コード例 #1
0
ファイル: environment.py プロジェクト: valdezf10/gym-jsbsim
    def render(self, mode='flightgear', flightgear_blocking=True):
        """Renders the environment.
        The set of supported modes varies per environment. (And some
        environments do not support rendering at all.) By convention,
        if mode is:
        - human: render to the current display or terminal and
          return nothing. Usually for human consumption.
        - rgb_array: Return an numpy.ndarray with shape (x, y, 3),
          representing RGB values for an x-by-y pixel image, suitable
          for turning into a video.
        - ansi: Return a string (str) or StringIO.StringIO containing a
          terminal-style text representation. The text can include newlines
          and ANSI escape sequences (e.g. for colors).
        Note:
            Make sure that your class's metadata 'render.modes' key includes
              the list of supported modes. It's recommended to call super()
              in implementations to use the functionality of this method.

        :param mode: str, the mode to render with
        :param flightgear_blocking: waits for FlightGear to load before
            returning if True, else returns immediately
        """
        if mode == 'human':
            if not self.figure_visualiser:
                self.figure_visualiser = FigureVisualiser(self.sim,
                                                          self.task.get_props_to_output())
            self.figure_visualiser.plot(self.sim)
        elif mode == 'flightgear':
            if not self.flightgear_visualiser:
                self.flightgear_visualiser = FlightGearVisualiser(self.sim,
                                                                  self.task.get_props_to_output(),
                                                                  flightgear_blocking)
            self.flightgear_visualiser.plot(self.sim)
        else:
            super().render(mode=mode)
コード例 #2
0
ファイル: environment.py プロジェクト: garibarba/gym-jsbsim
    def render(self, mode='flightgear', flightgear_blocking=True):
        """Renders the environment.
        The set of supported modes varies per environment. (And some
        environments do not support rendering at all.) By convention,
        if mode is:
        - human: Send the state to AWS SQS.
        Note:
            Make sure that your class's metadata 'render.modes' key includes
              the list of supported modes. It's recommended to call super()
              in implementations to use the functionality of this method.

        :param mode: str, the mode to render with
        :param flightgear_blocking: waits for FlightGear to load before
            returning if True, else returns immediately
        """
        if mode == 'human':
            self._send_state_to_sqs()
        elif mode == 'flightgear':
            if not self.flightgear_visualiser:
                self.flightgear_visualiser = FlightGearVisualiser(
                    self.sim, self.task.get_props_to_output(self.sim),
                    flightgear_blocking)
            self.flightgear_visualiser.plot(self.sim)
        else:
            super().render(mode=mode)
コード例 #3
0
 def test_close_closes_flightgear(self):
     self.flightgear = FlightGearVisualiser(self.sim,
                                            self.task.get_props_to_output(),
                                            block_until_loaded=False)
     self.flightgear.close()
     timeout_seconds = 2.0
     return_code = self.flightgear.flightgear_process.wait(
         timeout=timeout_seconds)
     # a non-None return code indicates termination
     self.assertIsNotNone(return_code)
コード例 #4
0
    def test_launch_flightgear(self):
        self.flightgear = FlightGearVisualiser(self.sim,
                                               self.task.get_props_to_output(),
                                               block_until_loaded=False)
        time.sleep(0.5)

        # check FlightGear has launched by looking at stdout
        self.assertIn(
            'FlightGear',
            self.flightgear.flightgear_process.stdout.readline().decode())
        self.flightgear.close()
コード例 #5
0
    def test_plot_displays_actions(self):
        self.setUp()
        self.flightgear = FlightGearVisualiser(self.sim,
                                               self.task.get_props_to_output(),
                                               block_until_loaded=False)
        self.flightgear.plot(self.sim)

