コード例 #1
0
from gym_ai2thor.envs.mcs_env import McsEnv
from meta_ontroller.meta_controller import MetaController
import sys


if __name__ == "__main__":
    env = McsEnv(task="interaction_scenes", scene_type="transferral", start_scene_number=2)
    metaController = MetaController(env)

    while env.current_scene < len(env.all_scenes) - 1:
        env.reset()
        result = metaController.excecute()
        sys.stdout.flush()



コード例 #2
0
ファイル: int_phy.py プロジェクト: RajeshDM/MCS_submission
from gym_ai2thor.envs.mcs_env import McsEnv
from int_phy.scene_state import SceneState
import matplotlib.pyplot as plt

scene_name = "object_permanence"
start_scene_number = 3
env = McsEnv(task="intphys_scenes",
             scene_type=scene_name,
             start_scene_number=start_scene_number)

object_states = []

for _ in range(1):
    env.reset(random_init=False)
    # print(env.current_scene, env.scene_config['answer'], len(env.scene_config['goal']['action_list']))
    scene_state = None
    for i, x in enumerate(env.scene_config['goal']['action_list']):
        # print(i)
        if i == 0:
            scene_state = SceneState(env.step_output)
        else:
            scene_state.update(env.step_output)
        env.step(action=x[0])

    object_states.append(scene_state)
    env.controller.end_scene(None, None)

for i, scene_state in enumerate(object_states):
    plt.figure()
    for j, (id, obj_state) in enumerate(scene_state.object_state_dict.items()):
        v_xs = [v[0] for v in obj_state.velocity_history]