コード例 #1
0
def test_dataset_splitting(split):
    dataset_config = get_config(CFG_TEST).DATASET
    dataset_config.defrost()
    dataset_config.SPLIT = split

    if not ObjectNavDatasetV1.check_config_paths_exist(dataset_config):
        pytest.skip("Test skipped as dataset files are missing.")

    scenes = ObjectNavDatasetV1.get_scenes_to_load(config=dataset_config)
    assert (len(scenes) >
            0), "Expected dataset contains separate episode file per scene."

    dataset_config.CONTENT_SCENES = scenes[:PARTIAL_LOAD_SCENES]
    full_dataset = make_dataset(id_dataset=dataset_config.TYPE,
                                config=dataset_config)
    full_episodes = {(ep.scene_id, ep.episode_id)
                     for ep in full_dataset.episodes}

    dataset_config.CONTENT_SCENES = scenes[:PARTIAL_LOAD_SCENES // 2]
    split1_dataset = make_dataset(id_dataset=dataset_config.TYPE,
                                  config=dataset_config)
    split1_episodes = {(ep.scene_id, ep.episode_id)
                       for ep in split1_dataset.episodes}

    dataset_config.CONTENT_SCENES = scenes[PARTIAL_LOAD_SCENES //
                                           2:PARTIAL_LOAD_SCENES]
    split2_dataset = make_dataset(id_dataset=dataset_config.TYPE,
                                  config=dataset_config)
    split2_episodes = {(ep.scene_id, ep.episode_id)
                       for ep in split2_dataset.episodes}

    assert full_episodes == split1_episodes.union(
        split2_episodes), "Split dataset is not equal to full dataset"
    assert (len(split1_episodes.intersection(split2_episodes)) == 0
            ), "Intersection of split datasets is not the empty set"
コード例 #2
0
    def __init__(self, par, seq_len, config_file, action_list):
        self.config_file = '{}/{}'.format(par.habitat_root, config_file)

        self.seq_len = seq_len
        self.actions = action_list
        self.dets_nClasses = par.dets_nClasses

        config = get_config(self.config_file)
        config.defrost()
        config.SIMULATOR.DEPTH_SENSOR.NORMALIZE_DEPTH = False
        config.TASK.MEASUREMENTS.append('COLLISIONS')
        config.freeze()
        self.hfov = float(config.SIMULATOR.DEPTH_SENSOR.HFOV) * np.pi / 180.
        dataset = make_dataset(id_dataset=config.DATASET.TYPE,
                               config=config.DATASET)
        self.env = habitat.Env(config=config, dataset=dataset)

        self.cropSize = par.crop_size
        self.cropSizeObsv = par.crop_size_obsv
        self.orig_res = (config.SIMULATOR.DEPTH_SENSOR.HEIGHT,
                         config.SIMULATOR.DEPTH_SENSOR.WIDTH)
        self.normalize = True
        self.pixFormat = 'NCHW'

        self.dg = myDistanceToGoal(self.env.sim, config)
コード例 #3
0
def test_mp3d_eqa_sim():
    eqa_config = get_config(CFG_TEST)

    if not mp3d_dataset.Matterport3dDatasetV1.check_config_paths_exist(
        eqa_config.DATASET
    ):
        pytest.skip("Please download Matterport3D EQA dataset to data folder.")

    dataset = make_dataset(
        id_dataset=eqa_config.DATASET.TYPE, config=eqa_config.DATASET
    )
    with habitat.Env(config=eqa_config, dataset=dataset) as env:
        env.episodes = dataset.episodes[:EPISODES_LIMIT]

