def step(self, a): pos_before = mass_center(self.model, self.sim) self.do_simulation(a, self.frame_skip) pos_after = mass_center(self.model, self.sim) pos_after_standup = self.sim.data.qpos[2] down = bool((pos_after_standup < 1.0) or (pos_after_standup > 2.0)) alive_bonus = 5.0 if not down else 1.0 data = self.sim.data uph_cost = (pos_after_standup - 0) / self.model.opt.timestep lin_vel_cost = 0.25 * (pos_after - pos_before) / self.model.opt.timestep quad_ctrl_cost = 0.1 * np.square(data.ctrl).sum() quad_impact_cost = .5e-6 * np.square(data.cfrc_ext).sum() quad_impact_cost = min(quad_impact_cost, 10) reward = lin_vel_cost + uph_cost - quad_ctrl_cost - quad_impact_cost + alive_bonus done = bool(False) return self._get_obs(), reward, done, dict( reward_linup=uph_cost, reward_quadctrl=-quad_ctrl_cost, reward_impact=-quad_impact_cost, reward_alive=alive_bonus)
def _step(self, a): pos_before = mass_center(self.model) self.do_simulation(a, self.frame_skip) pos_after = mass_center(self.model) pos_after_standup = self.model.data.qpos[2][0] down = bool(( self.model.data.qpos[2] < 1.0) or ( self.model.data.qpos[2] > 2.0)) alive_bonus = 5.0 if not down else 1.0 data = self.model.data uph_cost = (pos_after_standup - 0) / self.model.opt.timestep lin_vel_cost = 0.25 * (pos_after - pos_before) / self.model.opt.timestep quad_ctrl_cost = 0.1 * np.square(data.ctrl).sum() quad_impact_cost = .5e-6 * np.square(data.cfrc_ext).sum() quad_impact_cost = min(quad_impact_cost, 10) reward = lin_vel_cost + uph_cost - quad_ctrl_cost - quad_impact_cost + alive_bonus qpos = self.model.data.qpos done = bool(False) return self._get_obs(), reward, done, dict(reward_linup=uph_cost, reward_quadctrl=-quad_ctrl_cost, reward_impact=-quad_impact_cost, reward_alive=alive_bonus)
def step(self, a): # a = self._add_noise(a) ob, reward, done, info = super().step(a) mass_center_after = mass_center(self.model, self.sim) if mass_center_after > self._base_pos: self._base_pos += 1. sparse_rew = 1 else: sparse_rew = 0 info['original_rew'] = reward return ob, sparse_rew, done, info
def step(self, a): pos_before = self.sim.data.qpos[2] self.do_simulation(a, self.frame_skip) pos_after = self.sim.data.qpos[2] data = self.sim.data uph_cost = (pos_after - 0) / self.model.opt.timestep up_vel = (pos_after - pos_before) / self.model.opt.timestep quad_ctrl_cost = 0.1 * np.square(data.ctrl).sum() quad_impact_cost = .5e-6 * np.square(data.cfrc_ext).sum() quad_impact_cost = min(quad_impact_cost, 10) reward = uph_cost - quad_ctrl_cost - quad_impact_cost + 1 #print(reward) subtask_1_reward = mass_center(self.model, self.sim) #print('subtask_1_reward', mass_center(self.model, self.sim)) subtask_2_reward = up_vel done = bool(False) return self._get_obs(), reward, done, \ dict(reward_linup=uph_cost, reward_quadctrl=-quad_ctrl_cost, reward_impact=-quad_impact_cost, subtask_1 = subtask_1_reward, subtask_2 = subtask_2_reward)
def _get_obs(self): data = self.sim.data center = mass_center(self.model, self.sim) obs = super()._get_obs() return np.concatenate([obs, [center]])