def ranolazine_mpo() -> GoalDirectedBenchmark: """ Make start_pop_ranolazine more polar and add a fluorine """ ranolazine = "COc1ccccc1OCC(O)CN2CCN(CC(=O)Nc3c(C)cccc3C)CC2" modifier = ClippedScoreModifier(upper_x=0.7) similar_to_ranolazine = TanimotoScoringFunction(ranolazine, fp_type="AP", score_modifier=modifier) logP_under_4 = RdkitScoringFunction(descriptor=logP, score_modifier=MaxGaussianModifier( mu=7, sigma=1)) tpsa_f = RdkitScoringFunction(descriptor=tpsa, score_modifier=MaxGaussianModifier(mu=95, sigma=20)) fluorine = RdkitScoringFunction(descriptor=AtomCounter("F"), score_modifier=GaussianModifier(mu=1, sigma=1.0)) optimize_ranolazine = GeometricMeanScoringFunction( [similar_to_ranolazine, logP_under_4, fluorine, tpsa_f]) specification = uniform_specification(1, 10, 100) return GoalDirectedBenchmark( name="Ranolazine MPO", objective=optimize_ranolazine, contribution_specification=specification, starting_population=[ranolazine], )
def hard_osimertinib() -> GoalDirectedBenchmark: smiles = 'COc1cc(N(C)CCN(C)C)c(NC(=O)C=C)cc1Nc2nccc(n2)c3cn(C)c4ccccc34' modifier = ClippedScoreModifier(upper_x=0.8) similar_to_osimertinib = TanimotoScoringFunction(smiles, fp_type='FCFP4', score_modifier=modifier) but_not_too_similar = TanimotoScoringFunction( smiles, fp_type='ECFP6', score_modifier=MinGaussianModifier(mu=0.85, sigma=0.1)) tpsa_over_100 = RdkitScoringFunction(descriptor=tpsa, score_modifier=MaxGaussianModifier( mu=100, sigma=10)) logP_scoring = RdkitScoringFunction(descriptor=logP, score_modifier=MinGaussianModifier( mu=1, sigma=1)) make_osimertinib_great_again = ArithmeticMeanScoringFunction([ similar_to_osimertinib, but_not_too_similar, tpsa_over_100, logP_scoring ]) specification = uniform_specification(1, 10, 100) return GoalDirectedBenchmark(name='Osimertinib MPO', objective=make_osimertinib_great_again, contribution_specification=specification)
def hard_cobimetinib() -> GoalDirectedBenchmark: smiles = 'OC1(CN(C1)C(=O)C1=C(NC2=C(F)C=C(I)C=C2)C(F)=C(F)C=C1)C1CCCCN1' modifier = ClippedScoreModifier(upper_x=0.7) os_tf = TanimotoScoringFunction(smiles, fp_type='FCFP4', score_modifier=modifier) os_ap = TanimotoScoringFunction(smiles, fp_type='ECFP6', score_modifier=MinGaussianModifier( mu=0.75, sigma=0.1)) rot_b = RdkitScoringFunction(descriptor=num_rotatable_bonds, score_modifier=MinGaussianModifier(mu=3, sigma=1)) rings = RdkitScoringFunction(descriptor=num_aromatic_rings, score_modifier=MaxGaussianModifier(mu=3, sigma=1)) t_cns = ArithmeticMeanScoringFunction( [os_tf, os_ap, rot_b, rings, CNS_MPO_ScoringFunction()]) specification = uniform_specification(1, 10, 100) return GoalDirectedBenchmark(name='Cobimetinib MPO', objective=t_cns, contribution_specification=specification)