        # the figure should have plotted a Lines object each axis
        for axis in ['axes_stick', 'axes_rudder', 'axes_throttle']:
            axis_data_plots = getattr(self.flightgear.figure.axes, axis)
            is_empty_plot = len(axis_data_plots.axes.lines) == 0
            self.assertFalse(is_empty_plot,
                             msg=f'no data plotted on axis {axis}')
コード例 #6
0
 def test_init_creates_figure(self):
     self.flightgear = FlightGearVisualiser(self.sim,
                                            self.task.get_props_to_output(),
                                            block_until_loaded=False)
     self.assertIsInstance(self.flightgear.figure, FigureVisualiser)
コード例 #7
0
class TestFlightGearVisualiser(unittest.TestCase):
    env = None
    sim = None
    flightgear = None

    def setUp(self):
        if self.env:
            self.env.close()
        if self.sim:
            self.sim.close()
        self.task = BasicFlightTask()
        self.env = JsbSimEnv(task_type=BasicFlightTask)
        self.env.reset()
        self.sim = self.env.sim
        self.flightgear = None
        # individual test methods should init as needed:
        # self.flightgear = FlightGearVisualiser(self.sim)

    def tearDown(self):
        if self.env:
            self.env.close()
        if self.sim:
            self.sim.close()
        if self.flightgear:
            self.flightgear.close()

    def test_init_creates_figure(self):
        self.flightgear = FlightGearVisualiser(self.sim,
                                               self.task.get_props_to_output(),
                                               block_until_loaded=False)
        self.assertIsInstance(self.flightgear.figure, FigureVisualiser)

    def test_launch_flightgear(self):
        self.flightgear = FlightGearVisualiser(self.sim,
                                               self.task.get_props_to_output(),
                                               block_until_loaded=False)
        time.sleep(0.5)

        # check FlightGear has launched by looking at stdout
        self.assertIn(
            'FlightGear',
            self.flightgear.flightgear_process.stdout.readline().decode())
        self.flightgear.close()

    def test_close_closes_flightgear(self):
        self.flightgear = FlightGearVisualiser(self.sim,
                                               self.task.get_props_to_output(),
                                               block_until_loaded=False)
        self.flightgear.close()
        timeout_seconds = 2.0
        return_code = self.flightgear.flightgear_process.wait(
            timeout=timeout_seconds)
        # a non-None return code indicates termination
        self.assertIsNotNone(return_code)

    def test_plot_displays_actions(self):
        self.setUp()
        self.flightgear = FlightGearVisualiser(self.sim,
                                               self.task.get_props_to_output(),
                                               block_until_loaded=False)
        self.flightgear.plot(self.sim)

        # the figure should have plotted a Lines object each axis
        for axis in ['axes_stick', 'axes_rudder', 'axes_throttle']:
            axis_data_plots = getattr(self.flightgear.figure.axes, axis)
            is_empty_plot = len(axis_data_plots.axes.lines) == 0
            self.assertFalse(is_empty_plot,
                             msg=f'no data plotted on axis {axis}')
コード例 #8
0
ファイル: environment.py プロジェクト: valdezf10/gym-jsbsim
class JsbSimEnv(gym.Env):
    """
    A class wrapping the JSBSim flight dynamics module (FDM) for simulating
    aircraft as an RL environment conforming to the OpenAI Gym Env
    interface.

    An JsbSimEnv is instantiated with a Task that implements a specific
    aircraft control task with its own specific observation/action space and
    variables and agent_reward calculation.

    ATTRIBUTION: this class implements the OpenAI Gym Env API. Method
    docstrings have been adapted or copied from the OpenAI Gym source code.
    """
    JSBSIM_DT_HZ: int = 60  # JSBSim integration frequency
    metadata = {'render.modes': ['human', 'flightgear']}

    def __init__(self, task_type: Type[HeadingControlTask], aircraft: Aircraft = cessna172P,
                 agent_interaction_freq: int = 5, shaping: Shaping=Shaping.STANDARD):
        """
        Constructor. Inits some internal state, but JsbSimEnv.reset() must be
        called first before interacting with environment.

