コード例 #1
0
    def reset(self) -> Observation:
        # TODO realtime reset

        # Get the observation
        observation = self.task.get_observation()

        return Observation(observation)
コード例 #2
0
    def reset(self) -> Observation:
        # Initialize gazebo if not yet done
        gazebo = self.gazebo
        assert gazebo, "Gazebo object not valid"

        # Remove the robot and insert a new one
        if not self._first_run:
            logger.debug("Hard reset: deleting the robot")
            self.task.robot.delete_simulated_robot()

            # Execute a dummy step to process model removal
            self.gazebo.run()

            logger.debug("Hard reset: creating new robot")
            self.task.robot = self._get_robot()
        else:
            self._first_run = False

        # Reset the environment
        ok_reset = self.task.reset_task()
        assert ok_reset, "Failed to reset the task"

        # Get the observation
        observation = self.task.get_observation()

        if not self.observation_space.contains(observation):
            logger.warn(
                "The observation does not belong to the observation space")

        return Observation(observation)
コード例 #3
0
    def reset(self) -> Observation:
        # Initialize gazebo if not yet done
        gazebo = self.gazebo
        assert gazebo, "Gazebo object not valid"

        # Remove the model and insert it again. This is the reset strategy for
        # floating-base robots. Resetting the joint state, instead, is sufficient to
        # reset fixed-based robots. Though, while avoiding the model deletion might
        # provide better performance, we should be sure that all the internal buffers
        # (e.g. those related to the low-level PIDs) are correctly re-initialized.
        if self._hard_reset and self.task.has_robot():
            if not self._first_run:
                logger.debug("Hard reset: deleting the robot")
                self.task.robot.delete_simulated_robot()

                logger.debug("Hard reset: creating new robot")
                self.task.robot = self._get_robot()
            else:
                self._first_run = False

        # Reset the environment
        ok_reset = self.task.reset_task()
        assert ok_reset, "Failed to reset the task"

        # Get the observation
        observation = self.task.get_observation()

        if not self.observation_space.contains(observation):
            logger.warn(
                "The observation does not belong to the observation space")

        return Observation(observation)
コード例 #4
0
    def reset(self) -> Observation:
        # Initialize pybullet if not yet done
        p = self.pybullet
        assert p, "PyBullet object not valid"

        if self._hard_reset and self.task.has_robot():
            if not self._first_run:
                logger.debug("Hard reset: deleting the robot")
                self.task.robot.delete_simulated_robot()

                logger.debug("Hard reset: creating new robot")
                self.task.robot = self._get_robot()
            else:
                self._first_run = False

        # Reset the environment
        ok_reset = self.task.reset_task()
        assert ok_reset, "Failed to reset the task"

        # Get the observation
        observation = self.task.get_observation()

        if not self.observation_space.contains(observation):
            logger.warn(
                "The observation does not belong to the observation space")

        return Observation(observation)
コード例 #5
0
    def get_observation(self) -> Observation:
        # Get the robot object
        robot = self.robot

        # Get the new pendulum position and velocity
        theta = robot.joint_position("pivot")
        theta_dot = robot.joint_velocity("pivot")

        # Create the observation object
        observation = Observation(
            np.array([np.cos(theta), np.sin(theta), theta_dot]))

        # Return the observation
        return observation
コード例 #6
0
    def get_observation(self) -> Observation:

        # Get the model
        model = self.world.get_model(self.model_name)

        # Get the new joint positions and velocities
        q, x = model.joint_positions(["pivot", "linear"])
        dq, dx = model.joint_velocities(["pivot", "linear"])

        # Create the observation
        observation = Observation(np.array([x, dx, q, dq]))

        # Return the observation
        return observation
コード例 #7
0
    def get_observation(self) -> Observation:

        # Get the model
        model = self.world.get_model(self.model_name)

        # Get the new joint position and velocity
        q = model.get_joint("pivot").position()
        dq = model.get_joint("pivot").velocity()

        # Create the observation
        observation = Observation(np.array([np.cos(q), np.sin(q), dq]))

        # Return the observation
        return observation
コード例 #8
0
    def get_observation(self) -> Observation:

        # Get current end-effector and target positions
        ee_position = self.get_ee_position()
        target_position = self.get_target_position()

        # Create the observation
        observation = Observation(
            np.concatenate([ee_position, target_position]))

        if self._verbose:
            print(f"\nobservation: {observation}")

        # Return the observation
        return observation
コード例 #9
0
    def get_observation(self) -> Observation:

        # Get the latest image
        image = self.camera_sub.get_observation()

        # Reshape and create the observation
        color_image = np.array(image.data, dtype=np.uint8).reshape(self._camera_height,
                                                                   self._camera_width, 3)

        observation = Observation(color_image)

        if self._verbose:
            print(f"\nobservation: {observation}")

        # Return the observation
        return observation
コード例 #10
0
    def step(self, action: np.ndarray) -> State:
        tau_m = action[0]
        theta_ddot = (
            self.m * self.g * self.L / 2.0 * np.sin(self.theta) + tau_m
        ) / self.I

