コード例 #1
0
def ranolazine_mpo() -> GoalDirectedBenchmark:
    """
    Make start_pop_ranolazine more polar and add a fluorine
    """
    ranolazine = "COc1ccccc1OCC(O)CN2CCN(CC(=O)Nc3c(C)cccc3C)CC2"

    modifier = ClippedScoreModifier(upper_x=0.7)
    similar_to_ranolazine = TanimotoScoringFunction(ranolazine,
                                                    fp_type="AP",
                                                    score_modifier=modifier)

    logP_under_4 = RdkitScoringFunction(descriptor=logP,
                                        score_modifier=MaxGaussianModifier(
                                            mu=7, sigma=1))

    tpsa_f = RdkitScoringFunction(descriptor=tpsa,
                                  score_modifier=MaxGaussianModifier(mu=95,
                                                                     sigma=20))

    fluorine = RdkitScoringFunction(descriptor=AtomCounter("F"),
                                    score_modifier=GaussianModifier(mu=1,
                                                                    sigma=1.0))

    optimize_ranolazine = GeometricMeanScoringFunction(
        [similar_to_ranolazine, logP_under_4, fluorine, tpsa_f])

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(
        name="Ranolazine MPO",
        objective=optimize_ranolazine,
        contribution_specification=specification,
        starting_population=[ranolazine],
    )
コード例 #2
0
def hard_osimertinib() -> GoalDirectedBenchmark:
    smiles = 'COc1cc(N(C)CCN(C)C)c(NC(=O)C=C)cc1Nc2nccc(n2)c3cn(C)c4ccccc34'

    modifier = ClippedScoreModifier(upper_x=0.8)
    similar_to_osimertinib = TanimotoScoringFunction(smiles,
                                                     fp_type='FCFP4',
                                                     score_modifier=modifier)

    but_not_too_similar = TanimotoScoringFunction(
        smiles,
        fp_type='ECFP6',
        score_modifier=MinGaussianModifier(mu=0.85, sigma=0.1))

    tpsa_over_100 = RdkitScoringFunction(descriptor=tpsa,
                                         score_modifier=MaxGaussianModifier(
                                             mu=100, sigma=10))

    logP_scoring = RdkitScoringFunction(descriptor=logP,
                                        score_modifier=MinGaussianModifier(
                                            mu=1, sigma=1))

    make_osimertinib_great_again = ArithmeticMeanScoringFunction([
        similar_to_osimertinib, but_not_too_similar, tpsa_over_100,
        logP_scoring
    ])

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(name='Osimertinib MPO',
                                 objective=make_osimertinib_great_again,
                                 contribution_specification=specification)
コード例 #3
0
def hard_cobimetinib() -> GoalDirectedBenchmark:
    smiles = 'OC1(CN(C1)C(=O)C1=C(NC2=C(F)C=C(I)C=C2)C(F)=C(F)C=C1)C1CCCCN1'

    modifier = ClippedScoreModifier(upper_x=0.7)
    os_tf = TanimotoScoringFunction(smiles,
                                    fp_type='FCFP4',
                                    score_modifier=modifier)
    os_ap = TanimotoScoringFunction(smiles,
                                    fp_type='ECFP6',
                                    score_modifier=MinGaussianModifier(
                                        mu=0.75, sigma=0.1))

    rot_b = RdkitScoringFunction(descriptor=num_rotatable_bonds,
                                 score_modifier=MinGaussianModifier(mu=3,
                                                                    sigma=1))

    rings = RdkitScoringFunction(descriptor=num_aromatic_rings,
                                 score_modifier=MaxGaussianModifier(mu=3,
                                                                    sigma=1))

    t_cns = ArithmeticMeanScoringFunction(
        [os_tf, os_ap, rot_b, rings,
         CNS_MPO_ScoringFunction()])

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(name='Cobimetinib MPO',
                                 objective=t_cns,
                                 contribution_specification=specification)
コード例 #4
0
def weird_physchem() -> GoalDirectedBenchmark:
    min_bertz = RdkitScoringFunction(descriptor=bertz,
                                     score_modifier=MaxGaussianModifier(
                                         mu=1500, sigma=200))

    mol_under_400 = RdkitScoringFunction(descriptor=mol_weight,
                                         score_modifier=MinGaussianModifier(
                                             mu=400, sigma=40))

    aroma = RdkitScoringFunction(descriptor=num_aromatic_rings,
                                 score_modifier=MinGaussianModifier(mu=3,
                                                                    sigma=1))

    fluorine = RdkitScoringFunction(descriptor=AtomCounter('F'),
                                    score_modifier=GaussianModifier(mu=6,
                                                                    sigma=1.0))

    opt_weird = ArithmeticMeanScoringFunction(
        [min_bertz, mol_under_400, aroma, fluorine])