        :param task_type: the Task subclass for the task agent is to perform
        :param aircraft: the JSBSim aircraft to be used
        :param agent_interaction_freq: int, how many times per second the agent
            should interact with environment.
        :param shaping: a HeadingControlTask.Shaping enum, what type of agent_reward
            shaping to use (see HeadingControlTask for options)
        """
        if agent_interaction_freq > self.JSBSIM_DT_HZ:
            raise ValueError('agent interaction frequency must be less than '
                             'or equal to JSBSim integration frequency of '
                             f'{self.JSBSIM_DT_HZ} Hz.')
        self.sim: Simulation = None
        self.sim_steps_per_agent_step: int = self.JSBSIM_DT_HZ // agent_interaction_freq
        self.aircraft = aircraft
        self.task = task_type(shaping, agent_interaction_freq, aircraft)
        # set Space objects
        self.observation_space: gym.spaces.Box = self.task.get_state_space()
        self.action_space: gym.spaces.Box = self.task.get_action_space()
        # set visualisation objects
        self.figure_visualiser: FigureVisualiser = None
        self.flightgear_visualiser: FlightGearVisualiser = None
        self.step_delay = None

    def step(self, action: np.ndarray) -> Tuple[np.ndarray, float, bool, Dict]:
        """
        Run one timestep of the environment's dynamics. When end of
        episode is reached, you are responsible for calling `reset()`
        to reset this environment's state.
        Accepts an action and returns a tuple (observation, reward, done, info).

        :param action: the agent's action, with same length as action variables.
        :return:
            state: agent's observation of the current environment
            reward: amount of reward returned after previous action
            done: whether the episode has ended, in which case further step() calls are undefined
            info: auxiliary information, e.g. full reward shaping data
        """
        if not (action.shape == self.action_space.shape):
            raise ValueError('mismatch between action and action space size')

        state, reward, done, info = self.task.task_step(self.sim, action, self.sim_steps_per_agent_step)
        return np.array(state), reward, done, info

    def reset(self):
        """
        Resets the state of the environment and returns an initial observation.

        :return: array, the initial observation of the space.
        """
        init_conditions = self.task.get_initial_conditions()
        if self.sim:
            self.sim.reinitialise(init_conditions)
        else:
            self.sim = self._init_new_sim(self.JSBSIM_DT_HZ, self.aircraft, init_conditions)

        state = self.task.observe_first_state(self.sim)

        if self.flightgear_visualiser:
            self.flightgear_visualiser.configure_simulation_output(self.sim)

        return np.array(state)

    def _init_new_sim(self, dt, aircraft, initial_conditions):
        return Simulation(sim_frequency_hz=dt,
                          aircraft=aircraft,
                          init_conditions=initial_conditions)

    def render(self, mode='flightgear', flightgear_blocking=True):
        """Renders the environment.
        The set of supported modes varies per environment. (And some
        environments do not support rendering at all.) By convention,
        if mode is:
        - human: render to the current display or terminal and
          return nothing. Usually for human consumption.
        - rgb_array: Return an numpy.ndarray with shape (x, y, 3),
          representing RGB values for an x-by-y pixel image, suitable
          for turning into a video.
        - ansi: Return a string (str) or StringIO.StringIO containing a
          terminal-style text representation. The text can include newlines
          and ANSI escape sequences (e.g. for colors).
        Note:
            Make sure that your class's metadata 'render.modes' key includes
              the list of supported modes. It's recommended to call super()
              in implementations to use the functionality of this method.

