コード例 #1
0
def test_attribute_writable_resettable():
    """
    Regression test for mutables and class constructors.
    """
    data = sm.datasets.longley.load()
    endog, exog = data.endog, data.exog
    glm_model = sm.GLM(endog, exog)
    assert_equal(glm_model.family.link.power, 1.0)
    glm_model.family.link.power = 2.
    assert_equal(glm_model.family.link.power, 2.0)
    glm_model2 = sm.GLM(endog, exog)
    assert_equal(glm_model2.family.link.power, 1.0)
コード例 #2
0
ファイル: gwr.py プロジェクト: zzzz123321/pygwr
 def estimate(self, estimation_pt, sample, bandwidth):
     """
     Performs a GWR estimation at a given point.
     estimation_pt is a list, tuple or numpy array containing the 
         coordinates of the regression point.
     sample is a list or array with a sample to compute a prediction at 
         the same time, by applying the regression parameters found by the
         regression to this value.
     bandwidth is a the kernel bandwidth.
     Returns a GWRResult object.
     """
     # Compute the weights of all known samples using the Euclidean
     # distance between the points, and a Gaussian kernel.
     if self.kernel:
         w = self.kernel(self.locations, estimation_pt, bandwidth)[0]
     else:
         w = Gaussian.kernel(self.locations, estimation_pt, bandwidth)[0]
     # Perform the weighted regression using Maximum likelihood
     if self.family is None: # Gaussian GWR
         res = sm.WLS(self.targets, self.samples, w)
         fres = res.fit()
     else: # Poisson GWR
         res = sm.GLM(endog=self.targets, exog=self.samples, family=self.family)
         fres = res.fit(data_weights=w)
     # Pack everything into a GWRResult object
     # A GWRResult allows convenient inspection of the results.
     gwr_result = GWRResult(estimation_pt, sample, fres, self)
     del(fres)
     return gwr_result
コード例 #3
0
ファイル: test_poisson.py プロジェクト: zzzz123321/pygwr
    def __init__(self):

        # generate artificial data
        np.random.seed(98765678)
        nobs = 200
        rvs = np.random.randn(nobs, 6)
        data_exog = rvs
        data_exog = sm.add_constant(data_exog)
        xbeta = 1 + 0.1 * rvs.sum(1)
        data_endog = np.random.poisson(np.exp(xbeta))

        #estimate discretemod.Poisson as benchmark
        self.res_discrete = Poisson(data_endog, data_exog).fit(disp=0)

        mod_glm = sm.GLM(data_endog, data_exog, family=sm.families.Poisson())
        self.res_glm = mod_glm.fit()

        #estimate generic MLE
        #self.mod = PoissonGMLE(data_endog, data_exog)
        #res = self.mod.fit()
        offset = self.res_discrete.params[0] * data_exog[:, 0]  #1d ???
        #self.res = PoissonOffsetGMLE(data_endog, data_exog[:,1:], offset=offset).fit(start_params = np.ones(6)/2., method='nm')
        modo = PoissonOffsetGMLE(data_endog, data_exog[:, 1:], offset=offset)
        self.res = modo.fit(start_params=0.9 * self.res_discrete.params[1:],
                            method='nm',
                            disp=0)
コード例 #4
0
ファイル: gwr.py プロジェクト: zzzz123321/pygwr
 def global_regression(self):
     """
     Performs a global regression using the targets and samples only,
     by ignoring the locations. OLS is used for this regression.
     """
     if self.family is None:
         return sm.OLS(self.targets, self.samples).fit()
     else:
         return sm.GLM(endog=self.targets, exog=self.samples, family=self.family).fit()
コード例 #5
0
ファイル: test_poisson.py プロジェクト: zzzz123321/pygwr
    def __init__(self):

        # generate artificial data
        np.random.seed(98765678)
        nobs = 200
        rvs = np.random.randn(nobs, 6)
        data_exog = rvs
        data_exog = sm.add_constant(data_exog)
        xbeta = 0.1 + 0.1 * rvs.sum(1)
        data_endog = np.random.poisson(np.exp(xbeta))

        #estimate discretemod.Poisson as benchmark
        self.res_discrete = Poisson(data_endog, data_exog).fit(disp=0)

        mod_glm = sm.GLM(data_endog, data_exog, family=sm.families.Poisson())
        self.res_glm = mod_glm.fit()

        #estimate generic MLE
        self.mod = PoissonGMLE(data_endog, data_exog)
        self.res = self.mod.fit(start_params=0.9 * self.res_discrete.params,
                                method='nm',
                                disp=0)
コード例 #6
0
 def setup(self):
     #fit for each test, because results will be changed by test
     x = self.exog
     np.random.seed(987689)
     y = x.sum(1) + np.random.randn(x.shape[0])
     self.results = sm.GLM(y, self.exog).fit()
コード例 #7
0
    from pandas import DataFrame
    data = sm.datasets.longley.load()
    df = DataFrame(data.exog, columns=data.exog_name)
    y = data.endog
    # data.exog = sm.add_constant(data.exog)
    df['intercept'] = 1.
    olsresult = sm.OLS(y, df).fit()
    rlmresult = sm.RLM(y, df).fit()

    # olswrap = RegressionResultsWrapper(olsresult)
    # rlmwrap = RLMResultsWrapper(rlmresult)

    data = sm.datasets.wfs.load()
    # get offset
    offset = np.log(data.exog[:,-1])
    exog = data.exog[:,:-1]

    # convert dur to dummy
    exog = sm.tools.categorical(exog, col=0, drop=True)
    # drop reference category
    # convert res to dummy
    exog = sm.tools.categorical(exog, col=0, drop=True)
    # convert edu to dummy
    exog = sm.tools.categorical(exog, col=0, drop=True)
    # drop reference categories and add intercept
    exog = sm.add_constant(exog[:,[1,2,3,4,5,7,8,10,11,12]])

    endog = np.round(data.endog)
    mod = sm.GLM(endog, exog, family=sm.families.Poisson()).fit()
    # glmwrap = GLMResultsWrapper(mod)