        env.reset()
        while not env.episode_over:
            obs = env.step(env.task.action_space.sample())
            if not env.episode_over:
                assert "rgb" in obs, "RGB image is missing in observation."
                assert obs["rgb"].shape[:2] == (
                    eqa_config.SIMULATOR.RGB_SENSOR.HEIGHT,
                    eqa_config.SIMULATOR.RGB_SENSOR.WIDTH,
                ), (
                    "Observation resolution {} doesn't correspond to config "
                    "({}, {}).".format(
                        obs["rgb"].shape[:2],
                        eqa_config.SIMULATOR.RGB_SENSOR.HEIGHT,
                        eqa_config.SIMULATOR.RGB_SENSOR.WIDTH,
                    )
                )
コード例 #4
0
def test_multiple_files_scene_path():
    dataset_config = get_config(CFG_MULTI_TEST).DATASET
    if not PointNavDatasetV1.check_config_paths_exist(dataset_config):
        pytest.skip("Test skipped as dataset files are missing.")
    scenes = PointNavDatasetV1.get_scenes_to_load(config=dataset_config)
    assert (
        len(scenes) > 0
    ), "Expected dataset contains separate episode file per scene."
    dataset_config.defrost()
    dataset_config.CONTENT_SCENES = scenes[:PARTIAL_LOAD_SCENES]
    dataset_config.SCENES_DIR = os.path.join(
        os.getcwd(), DEFAULT_SCENE_PATH_PREFIX
    )
    dataset_config.freeze()
    partial_dataset = make_dataset(
        id_dataset=dataset_config.TYPE, config=dataset_config
    )
    assert (
        len(partial_dataset.scene_ids) == PARTIAL_LOAD_SCENES
    ), "Number of loaded scenes doesn't correspond."
    print(partial_dataset.episodes[0].scene_id)
    assert os.path.exists(
        partial_dataset.episodes[0].scene_id
    ), "Scene file {} doesn't exist using absolute path".format(
        partial_dataset.episodes[0].scene_id
    )
コード例 #5
0
def test_object_nav_task():
    config = get_config(CFG_TEST)

    if not ObjectNavDatasetV1.check_config_paths_exist(config.DATASET):
        pytest.skip(
            "Please download Matterport3D scene and ObjectNav Datasets to data folder."
        )

    dataset = make_dataset(id_dataset=config.DATASET.TYPE,
                           config=config.DATASET)
    with habitat.Env(config=config, dataset=dataset) as env:
        for i in range(10):
            env.reset()
            while not env.episode_over:
                action = env.action_space.sample()
                habitat.logger.info(f"Action : "
                                    f"{action['action']}, "
                                    f"args: {action['action_args']}.")
                env.step(action)

            metrics = env.get_metrics()
            logger.info(metrics)

        with pytest.raises(AssertionError):
            env.step({"action": MoveForwardAction.name})
コード例 #6
0
def make_env_fn(config: Config, env_class: Type[Union[Env, RLEnv]],
                rank: int) -> Union[Env, RLEnv]:
    r"""Creates an env of type env_class with specified config and rank.
    This is to be passed in as an argument when creating VectorEnv.
    Args:
        config: root exp config that has core env config node as well as
            env-specific config node.
        env_class: class type of the env to be created.
        rank: rank of env to be created (for seeding).
    Returns:
        env object created according to specification.
    """
    if not config.USE_SYNC_VECENV:
        level = logging.DEBUG if config.DEBUG else logging.INFO
        logging.basicConfig(level=level,
                            format='%(asctime)s, %(levelname)s: %(message)s',
                            datefmt="%Y-%m-%d %H:%M:%S")
        random.seed(rank)
        np.random.seed(rank)
        torch.manual_seed(rank)

    dataset = make_dataset(config.TASK_CONFIG.DATASET.TYPE,
                           config=config.TASK_CONFIG.DATASET)
    env = env_class(config=config, dataset=dataset)
    env.seed(rank)
    return env
コード例 #7
0
    def __init__(self, par, seq_len, config_file):
        self.config_file = '{}/{}'.format(par.habitat_root, config_file)

