コード例 #1
0
ファイル: __init__.py プロジェクト: cruncher19/GUTILS
def calculate_delta_depth(interp_data):
    delta_depth = np.diff(interp_data)
    delta_depth = binarize_diff(delta_depth)

    delta_depth = boxcar_smooth_dataset(delta_depth, 2)

    return delta_depth
コード例 #2
0
ファイル: yo.py プロジェクト: kerfoot/GUTILS
def calculate_delta_depth(interp_data):
    """ Figure out when the interpolated Z data turns a corner
    """
    delta_depth = np.diff(interp_data)
    delta_depth[delta_depth <= 0] = -1
    delta_depth[delta_depth >= 0] = 1
    delta_depth = boxcar_smooth_dataset(delta_depth, 2)
    delta_depth[delta_depth <= 0] = -1
    delta_depth[delta_depth >= 0] = 1
    return delta_depth
コード例 #3
0
ファイル: __init__.py プロジェクト: cruncher19/GUTILS
def find_yo_extrema(timestamps, depth):
    """Returns timestamps, row indices, and depth and time bounds
    corresponding to glider yo profiles

    Returns the timestamps and row indices corresponding the peaks and valleys
    (profiles start/stop) found in the time-depth array, tz.  All indices are
    returned.

    Parameters:
        time, depth

    Returns:
        A Nx3 array of timestamps, depth, and profile ids

    Use filter_yo_extrema to remove invalid/incomplete profiles
    """

    validate_glider_args(timestamps, depth)

    est_data = np.column_stack((timestamps, depth))

    # Set negative depth values to NaN
    est_data[est_data[:, DATA_DIM] <= 0] = float('nan')

    est_data = clean_dataset(est_data)

    # Stretch estimated values for interpolation to span entire dataset
    interp_data = np.interp(timestamps,
                            est_data[:, 0],
                            est_data[:, 1],
                            left=est_data[0, 1],
                            right=est_data[-1, 1])

    interp_data = boxcar_smooth_dataset(interp_data, 5)

    delta_depth = calculate_delta_depth(interp_data)

    interp_indices = np.argwhere(delta_depth == 0).flatten()

    profiled_dataset = np.zeros((len(timestamps), 3))
    profiled_dataset[:, TIME_DIM] = timestamps
    profiled_dataset[:, DATA_DIM] = interp_data

    start_index = 0
    for profile_id, end_index in enumerate(interp_indices):
        profiled_dataset[start_index:end_index, 2] = profile_id

        start_index = end_index

    if start_index < len(profiled_dataset):
        profiled_dataset[start_index:, 2] = len(interp_indices) - 1

    return profiled_dataset
コード例 #4
0
def find_yo_extrema(timestamps, depth, tsint=10):
    """Returns the start and stop timestamps for every profile indexed from the 
    depth timeseries

    Parameters:
        time, depth

    Returns:
        A Nx2 array of the start and stop timestamps indexed from the yo

    Use filter_yo_extrema to remove invalid/incomplete profiles
    """

    validate_glider_args(timestamps, depth)

    est_data = np.column_stack((timestamps, depth))

    # Set negative depth values to NaN
    est_data[est_data[:, DATA_DIM] <= 0] = float('nan')

    est_data = clean_dataset(est_data)

    # Create the fixed timestamp array from the min timestamp to the max timestamp
    # spaced by tsint intervals
    ts = np.arange(est_data[:, 0].min(), est_data[:, 0].max(), tsint)
    # Stretch estimated values for interpolation to span entire dataset
    interp_z = np.interp(ts,
                         est_data[:, 0],
                         est_data[:, 1],
                         left=est_data[0, 1],
                         right=est_data[-1, 1])

    filtered_z = boxcar_smooth_dataset(interp_z, tsint / 2)

    delta_depth = calculate_delta_depth(filtered_z)

    #interp_indices = np.argwhere(delta_depth == 0).flatten()

    p_inds = np.empty((0, 2))
    inflections = np.where(np.diff(delta_depth) != 0)[0]

    p_inds = np.append(p_inds, [[0, inflections[0]]], axis=0)
    for p in range(len(inflections) - 1):
        p_inds = np.append(p_inds, [[inflections[p], inflections[p + 1]]],
                           axis=0)
    p_inds = np.append(p_inds, [[inflections[-1], len(ts) - 1]], axis=0)

