コード例 #1
0
ip = '35.175.227.14'
address = 'http://' + ip + ':12345'
username = '******'
password = '******'

h2oai = Client(address=address, username=username, password=password)

### Amaxon Reviews

dataPath = '/data/Training/AmazonFineFoodReviews.csv'
basename = 'Reviews'
target = 'PositiveReview'
ratio = 0.8

reviews_data = h2oai.create_dataset_sync(dataPath)

# Split the data
reviews_split_data = h2oai.make_dataset_split(dataset_key=reviews_data.key,
                                              output_name1=basename + "_train",
                                              output_name2=basename + "_test",
                                              target=target,
                                              fold_col="",
                                              time_col="",
                                              ratio=ratio,
                                              seed=1234)

train_key = h2oai.get_dataset_split_job(reviews_split_data).entity[0]
test_key = h2oai.get_dataset_split_job(reviews_split_data).entity[1]

# Reviews Default
コード例 #2
0
import h2oai_client
from h2oai_client import Client

h2oai = Client(address='http://129.213.63.69:12345',
               username='******',
               password='******')

train = h2oai.create_dataset_sync('/train.csv')
test = h2oai.create_dataset_sync('/test.csv')

experiment = h2oai.start_experiment_sync(dataset_key=train.key,
                                         testset_key=test.key,
                                         accuracy=10,
                                         time=10,
                                         interpretability=1,
                                         is_classification=True,
                                         target_col='LABEL',
                                         is_timeseries=True,
                                         time_col='DATE',
                                         num_gap_periods=1,
                                         num_prediction_periods=1)

print("Final Model Score on Validation Data: " +
      str(round(experiment.valid_score, 3)))
print("Final Model Score on Test Data: " +
      str(round(experiment.test_score, 3)))
コード例 #3
0
ip = '35.175.227.14'
address = 'http://' + ip + ':12345'
username = '******'
password = '******'

h2oai = Client(address = address
               , username = username
               , password = password)

dataPath = '/data/Training/CreditCard.csv'
basename = 'Card'
target = 'Default'
ratio = 0.8
dropped = []

card_data = h2oai.create_dataset_sync(dataPath)

# Split the data
card_split_data = h2oai.make_dataset_split(
    dataset_key = card_data.key
    , output_name1 = basename + "_train"
    , output_name2 = basename + "_test"
    , target = target
    , fold_col = ""
    , time_col = ""
    , ratio = ratio
    , seed = 1234
)

train_key = h2oai.get_dataset_split_job(card_split_data).entity[0]
test_key  = h2oai.get_dataset_split_job(card_split_data).entity[1]
コード例 #4
0
import math
from h2oai_client import Client, ModelParameters, InterpretParameters

ip = '35.175.227.14'
address = 'http://' + ip + ':12345'
username = '******'
password = '******'

h2oai = Client(address=address, username=username, password=password)

dataPath = '/data/Training/BostonHousing.csv'
basename = 'Housing'
target = 'VALUE'
ratio = 0.8

boston_data = h2oai.create_dataset_sync(dataPath)

# Split the data
boston_split_data = h2oai.make_dataset_split(dataset_key=boston_data.key,
                                             output_name1=basename + "_train",
                                             output_name2=basename + "_test",
                                             target=target,
                                             fold_col="",
                                             time_col="",
                                             ratio=ratio,
                                             seed=1234)

train_key = h2oai.get_dataset_split_job(boston_split_data).entity[0]
test_key = h2oai.get_dataset_split_job(boston_split_data).entity[1]
dropped = []
コード例 #5
0
from h2oai_client import Client, ModelParameters, InterpretParameters

ip = '35.175.227.14'
address = 'http://' + ip + ':12345'
username = '******'
password = '******'

h2oai = Client(address=address, username=username, password=password)

### Diabetes Models
dataPath = '/data/Training/PimaDiabetes.csv'
basename = 'Diabetes'
target = 'Outcome'
ratio = 0.8

diabetes_data = h2oai.create_dataset_sync(dataPath)

# Split the data
diabetes_split_data = h2oai.make_dataset_split(dataset_key=diabetes_data.key,
                                               output_name1=basename +
                                               "_train",
                                               output_name2=basename + "_test",
                                               target=target,
                                               fold_col="",
                                               time_col="",
                                               ratio=ratio,
                                               seed=1234)

train_key = h2oai.get_dataset_split_job(diabetes_split_data).entity[0]
test_key = h2oai.get_dataset_split_job(diabetes_split_data).entity[1]
dropped = []
コード例 #6
0
from h2oai_client import Client, ModelParameters, InterpretParameters

ip = '35.175.227.14'
address = 'http://' + ip + ':12345'
username = '******'
password = '******'

h2oai = Client(address=address, username=username, password=password)

### Titanic Models
dataPath = '/data/Training/Titanic.csv'
basename = 'Titanic'
target = 'survived'
ratio = 0.8

titanic_data = h2oai.create_dataset_sync(dataPath)

# Split the data
titanic_split_data = h2oai.make_dataset_split(dataset_key=titanic_data.key,
                                              output_name1=basename + "_train",
                                              output_name2=basename + "_test",
                                              target=target,
                                              fold_col="",
                                              time_col="",
                                              ratio=ratio,
                                              seed=1234)

train_key = h2oai.get_dataset_split_job(titanic_split_data).entity[0]
test_key = h2oai.get_dataset_split_job(titanic_split_data).entity[1]

knobs = [8, 2, 8]