        self.seq_len = seq_len
        self.dets_nClasses = par.dets_nClasses

        config = get_config(self.config_file)
        config.defrost()
        config.SIMULATOR.DEPTH_SENSOR.NORMALIZE_DEPTH = False
        config.freeze()
        self.hfov = float(config.SIMULATOR.DEPTH_SENSOR.HFOV) * np.pi / 180.
        #self.intr = np.zeros((4), dtype=np.float32)
        #self.intr[0] = 1./np.tan(self.hfov/2.)*(config.SIMULATOR.DEPTH_SENSOR.WIDTH/2.) # fx
        #self.intr[1] = 1./np.tan(self.hfov/2.)*(config.SIMULATOR.DEPTH_SENSOR.HEIGHT/2.) # fy
        #self.intr[2] = config.SIMULATOR.DEPTH_SENSOR.WIDTH/2. # cx
        #self.intr[3] = config.SIMULATOR.DEPTH_SENSOR.HEIGHT/2. # cy
        dataset = make_dataset(id_dataset=config.DATASET.TYPE,
                               config=config.DATASET)
        self.env = habitat.Env(config=config, dataset=dataset)

        self.orig_res = (config.SIMULATOR.DEPTH_SENSOR.HEIGHT,
                         config.SIMULATOR.DEPTH_SENSOR.WIDTH)
        self.cropSize = par.crop_size
        self.normalize = True
        self.pixFormat = 'NCHW'
コード例 #8
0
 def __init__(self,
              config: Config,
              dataset: Optional[Dataset] = None) -> None:
     assert config.is_frozen(), ("Freeze the config before creating the "
                                 "environment, use config.freeze()")
     self._config = config
     self._dataset = dataset
     self._current_episode_index = None
     if self._dataset is None and config.DATASET.TYPE:
         self._dataset = make_dataset(id_dataset=config.DATASET.TYPE,
                                      config=config.DATASET)
     self._episodes = self._dataset.episodes if self._dataset else []
     self._sim = make_sim(id_sim=self._config.SIMULATOR.TYPE,
                          config=self._config.SIMULATOR)
     self._task = make_task(
         self._config.TASK.TYPE,
         task_config=self._config.TASK,
         sim=self._sim,
         dataset=dataset,
     )
     self.observation_space = SpaceDict({
         **self._sim.sensor_suite.observation_spaces.spaces,
         **self._task.sensor_suite.observation_spaces.spaces,
     })
     self.action_space = self._sim.action_space
     self._max_episode_seconds = (
         self._config.ENVIRONMENT.MAX_EPISODE_SECONDS)
     self._max_episode_steps = self._config.ENVIRONMENT.MAX_EPISODE_STEPS
     self._elapsed_steps = 0
     self._episode_start_time: Optional[float] = None
     self._episode_over = False
コード例 #9
0
def test_dataset_splitting(split):
    dataset_config = get_config(CFG_TEST).DATASET
    dataset_config.defrost()
    dataset_config.SPLIT = split

    if not r2r_vln_dataset.VLNDatasetV1.check_config_paths_exist(
        dataset_config
    ):
        pytest.skip("Please download Matterport3D R2R dataset to data folder.")

    scenes = r2r_vln_dataset.VLNDatasetV1.get_scenes_to_load(
        config=dataset_config
    )
    assert (
        len(scenes) > 0
    ), "Expected dataset contains separate episode file per scene."

    dataset_config.CONTENT_SCENES = scenes
    full_dataset = make_dataset(
        id_dataset=dataset_config.TYPE, config=dataset_config
    )
    full_episodes = {
        (ep.scene_id, ep.episode_id) for ep in full_dataset.episodes
    }

    dataset_config.CONTENT_SCENES = scenes[0 : len(scenes) // 2]
    split1_dataset = make_dataset(
        id_dataset=dataset_config.TYPE, config=dataset_config
    )
    split1_episodes = {
        (ep.scene_id, ep.episode_id) for ep in split1_dataset.episodes
    }

    dataset_config.CONTENT_SCENES = scenes[len(scenes) // 2 :]
    split2_dataset = make_dataset(
        id_dataset=dataset_config.TYPE, config=dataset_config
    )
    split2_episodes = {
        (ep.scene_id, ep.episode_id) for ep in split2_dataset.episodes
    }

    assert full_episodes == split1_episodes.union(
        split2_episodes
    ), "Split dataset is not equal to full dataset"
    assert (
        len(split1_episodes.intersection(split2_episodes)) == 0
    ), "Intersection of split datasets is not the empty set"
コード例 #10
0
    def __init__(self,
                 config: Config,
                 dataset: Optional[Dataset] = None) -> None:
        """Constructor