        :param mode: str, the mode to render with
        :param flightgear_blocking: waits for FlightGear to load before
            returning if True, else returns immediately
        """
        if mode == 'human':
            if not self.figure_visualiser:
                self.figure_visualiser = FigureVisualiser(self.sim,
                                                          self.task.get_props_to_output())
            self.figure_visualiser.plot(self.sim)
        elif mode == 'flightgear':
            if not self.flightgear_visualiser:
                self.flightgear_visualiser = FlightGearVisualiser(self.sim,
                                                                  self.task.get_props_to_output(),
                                                                  flightgear_blocking)
            self.flightgear_visualiser.plot(self.sim)
        else:
            super().render(mode=mode)

    def close(self):
        """ Cleans up this environment's objects

        Environments automatically close() when garbage collected or when the
        program exits.
        """
        if self.sim:
            self.sim.close()
        if self.figure_visualiser:
            self.figure_visualiser.close()
        if self.flightgear_visualiser:
            self.flightgear_visualiser.close()

    def seed(self, seed=None):
        """
        Sets the seed for this env's random number generator(s).
        Note:
            Some environments use multiple pseudorandom number generators.
            We want to capture all such seeds used in order to ensure that
            there aren't accidental correlations between multiple generators.
        Returns:
            list<bigint>: Returns the list of seeds used in this env's random
              number generators. The first value in the list should be the
              "main" seed, or the value which a reproducer should pass to
              'seed'. Often, the main seed equals the provided 'seed', but
              this won't be true if seed=None, for example.
        """
        gym.logger.warn("Could not seed environment %s", self)
        return
コード例 #9
0
ファイル: environment.py プロジェクト: garibarba/gym-jsbsim
class JsbSimEnv(gym.Env):
    """
    A class wrapping the JSBSim flight dynamics module (FDM) for simulating
    aircraft as an RL environment conforming to the OpenAI Gym Env
    interface.

    An JsbSimEnv is instantiated with a Task that implements a specific
    aircraft control task with its own specific observation/action space and
    variables and agent_reward calculation.

    ATTRIBUTION: this class implements the OpenAI Gym Env API. Method
    docstrings have been adapted or copied from the OpenAI Gym source code.
    """
    JSBSIM_DT_HZ: int = 60  # JSBSim integration frequency
    metadata = {'render.modes': ['human', 'flightgear']}

    def __init__(self,
                 task_type: Type[BaseFlightTask],
                 aircraft: Aircraft = cessna172P,
                 agent_interaction_freq: int = 5):
        """
        Constructor. Inits some internal state, but JsbSimEnv.reset() must be
        called first before interacting with environment.

        :param task_type: the Task subclass for the task agent is to perform
        :param aircraft: the JSBSim aircraft to be used
        :param agent_interaction_freq: int, how many times per second the agent
            should interact with environment.
        """
        if agent_interaction_freq > self.JSBSIM_DT_HZ:
            raise ValueError('agent interaction frequency must be less than '
                             'or equal to JSBSim integration frequency of '
                             f'{self.JSBSIM_DT_HZ} Hz.')
        self.sim: Simulation = None
        self.sim_steps_per_agent_step: int = self.JSBSIM_DT_HZ // agent_interaction_freq
        self.aircraft = aircraft
        self.task = task_type(agent_interaction_freq, aircraft)
        # set Space objects
        self.observation_space: gym.spaces.Box = self.task.get_state_space()
        self.action_space: gym.spaces.Box = self.task.get_action_space()
        # set visualisation objects
        self.figure_visualiser: FigureVisualiser = None
        self.flightgear_visualiser: FlightGearVisualiser = None
        self.step_delay = None

        try:
            with open('/home/jsbsim/sqs_url.conf', 'r') as file:
                self._sqs_url = file.readline()
            sqs = boto3.resource('sqs')
            self._l2f_queue = sqs.Queue(self._sqs_url)
            self._NUM_THREADS = 100
            self._pool = ThreadPool(self._NUM_THREADS)
        except Exception:
            self._sqs_url = None
            self._l2f_queue = None
            self._pool = None

    def step(self, action: np.ndarray) -> Tuple[np.ndarray, float, bool, Dict]:
        """
        Run one timestep of the environment's dynamics. When end of
        episode is reached, you are responsible for calling `reset()`
        to reset this environment's state.
        Accepts an action and returns a tuple (observation, reward, done, info).