    #profile_timestamps = np.empty((0,2))
    ts_window = tsint * 2

    # Create orig GUTILS return value - lindemuth method
    # Initialize an nx3 numpy array of nans
    profiled_dataset = np.full((len(timestamps), 3), np.nan)
    # Replace TIME_DIM column with the original timestamps
    profiled_dataset[:, TIME_DIM] = timestamps
    # Replace DATA_DIM column with the original depths
    profiled_dataset[:, DATA_DIM] = depth

    # Create Nx2 numpy array of profile start/stop times - kerfoot method
    profile_times = np.full((p_inds.shape[0], 2), np.nan)

    # Start profile index
    profile_ind = 0
    # Iterate through the profile start/stop indices
    for p in p_inds:
        # Profile start row
        p0 = int(p[0])
        # Profile end row
        p1 = int(p[1])
        # Find all rows in the original yo that fall between the interpolated timestamps
        profile_i = np.flatnonzero(
            np.logical_and(
                profiled_dataset[:, TIME_DIM] >= ts[p0] - ts_window,
                profiled_dataset[:, TIME_DIM] <= ts[p1] + ts_window))
        # Slice out the profile
        pro = profiled_dataset[profile_i]
        # Find the row index corresponding to the minimum depth
        try:
            min_i = np.nanargmin(pro[:, 1])
        except ValueError as e:
            logger.warning(e)
            continue
        # Find the row index corresponding to the maximum depth
        try:
            max_i = np.nanargmax(pro[:, 1])
        except ValueError as e:
            logger.warning(e)
            continue
        # Sort the min/max indices in ascending order
        sorted_i = np.sort([min_i, max_i])
        # Set the profile index
        profiled_dataset[profile_i[sorted_i[0]]:profile_i[sorted_i[1]],
                         2] = profile_ind

        # kerfoot method
        profile_times[profile_ind, :] = [
            timestamps[profile_i[sorted_i[0]]],
            timestamps[profile_i[sorted_i[1]]]
        ]
        # Increment the profile index
        profile_ind += 1

        #profile_timestamps = np.append(profile_timestamps, [[est_data[profile_i[0][0],0], est_data[profile_i[0][-1],0]]], axis=0)

    #return profiled_dataset
    return profile_times
コード例 #5
0
ファイル: yo.py プロジェクト: kerfoot/GUTILS
def assign_profiles(df, tsint=1):
    profile_df = df.copy()
    profile_df['profile'] = np.nan  # Fill profile with nans
    tmp_df = df.copy()

    if tsint is None:
        tsint = 1

    # Make 't' epochs and not a DateTimeIndex
    tmp_df['t'] = masked_epoch(tmp_df.t)
    # Set negative depth values to NaN
    tmp_df.loc[tmp_df.z <= 0, 'z'] = np.nan

    # Remove any rows where time or z is NaN
    tmp_df = tmp_df.dropna(subset=['t', 'z'], how='any')

    if len(tmp_df) < 2:
        return None

    # Create the fixed timestamp array from the min timestamp to the max timestamp
    # spaced by tsint intervals
    ts = np.arange(tmp_df.t.min(), tmp_df.t.max(), tsint)
    # Stretch estimated values for interpolation to span entire dataset
    interp_z = np.interp(ts,
                         tmp_df.t,
                         tmp_df.z,
                         left=tmp_df.z.iloc[0],
                         right=tmp_df.z.iloc[-1])

    del tmp_df

    if len(interp_z) < 2:
        return None

    filtered_z = boxcar_smooth_dataset(interp_z, max(tsint // 2, 1))
    delta_depth = calculate_delta_depth(filtered_z)

    # Find where the depth indexes (-1 and 1) flip
    inflections = np.where(np.diff(delta_depth) != 0)[0]
    # Do we have any profiles?
    if inflections.size < 1:
        return profile_df

    # Prepend a zero at the beginning start the series of profiles
    p_inds = np.insert(inflections, 0, 0)
    # Append the size of the time array to end the series of profiles
    p_inds = np.append(p_inds, ts.size - 1)
    # Zip up neighbors to get the ranges of each profile in interpolated space
    p_inds = list(zip(p_inds[0:-1], p_inds[1:]))
    # Convert the profile indexes into datetime objets
    p_inds = [(pd.to_datetime(ts[int(p0)],
                              unit='s'), pd.to_datetime(ts[int(p1)], unit='s'))
              for p0, p1 in p_inds]