        # Integrate with euler.
        # Note that in this way the ground truth used as comparison implements a very
        # basic integration method, and the errors might be reduced implementing a
        # better integrator.
        self.theta_dot = self.theta_dot + theta_ddot * self.dt
        self.theta = self.theta + self.theta_dot * self.dt

        observation = np.array([np.cos(self.theta), np.sin(self.theta), self.theta_dot])

        return State((Observation(observation), Reward(0.0), False, {}))
コード例 #11
0
    def get_observation(self) -> Observation:
        # Get the robot object
        robot = self.robot

        # Get the new joint positions
        x = robot.joint_position("linear")
        theta = np.rad2deg(robot.joint_position("pivot"))

        # Get the new joint velocities
        x_dot = robot.joint_velocity("linear")
        theta_dot = np.rad2deg(robot.joint_velocity("pivot"))

        # Create the observation object
        observation = Observation(np.array([x, x_dot, theta, theta_dot]))

        # Return the observation
        return observation
コード例 #12
0
    def get_observation(self) -> Observation:

        # Get the latest image
        image = self.camera_sub.get_observation()

        # Construct from buffer and reshape
        depth_image = np.frombuffer(image.data, dtype=np.float32).reshape(
            self._camera_height, self._camera_width, 1)
        # Replace all instances of infinity with 0
        depth_image[depth_image == np.inf] = 0.0

        # Create the observation
        observation = Observation(depth_image)

        if self._verbose:
            print(f"\nobservation: {observation}")

        # Return the observation
        return observation
コード例 #13
0
    def get_observation(self) -> Observation:

        # Get the latest point cloud
        point_cloud = self.camera_sub.get_observation()

        # Contrust octree from this point cloud
        octree = self.octree_creator(point_cloud).numpy()

        # Pad octree with zeros to have a consistent length
        # TODO: Customize replay buffer to support variable sized observations
        octree_size = octree.shape[0]
        if octree_size > self._octree_max_size:
            print(f"ERROR: Octree is larger than the maximum "
                  f"allowed size (exceeded with {octree_size})")
        octree = np.pad(octree, (0, self._octree_max_size - octree_size),
                        'constant',
                        constant_values=0)

        # Write the original length into the padded octree for reference
        octree[-4:] = np.ndarray(buffer=np.array([octree_size],
                                                 dtype='uint32').tobytes(),
                                 shape=(4, ),
                                 dtype='uint8')
        # To get it back:
        # octree_size = np.frombuffer(buffer=octree[-4:],
        #                             dtype='uint32',
        #                             count=1)

        self.__stacked_octrees.append(octree)
        # For the first buffer after reset, fill with identical observations until deque is full
        while not self._octree_n_stacked == len(self.__stacked_octrees):
            self.__stacked_octrees.append(octree)

        # Create the observation
        observation = Observation(np.array(self.__stacked_octrees))

        if self._verbose:
            print(f"\nobservation: {observation}")

        # Return the observation
        return observation
コード例 #14
0
    def reset(self) -> Observation:

        # Get the observation
        observation = self.task.get_observation()

        return Observation(observation)
コード例 #15
0
    def get_observation(self) -> Observation:

        # Get the latest point cloud
        point_cloud = self.camera_sub.get_observation()

        # Contrust octree from this point cloud
        octree = self.octree_creator(point_cloud).numpy()

        # Pad octree with zeros to have a consistent length
        # TODO: Customize replay buffer to support variable sized observations
        octree_size = octree.shape[0]
        if octree_size > self._octree_max_size:
            print(f"ERROR: Octree is larger than the maximum "
                  f"allowed size (exceeded with {octree_size})")
        octree = np.pad(octree, (0, self._octree_max_size - octree_size),
                        'constant',
                        constant_values=0)

        # Write the original length into the padded octree for reference
        octree[-4:] = np.ndarray(buffer=np.array([octree_size],
                                                 dtype='uint32').tobytes(),
                                 shape=(4, ),
                                 dtype='uint8')
        # To get it back:
        # octree_size = np.frombuffer(buffer=octree[-4:],
        #                             dtype='uint32',
        #                             count=1)

        if self._proprieceptive_observations:
            # Add number of auxiliary observations to octree structure
            octree[-8:-4] = np.ndarray(buffer=np.array(
                [10], dtype='uint32').tobytes(),
                                       shape=(4, ),
                                       dtype='uint8')

            # Gather proprioceptive observations
            ee_position = self.get_ee_position()
            ee_orientation = orientation_quat_to_6d(
                quat_xyzw=self.get_ee_orientation())
            aux_obs = (self._gripper_state,) + ee_position + \
                ee_orientation[0] + ee_orientation[1]

            # Add auxiliary observations into the octree structure
            octree[-48:-8] = np.ndarray(buffer=np.array(
                aux_obs, dtype='float32').tobytes(),
                                        shape=(40, ),
                                        dtype='uint8')

        self.__stacked_octrees.append(octree)
        # For the first buffer after reset, fill with identical observations until deque is full
        while not self._octree_n_stacked == len(self.__stacked_octrees):
            self.__stacked_octrees.append(octree)

        # Create the observation
        observation = Observation(np.array(self.__stacked_octrees))

        if self._verbose:
            print(f"\nobservation: {observation}")

        # Return the observation
        return observation