        :param action: the agent's action, with same length as action variables.
        :return:
            state: agent's observation of the current environment
            reward: amount of reward returned after previous action
            done: whether the episode has ended, in which case further step() calls are undefined
            info: auxiliary information
        """
        if not (action.shape == self.action_space.shape):
            raise ValueError('mismatch between action and action space size')

        state, reward, done, info = self.task.task_step(
            self.sim, action, self.sim_steps_per_agent_step)
        return np.array(state), reward, done, info

    def reset(self):
        """
        Resets the state of the environment and returns an initial observation.

        :return: array, the initial observation of the space.
        """
        init_conditions = self.task.get_initial_conditions()
        if self.sim:
            self.sim.reinitialise(init_conditions)
        else:
            self.sim = self._init_new_sim(self.JSBSIM_DT_HZ, self.aircraft,
                                          init_conditions)

        state = self.task.observe_first_state(self.sim)

        if self.flightgear_visualiser:
            self.flightgear_visualiser.configure_simulation_output(self.sim)

        if self._pool:
            self._pool.join()
            self._pool.terminate()
            self._pool = ThreadPool(self._NUM_THREADS)

        return np.array(state)

    def _init_new_sim(self, dt, aircraft, initial_conditions):
        return Simulation(sim_frequency_hz=dt,
                          aircraft=aircraft,
                          init_conditions=initial_conditions)

    def render(self, mode='flightgear', flightgear_blocking=True):
        """Renders the environment.
        The set of supported modes varies per environment. (And some
        environments do not support rendering at all.) By convention,
        if mode is:
        - human: Send the state to AWS SQS.
        Note:
            Make sure that your class's metadata 'render.modes' key includes
              the list of supported modes. It's recommended to call super()
              in implementations to use the functionality of this method.

        :param mode: str, the mode to render with
        :param flightgear_blocking: waits for FlightGear to load before
            returning if True, else returns immediately
        """
        if mode == 'human':
            self._send_state_to_sqs()
        elif mode == 'flightgear':
            if not self.flightgear_visualiser:
                self.flightgear_visualiser = FlightGearVisualiser(
                    self.sim, self.task.get_props_to_output(self.sim),
                    flightgear_blocking)
            self.flightgear_visualiser.plot(self.sim)
        else:
            super().render(mode=mode)

    def close(self):
        """ Cleans up this environment's objects

        Environments automatically close() when garbage collected or when the
        program exits.
        """
        if self.sim:
            self.sim.close()
        if self.figure_visualiser:
            self.figure_visualiser.close()
        if self.flightgear_visualiser:
            self.flightgear_visualiser.close()

    def seed(self, seed=None):
        """
        Sets the seed for this env's random number generator(s).
        Note:
            Some environments use multiple pseudorandom number generators.
            We want to capture all such seeds used in order to ensure that
            there aren't accidental correlations between multiple generators.
        Returns:
            list<bigint>: Returns the list of seeds used in this env's random
              number generators. The first value in the list should be the
              "main" seed, or the value which a reproducer should pass to
              'seed'. Often, the main seed equals the provided 'seed', but
              this won't be true if seed=None, for example.
        """
        gym.logger.warn("Could not seed environment %s", self)
        return

    def _get_full_state(self):
        state = {prop.name: self.sim[prop] for prop in self.task.all_props}
        state['epochtime'] = time.time()  # required to sort queue
        return state

    def _send_state_to_sqs(self):
        '''
        Send the rendering deque to SQS
        '''
        if self._l2f_queue:
            message_body = json.dumps(self._get_full_state)
            self._pool.apply_async(self._l2f_queue.send_message,
                                   kwds=dict(
                                       MessageBody=message_body,
                                       MessageGroupId='state_action_history'))
        else:
            import warnings
            warnings.warn('No SQS queue available.')