) for l in observed]
    landmark_est = np.array([(p.x(), p.y()) for p in landmark_est])
    return [[traj_est, landmark_est]]
def batch_factorgraph_example():
    # Create an empty nonlinear factor graph.
    graph = gtsam.NonlinearFactorGraph()

    # Create the keys for the poses.
    X1 = X(1)
    X2 = X(2)
    X3 = X(3)
    pose_variables = [X1, X2, X3]

    # Create keys for the landmarks.
    L1 = L(1)
    L2 = L(2)
    landmark_variables = [L1, L2]

    # Add a prior on pose X1 at the origin.
    prior_noise = gtsam.noiseModel.Diagonal.Sigmas(np.array([0.1, 0.1, 0.1]))
    graph.add(
        gtsam.PriorFactorPose2(X1, gtsam.Pose2(0.0, 0.0, 0.0), prior_noise))

    # Add odometry factors between X1,X2 and X2,X3, respectively
    odometry_noise = gtsam.noiseModel.Diagonal.Sigmas(np.array([0.1, 0.1,
                                                                0.1]))
    graph.add(
        gtsam.BetweenFactorPose2(X1, X2, gtsam.Pose2(2.0, 0.0, 0.0),
                                 odometry_noise))
    graph.add(
        gtsam.BetweenFactorPose2(X2, X3, gtsam.Pose2(2.0, 0.0, 0.0),
                                 odometry_noise))

    # Add Range-Bearing measurements to two different landmarks L1 and L2
    measurement_noise = gtsam.noiseModel.Diagonal.Sigmas(np.array([0.05, 0.1]))
    graph.add(
        gtsam.BearingRangeFactor2D(X1, L1, gtsam.Rot2.fromDegrees(45),
                                   np.sqrt(4.0 + 4.0), measurement_noise))
    graph.add(
        gtsam.BearingRangeFactor2D(X2, L1, gtsam.Rot2.fromDegrees(90), 2.0,
                                   measurement_noise))
    graph.add(
        gtsam.BearingRangeFactor2D(X3, L2, gtsam.Rot2.fromDegrees(90), 2.0,
                                   measurement_noise))

    # Create (deliberately inaccurate) initial estimate
    initial_estimate = gtsam.Values()
    initial_estimate.insert(X1, gtsam.Pose2(-0.25, 0.20, 0.15))
    initial_estimate.insert(X2, gtsam.Pose2(2.30, 0.10, -0.20))
    initial_estimate.insert(X3, gtsam.Pose2(4.10, 0.10, 0.10))
    initial_estimate.insert(L1, gtsam.Point2(1.80, 2.10))
    initial_estimate.insert(L2, gtsam.Point2(4.10, 1.80))

    # Create an optimizer.
    params = gtsam.LevenbergMarquardtParams()
    optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial_estimate,
                                                  params)

    # Solve the MAP problem.
    result = optimizer.optimize()

    # Calculate marginal covariances for all variables.
    marginals = gtsam.Marginals(graph, result)

    # Extract marginals
    pose_marginals = []
    for var in pose_variables:
        pose_marginals.append(
            MultivariateNormalParameters(result.atPose2(var),
                                         marginals.marginalCovariance(var)))

    landmark_marginals = []
    for var in landmark_variables:
        landmark_marginals.append(
            MultivariateNormalParameters(result.atPoint2(var),
                                         marginals.marginalCovariance(var)))

    # You can extract the joint marginals like this.
    joint_all = marginals.jointMarginalCovariance(
        gtsam.KeyVector(pose_variables + landmark_variables))
    print("Joint covariance over all variables:")
    print(joint_all.fullMatrix())

    # Plot the marginals.
    plot_result(pose_marginals, landmark_marginals)
コード例 #4
0
X2 = X(2)
X3 = X(3)
L1 = L(4)
L2 = L(5)

# Add a prior on pose X1 at the origin. A prior factor consists of a mean and a noise model
graph.add(gtsam.PriorFactorPose2(X1, gtsam.Pose2(0.0, 0.0, 0.0), PRIOR_NOISE))

# Add odometry factors between X1,X2 and X2,X3, respectively
graph.add(gtsam.BetweenFactorPose2(
    X1, X2, gtsam.Pose2(2.0, 0.0, 0.0), ODOMETRY_NOISE))
graph.add(gtsam.BetweenFactorPose2(
    X2, X3, gtsam.Pose2(2.0, 0.0, 0.0), ODOMETRY_NOISE))

# Add Range-Bearing measurements to two different landmarks L1 and L2
graph.add(gtsam.BearingRangeFactor2D(
    X1, L1, gtsam.Rot2.fromDegrees(45), np.sqrt(4.0+4.0), MEASUREMENT_NOISE))
graph.add(gtsam.BearingRangeFactor2D(
    X2, L1, gtsam.Rot2.fromDegrees(90), 2.0, MEASUREMENT_NOISE))
graph.add(gtsam.BearingRangeFactor2D(
    X3, L2, gtsam.Rot2.fromDegrees(90), 2.0, MEASUREMENT_NOISE))

# Print graph
print("Factor Graph:\n{}".format(graph))

# Create (deliberately inaccurate) initial estimate
initial_estimate = gtsam.Values()
initial_estimate.insert(X1, gtsam.Pose2(-0.25, 0.20, 0.15))
initial_estimate.insert(X2, gtsam.Pose2(2.30, 0.10, -0.20))
initial_estimate.insert(X3, gtsam.Pose2(4.10, 0.10, 0.10))
initial_estimate.insert(L1, gtsam.Point2(1.80, 2.10))
initial_estimate.insert(L2, gtsam.Point2(4.10, 1.80))
コード例 #5
0
ファイル: PlanarSLAMExample.py プロジェクト: borglab/gtsam
def main():
    """Main runner"""