    # We have the profiles in interpolated space, now associate this
    # space with the actual data using the datetimes.

    # Iterate through the profile start/stop indices
    for profile_index, (min_time, max_time) in enumerate(p_inds):

        # Get rows between the min and max time
        time_between = profile_df.t.between(min_time, max_time, inclusive=True)

        # Get indexes of the between rows since we can't assign by the range due to NaT values
        ixs = profile_df.loc[time_between].index.tolist()

        # Set the rows profile column to the profile id
        if len(ixs) > 1:
            profile_df.loc[ixs[0]:ixs[-1], 'profile'] = profile_index
        elif len(ixs) == 1:
            profile_df.loc[ixs[0], 'profile'] = profile_index
        else:
            L.debug(
                'No data rows matched the time range of this profile, Skipping.'
            )

    # Remove rows that were not assigned a profile
    # profile_df = profile_df.loc[~profile_df.profile.isnull()]

    return profile_df
コード例 #6
0
ファイル: yo.py プロジェクト: zeroYXX/GUTILS
def assign_profiles(df, tsint=None):
    """Returns the start and stop timestamps for every profile indexed from the
    depth timeseries
    Parameters:
        time, depth
    Returns:
        A Nx2 array of the start and stop timestamps indexed from the yo
    Use filter_yo_extrema to remove invalid/incomplete profiles
    """

    profile_df = df.copy()
    profile_df['profile'] = np.nan  # Fill profile with nans
    tmp_df = df.copy()

    if tsint is None:
        tsint = 2

    # Make 't' epochs and not a DateTimeIndex
    tmp_df['t'] = masked_epoch(tmp_df.t)
    # Set negative depth values to NaN
    tmp_df.loc[tmp_df.z <= 0, 'z'] = np.nan

    # Remove NaN rows
    tmp_df = tmp_df.dropna(subset=['t', 'z'], how='any')

    if len(tmp_df) < 2:
        return None

    # Create the fixed timestamp array from the min timestamp to the max timestamp
    # spaced by tsint intervals
    ts = np.arange(tmp_df.t.min(), tmp_df.t.max(), tsint)
    # Stretch estimated values for interpolation to span entire dataset
    interp_z = np.interp(ts,
                         tmp_df.t,
                         tmp_df.z,
                         left=tmp_df.z.iloc[0],
                         right=tmp_df.z.iloc[-1])

    del tmp_df

    if len(interp_z) < 2:
        return None

    filtered_z = boxcar_smooth_dataset(interp_z, max(tsint // 2, 1))
    delta_depth = calculate_delta_depth(filtered_z)

    p_inds = np.empty((0, 2))
    inflections = np.where(np.diff(delta_depth) != 0)[0]
    if inflections.size < 1:
        return profile_df
    p_inds = np.append(p_inds, [[0, inflections[0]]], axis=0)

    for p in range(len(inflections) - 1):
        p_inds = np.append(p_inds, [[inflections[p], inflections[p + 1]]],
                           axis=0)
    p_inds = np.append(p_inds, [[inflections[-1], len(ts) - 1]], axis=0)

    # Start profile index
    profile_index = 0
    ts_window = tsint * 2

    # Iterate through the profile start/stop indices
    for p0, p1 in p_inds:

        min_time = pd.to_datetime(ts[int(p0)] - ts_window, unit='s')
        max_time = pd.to_datetime(ts[int(p1)] + ts_window, unit='s')

        # Get rows between the min and max time
        time_between = profile_df.t.between(min_time, max_time, inclusive=True)

        # Get indexes of the between rows since we can't assign by the range due to NaT values
        ixs = profile_df.loc[time_between].index.tolist()

        # Set the rows profile column to the profile id
        if len(ixs) > 1:
            profile_df.loc[ixs[0]:ixs[-1], 'profile'] = profile_index
        elif len(ixs) == 1:
            profile_df.loc[ixs[0], 'profile'] = profile_index
        else:
            L.debug(
                'No data rows matched the time range of this profile, Skipping.'
            )

        # Increment the profile index
        profile_index += 1

    # Remove rows that were not assigned a profile
    # profile_df = profile_df.loc[~profile_df.profile.isnull()]

    # L.info(
    #     list(zip(
    #         profile_df.t,
    #         profile_df.profile,
    #         profile_df.z,
    #     ))[0:20]
    # )
    return profile_df