plt.ylabel(r'Peak i-band magnitude') plt.gca().invert_yaxis() cbar = plt.colorbar() cbar.set_label(r'Ejecta mass log10($M_{\odot}$)') plt.savefig(plotName) plt.close() bounds = [15, 35] xlims = [15.0, 35.0] ylims = [1e-2, 1] plotName = "%s/appi.pdf" % (plotDir) plt.figure(figsize=(10, 8)) for ii, model in enumerate(models): legend_name = get_legend(model) bins, hist1 = lightcurve_utils.hist_results( model_tables[model]["peak_appmag_i"], Nbins=25, bounds=bounds) plt.semilogy(bins, hist1, '-', color=colors_names[ii], linewidth=3, label=legend_name) plt.xlabel(r"Apparent Magnitude [mag]", fontsize=24) plt.ylabel('Probability Density Function', fontsize=24) plt.legend(loc="best", prop={'size': 24}) plt.xticks(fontsize=24) plt.yticks(fontsize=24) plt.xlim(xlims) plt.ylim(ylims) plt.savefig(plotName) plt.close()
linestyle='--', linewidth=2) g.ax_marg_y.plot([0., 1500], [197., 197.], color=color2, linestyle='--', linewidth=2) g.ax_marg_x.text(1.42, 3500, '$q < 1.38$', color=color2, fontsize=14) g.ax_marg_y.text(1100, 150, '$\\tilde{\\Lambda} > 197$', color=color2, fontsize=14, rotation=-90) bounds = [1.0, 1.7] bins, hist1 = lightcurve_utils.hist_results(q_gw, Nbins=15, bounds=bounds) hist1 = 4800.0 * hist1 / np.max(hist1) for ii in range(len(bins) - 1): bin_start, bin_end = bins[ii], bins[ii + 1] val = hist1[ii] #g.ax_marg_x.fill_between([bin_start, bin_end],[0,0],[val,val],facecolor=color1,alpha=1.0) #g.ax_marg_x.plot([bin_start, bin_end],[val,val],color=color1,alpha=1.0) bounds = [0, 600] bins, hist1 = lightcurve_utils.hist_results(lambdatilde_gw, Nbins=25, bounds=bounds) hist1 = 1500.0 * hist1 / np.max(hist1) for ii in range(len(bins) - 1): bin_start, bin_end = bins[ii], bins[ii + 1] val = hist1[ii]
elif opts.labelType == "model": color = colors[ii] colortrue = colors[ii] linestyle = linestyles[jj] else: color = 'b' colortrue = 'k' linestyle = '-' samples = np.log10(post[name][errorbudget]["mej"]) if (opts.labelType == "errorbar") and (float(errorbudget) < 1.0): bounds = [-2.8, -1.8] else: bounds = [-3.5, 0.0] bins, hist1 = lightcurve_utils.hist_results(samples, Nbins=25, bounds=bounds) if (opts.labelType == "name" or opts.labelType == "model") and jj > 0: plt.semilogy(bins, hist1, '%s%s' % (color, linestyle), linewidth=3) else: plt.semilogy(bins, hist1, '%s%s' % (color, linestyle), label=label, linewidth=3) plt.semilogy([ post[name][errorbudget]["truths"][1], post[name][errorbudget]["truths"][1] ], [1e-3, 100.0], '%s--' % colortrue,
color2 = 'coral' color1 = 'cornflowerblue' color3 = 'palegreen' color4 = 'darkmagenta' colors_names = [color1, color2, color3, color4] bounds = [16, 34] xlims = [15.0, 35.0] ylims = [1e-2, 1] plotName = "%s/appi.pdf" % (baseoutputDir) plt.figure(figsize=(12, 8)) for ii, distance_set in enumerate(distance_sets): distance_underscore = "%d_%d" % (distance_set[0], distance_set[1]) legend_name = "%d-%d Mpc" % (distance_set[0], distance_set[1]) bins, hist1 = lightcurve_utils.hist_results( data[distance_underscore]["K"][:, 4], Nbins=25, bounds=bounds) plt.semilogy(bins, hist1, '-', color=colors_names[ii], linewidth=3, label=legend_name) bins, hist1 = lightcurve_utils.hist_results( data[distance_underscore]["g"][:, 4], Nbins=25, bounds=bounds) plt.semilogy(bins, hist1, '--', color=colors_names[ii], linewidth=3) plt.xlabel(r"Apparent Magnitude [mag]", fontsize=24) plt.ylabel('Probability Density Function', fontsize=24) plt.legend(loc="best", prop={'size': 24}) plt.xticks(fontsize=24) plt.yticks(fontsize=24) plt.xlim(xlims)
opts.analysisType) + "_m1_" + str( np.round(m1m, decimals=1)) + "_m2_" + str( np.round( m2m, decimals=1)) + '_chi_' + str(chi) + ".pdf" if twixie_tf: plotName = "/home/andrew.toivonen/gwemlightcurves/mass_plots/mej_" + str( opts.analysisType) + "_m1_" + str( np.round(m1m, decimals=1)) + "_m2_" + str( np.round(m2m, decimals=1)) + "twixie.pdf" plt.figure(figsize=(15, 10)) ax = plt.gca() for ii, model in enumerate(models): legend_name = get_legend(model) + ' EOS: ' + runType bins, hist1 = lightcurve_utils.hist_results( np.log10(samples_gp["mej"]), Nbins=20, bounds=bounds) plt.step(bins, hist1, '-', color='b', linewidth=3, label=legend_name, where='mid') lim = np.percentile(np.log10(samples_gp["mej"]), 90) plt.plot([lim, lim], ylims, 'k--') plt.xlabel(r"${\rm log}_{10} (M_{\rm ej})$", fontsize=24) plt.ylabel('Probability Density Function', fontsize=24) #plt.legend(loc="best",prop={'size':24}) plt.xticks(fontsize=24) plt.yticks(fontsize=24)
samples['mej'] = samples['mej'] * 10.0 idx = np.where(samples['mej'] > 0.1)[0] samples['mej'][idx] = 0.1 bounds = [-3.0, -1.0] xlims = [-2.8, -1.0] ylims = [1e-1, 2] plotName = "%s/mej.pdf" % (plotDir) plt.figure(figsize=(15, 10)) ax = plt.gca() for ii, model in enumerate(models): legend_name = get_legend(model) bins, hist1 = lightcurve_utils.hist_results(np.log10(samples["mej"]), Nbins=20, bounds=bounds) plt.step(bins, hist1, '-', color='k', linewidth=3, label=legend_name, where='mid') lim = np.percentile(np.log10(samples["mej"]), 90) plt.plot([lim, lim], ylims, 'k--') plt.xlabel(r"${\rm log}_{10} (M_{\rm ej})$", fontsize=24) plt.ylabel('Probability Density Function', fontsize=24) #plt.legend(loc="best",prop={'size':24}) plt.xticks(fontsize=24) plt.yticks(fontsize=24)