    # Create an empty nonlinear factor graph
    graph = gtsam.NonlinearFactorGraph()

    # Create the keys corresponding to unknown variables in the factor graph
    X1 = X(1)
    X2 = X(2)
    X3 = X(3)
    L1 = L(4)
    L2 = L(5)

    # Add a prior on pose X1 at the origin. A prior factor consists of a mean and a noise model
    graph.add(
        gtsam.PriorFactorPose2(X1, gtsam.Pose2(0.0, 0.0, 0.0), PRIOR_NOISE))

    # Add odometry factors between X1,X2 and X2,X3, respectively
    graph.add(
        gtsam.BetweenFactorPose2(X1, X2, gtsam.Pose2(2.0, 0.0, 0.0),
                                 ODOMETRY_NOISE))
    graph.add(
        gtsam.BetweenFactorPose2(X2, X3, gtsam.Pose2(2.0, 0.0, 0.0),
                                 ODOMETRY_NOISE))

    # Add Range-Bearing measurements to two different landmarks L1 and L2
    graph.add(
        gtsam.BearingRangeFactor2D(X1, L1, gtsam.Rot2.fromDegrees(45),
                                   np.sqrt(4.0 + 4.0), MEASUREMENT_NOISE))
    graph.add(
        gtsam.BearingRangeFactor2D(X2, L1, gtsam.Rot2.fromDegrees(90), 2.0,
                                   MEASUREMENT_NOISE))
    graph.add(
        gtsam.BearingRangeFactor2D(X3, L2, gtsam.Rot2.fromDegrees(90), 2.0,
                                   MEASUREMENT_NOISE))

    # Print graph
    print("Factor Graph:\n{}".format(graph))

    # Create (deliberately inaccurate) initial estimate
    initial_estimate = gtsam.Values()
    initial_estimate.insert(X1, gtsam.Pose2(-0.25, 0.20, 0.15))
    initial_estimate.insert(X2, gtsam.Pose2(2.30, 0.10, -0.20))
    initial_estimate.insert(X3, gtsam.Pose2(4.10, 0.10, 0.10))
    initial_estimate.insert(L1, gtsam.Point2(1.80, 2.10))
    initial_estimate.insert(L2, gtsam.Point2(4.10, 1.80))

    # Print
    print("Initial Estimate:\n{}".format(initial_estimate))

    # Optimize using Levenberg-Marquardt optimization. The optimizer
    # accepts an optional set of configuration parameters, controlling
    # things like convergence criteria, the type of linear system solver
    # to use, and the amount of information displayed during optimization.
    # Here we will use the default set of parameters.  See the
    # documentation for the full set of parameters.
    params = gtsam.LevenbergMarquardtParams()
    optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial_estimate,
                                                  params)
    result = optimizer.optimize()
    print("\nFinal Result:\n{}".format(result))

    # Calculate and print marginal covariances for all variables
    marginals = gtsam.Marginals(graph, result)
    for (key, s) in [(X1, "X1"), (X2, "X2"), (X3, "X3"), (L1, "L1"),
                     (L2, "L2")]:
        print("{} covariance:\n{}\n".format(s,
                                            marginals.marginalCovariance(key)))
コード例 #6
0
    def update(self, motion, measurement):

        if self.pose_num == 0:
            self.result = self.estimations

        odometry = self._get_motion_gtsam_format(motion)
        noise = gtsam.noiseModel_Diagonal.Sigmas(self._get_motion_noise_covariance(motion, self.alphas))

        predicted_state = self._get_motion_prediction(self.result.atPose2(self.pose_num), motion)

        # adding to the graph odometry value
        self.graph.add(gtsam.BetweenFactorPose2(self.pose_num, self.pose_num + 1, odometry, noise))
        # adding predicted pose to the initial estimations
        self.estimations.insert(self.pose_num + 1, predicted_state)

        for i in range(len(measurement)):
            bearing = gtsam.Rot2(measurement[i, 1])
            distance = measurement[i, 0]
            landmark_id = self.observation_num

            # adding to the graph measurement value
            self.graph.add(
                gtsam.BearingRangeFactor2D(self.pose_num, landmark_id, bearing, distance, self.observation_noise))
            landmark_position = self._get_landmark_position(self.result.atPose2(self.pose_num), distance,
                                                            bearing.theta())

            # adding predicted landmarks position to the initial estimations
            self.estimations.insert(landmark_id, landmark_position)
            self.observation_num += 1

        """
        for i in range(len(measurement)):

            bearing = gtsam.Rot2(measurement[i, 0])
            distance = measurement[i, 1]
            landmark_id = 1000 + measurement[i, 2]

            if landmark_id not in self.landmark_indexes:
                self.landmark_indexes.append(landmark_id)
                landmark_position = self._get_landmark_position(self.result.atPose2(self.pose_num), distance, bearing.theta())
                self.graph.add(gtsam.BearingRangeFactor2D(self.pose_num, landmark_id, bearing, distance, self.observation_noise))
                self.estimations.insert(landmark_id, landmark_position)
            else:
                pass
        """

        # update factorization problem
        #print(noise)
        #print(self.observation_noise)
        print(self.estimations)

        #params = gtsam.LevenbergMarquardtParams()
        #optimiser = gtsam.LevenbergMarquardtOptimizer(self.graph, self.estimations, params)
        #optimiser.optimize()

        self.slam.update(self.graph, self.estimations)

        # clearing current graph and estimations
        self.graph.resize(0)
        self.estimations.clear()
        print(self.graph)

        # getting results
        self.result = self.slam.calculateEstimate()
        #print(self.result)

        self.pose_num += 1
        self._convert_to_np_format()