def weird_physchem() -> GoalDirectedBenchmark: min_bertz = RdkitScoringFunction(descriptor=bertz, score_modifier=MaxGaussianModifier( mu=1500, sigma=200)) mol_under_400 = RdkitScoringFunction(descriptor=mol_weight, score_modifier=MinGaussianModifier( mu=400, sigma=40)) aroma = RdkitScoringFunction(descriptor=num_aromatic_rings, score_modifier=MinGaussianModifier(mu=3, sigma=1)) fluorine = RdkitScoringFunction(descriptor=AtomCounter('F'), score_modifier=GaussianModifier(mu=6, sigma=1.0)) opt_weird = ArithmeticMeanScoringFunction( [min_bertz, mol_under_400, aroma, fluorine]) specification = uniform_specification(1, 10, 100) return GoalDirectedBenchmark(name='Physchem MPO', objective=opt_weird, contribution_specification=specification)
def start_pop_ranolazine() -> GoalDirectedBenchmark: ranolazine = 'COc1ccccc1OCC(O)CN2CCN(CC(=O)Nc3c(C)cccc3C)CC2' modifier = ClippedScoreModifier(upper_x=0.7) similar_to_ranolazine = TanimotoScoringFunction(ranolazine, fp_type='AP', score_modifier=modifier) logP_under_4 = RdkitScoringFunction(descriptor=logP, score_modifier=MaxGaussianModifier( mu=7, sigma=1)) aroma = RdkitScoringFunction(descriptor=num_aromatic_rings, score_modifier=MinGaussianModifier(mu=1, sigma=1)) fluorine = RdkitScoringFunction(descriptor=AtomCounter('F'), score_modifier=GaussianModifier(mu=1, sigma=1.0)) optimize_ranolazine = ArithmeticMeanScoringFunction( [similar_to_ranolazine, logP_under_4, fluorine, aroma]) specification = uniform_specification(1, 10, 100) return GoalDirectedBenchmark(name='Ranolazine MPO', objective=optimize_ranolazine, contribution_specification=specification, starting_population=[ranolazine])
def hard_fexofenadine() -> GoalDirectedBenchmark: """ make fexofenadine less greasy :return: """ smiles = 'CC(C)(C(=O)O)c1ccc(cc1)C(O)CCCN2CCC(CC2)C(O)(c3ccccc3)c4ccccc4' modifier = ClippedScoreModifier(upper_x=0.8) similar_to_fexofenadine = TanimotoScoringFunction(smiles, fp_type='AP', score_modifier=modifier) tpsa_over_90 = RdkitScoringFunction(descriptor=tpsa, score_modifier=MaxGaussianModifier( mu=90, sigma=10)) logP_under_4 = RdkitScoringFunction(descriptor=logP, score_modifier=MinGaussianModifier( mu=4, sigma=1)) optimize_fexofenadine = ArithmeticMeanScoringFunction( [similar_to_fexofenadine, tpsa_over_90, logP_under_4]) specification = uniform_specification(1, 10, 100) return GoalDirectedBenchmark(name='Fexofenadine MPO', objective=optimize_fexofenadine, contribution_specification=specification)
def __init__(self, max_logP=6.35584, maxMW=360, min_tpsa=40, max_tpsa=90, max_hbd=0) -> None: super().__init__() self.logP_gauss = MinGaussianModifier(max_logP, 1) self.molW_gauss = MinGaussianModifier(maxMW, 60) self.tpsa_maxgauss = MaxGaussianModifier(min_tpsa, 20) self.tpsa_mingauss = MinGaussianModifier(max_tpsa, 30) self.hbd_gauss = MinGaussianModifier(max_hbd, 2.0)
def test_max_gaussian_function(): mu = -1.223 sigma = 0.334 f = MaxGaussianModifier(mu=mu, sigma=sigma) assert f(mu) == 1.0 low_value = -np.inf large_value = np.inf assert f(low_value) == 0.0 assert f(large_value) == 1.0 full_gaussian = partial(gaussian, mu=mu, sig=sigma) max_gaussian_lambda = lambda x: 1.0 if x > mu else full_gaussian(x) max_gaussian = np.vectorize(max_gaussian_lambda) assert f(scalar_value) == max_gaussian(scalar_value) assert np.allclose(f(value_array), max_gaussian(value_array))