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(name='Physchem MPO',
                                 objective=opt_weird,
                                 contribution_specification=specification)
コード例 #5
0
def start_pop_ranolazine() -> GoalDirectedBenchmark:
    ranolazine = 'COc1ccccc1OCC(O)CN2CCN(CC(=O)Nc3c(C)cccc3C)CC2'

    modifier = ClippedScoreModifier(upper_x=0.7)
    similar_to_ranolazine = TanimotoScoringFunction(ranolazine,
                                                    fp_type='AP',
                                                    score_modifier=modifier)

    logP_under_4 = RdkitScoringFunction(descriptor=logP,
                                        score_modifier=MaxGaussianModifier(
                                            mu=7, sigma=1))

    aroma = RdkitScoringFunction(descriptor=num_aromatic_rings,
                                 score_modifier=MinGaussianModifier(mu=1,
                                                                    sigma=1))

    fluorine = RdkitScoringFunction(descriptor=AtomCounter('F'),
                                    score_modifier=GaussianModifier(mu=1,
                                                                    sigma=1.0))

    optimize_ranolazine = ArithmeticMeanScoringFunction(
        [similar_to_ranolazine, logP_under_4, fluorine, aroma])

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(name='Ranolazine MPO',
                                 objective=optimize_ranolazine,
                                 contribution_specification=specification,
                                 starting_population=[ranolazine])
コード例 #6
0
def hard_fexofenadine() -> GoalDirectedBenchmark:
    """
    make fexofenadine less greasy
    :return:
    """
    smiles = 'CC(C)(C(=O)O)c1ccc(cc1)C(O)CCCN2CCC(CC2)C(O)(c3ccccc3)c4ccccc4'

    modifier = ClippedScoreModifier(upper_x=0.8)
    similar_to_fexofenadine = TanimotoScoringFunction(smiles,
                                                      fp_type='AP',
                                                      score_modifier=modifier)

    tpsa_over_90 = RdkitScoringFunction(descriptor=tpsa,
                                        score_modifier=MaxGaussianModifier(
                                            mu=90, sigma=10))

    logP_under_4 = RdkitScoringFunction(descriptor=logP,
                                        score_modifier=MinGaussianModifier(
                                            mu=4, sigma=1))

    optimize_fexofenadine = ArithmeticMeanScoringFunction(
        [similar_to_fexofenadine, tpsa_over_90, logP_under_4])

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(name='Fexofenadine MPO',
                                 objective=optimize_fexofenadine,
                                 contribution_specification=specification)
コード例 #7
0
    def __init__(self, max_logP=6.35584, maxMW=360, min_tpsa=40, max_tpsa=90, max_hbd=0) -> None:
        super().__init__()

        self.logP_gauss = MinGaussianModifier(max_logP, 1)
        self.molW_gauss = MinGaussianModifier(maxMW, 60)
        self.tpsa_maxgauss = MaxGaussianModifier(min_tpsa, 20)
        self.tpsa_mingauss = MinGaussianModifier(max_tpsa, 30)
        self.hbd_gauss = MinGaussianModifier(max_hbd, 2.0)
コード例 #8
0
def test_max_gaussian_function():
    mu = -1.223
    sigma = 0.334

    f = MaxGaussianModifier(mu=mu, sigma=sigma)

    assert f(mu) == 1.0

    low_value = -np.inf
    large_value = np.inf

    assert f(low_value) == 0.0
    assert f(large_value) == 1.0

    full_gaussian = partial(gaussian, mu=mu, sig=sigma)
    max_gaussian_lambda = lambda x: 1.0 if x > mu else full_gaussian(x)
    max_gaussian = np.vectorize(max_gaussian_lambda)

    assert f(scalar_value) == max_gaussian(scalar_value)
    assert np.allclose(f(value_array), max_gaussian(value_array))