def makeFilenames(data_name, cell_size, epoch, batch_size, timesteps, offset): label_name = gue.tasksize_extractor(data_name) rep_number = gue.rep_extractor(data_name) result_path = "./result/" + str(label_name) + "_" + str(rep_number) + "/" id = "c" + str(cell_size) + "_e" + str(epoch) + "_b" + str( batch_size) + "_ti" + str(timesteps) + "_o" + str(offset) + "l6" modelname = result_path + id + ".model" statname = result_path + id + ".json" return result_path, modelname, statname
if __name__ == "__main__": trainSplit = 0.8 cell_size = 32 epoch = 20 batchSize = 100 timesteps = 100 offset = 10000 targetTask = 0 fileNames = glob.glob('./data/*.data') for fileName in fileNames: label_card = gue.tasksize_extractor(fileName) + 1 modelExists = False result_path, modelname, statname = makeFilenames( fileName, cell_size, epoch, batchSize, timesteps, offset) originalTrace = cvt.readTraceFile(fileName) originalTrace = originalTrace[100:100000] # originalTrace = cvt.cut_random(originalTrace, 0.1, 0.01, fileName) # trim the first couple of sequence of original trace _, inverse = get_priors(originalTrace) if gue.file_exists(modelname): modelExists = True train_X = []