        :param config: config for the environment. Should contain id for
            simulator and ``task_name`` which are passed into ``make_sim`` and
            ``make_task``.
        :param dataset: reference to dataset for task instance level
            information. Can be defined as :py:`None` in which case
            ``_episodes`` should be populated from outside.
        """

        assert config.is_frozen(), ("Freeze the config before creating the "
                                    "environment, use config.freeze().")
        self._config = config
        self._dataset = dataset
        self._current_episode_index = None
        if self._dataset is None and config.DATASET.TYPE:
            self._dataset = make_dataset(id_dataset=config.DATASET.TYPE,
                                         config=config.DATASET)
        self._episodes = self._dataset.episodes if self._dataset else []
        self._current_episode = None
        iter_option_dict = {
            k.lower(): v
            for k, v in config.ENVIRONMENT.ITERATOR_OPTIONS.items()
        }
        self._episode_iterator = self._dataset.get_episode_iterator(
            **iter_option_dict)

        # load the first scene if dataset is present
        if self._dataset:
            assert (len(self._dataset.episodes) >
                    0), "dataset should have non-empty episodes list"
            self._config.defrost()
            self._config.SIMULATOR.SCENE = self._dataset.episodes[0].scene_id
            self._config.freeze()

        self._sim = make_sim(id_sim=self._config.SIMULATOR.TYPE,
                             config=self._config.SIMULATOR)
        self._task = make_task(
            self._config.TASK.TYPE,
            config=self._config.TASK,
            sim=self._sim,
            dataset=self._dataset,
        )
        self.observation_space = SpaceDict({
            **self._sim.sensor_suite.observation_spaces.spaces,
            **self._task.sensor_suite.observation_spaces.spaces,
        })
        self.action_space = self._task.action_space
        self._max_episode_seconds = (
            self._config.ENVIRONMENT.MAX_EPISODE_SECONDS)
        self._max_episode_steps = self._config.ENVIRONMENT.MAX_EPISODE_STEPS
        self._elapsed_steps = 0
        self._episode_start_time: Optional[float] = None
        self._episode_over = False
コード例 #11
0
def test_r2r_vln_sim():
    vln_config = get_config(CFG_TEST)

    if not r2r_vln_dataset.VLNDatasetV1.check_config_paths_exist(
        vln_config.DATASET
    ):
        pytest.skip(
            "Please download Matterport3D R2R VLN dataset to data folder."
        )

    dataset = make_dataset(
        id_dataset=vln_config.DATASET.TYPE, config=vln_config.DATASET
    )

    env = habitat.Env(config=vln_config, dataset=dataset)
    env.episodes = dataset.episodes[:EPISODES_LIMIT]

    follower = ShortestPathFollower(
        env.sim, goal_radius=0.5, return_one_hot=False
    )
    assert env

    for i in range(len(env.episodes)):
        env.reset()
        path = env.current_episode.reference_path + [
            env.current_episode.goals[0].position
        ]
        for point in path:
            done = False
            while not done:
                best_action = follower.get_next_action(point)
                if best_action == None:
                    break
                obs = env.step(best_action)
                assert "rgb" in obs, "RGB image is missing in observation."
                assert (
                    "instruction" in obs
                ), "Instruction is missing in observation."
                assert (
                    obs["instruction"]["text"]
                    == env.current_episode.instruction.instruction_text
                ), "Instruction from sensor does not match the intruction from the episode"

                assert obs["rgb"].shape[:2] == (
                    vln_config.SIMULATOR.RGB_SENSOR.HEIGHT,
                    vln_config.SIMULATOR.RGB_SENSOR.WIDTH,
                ), (
                    "Observation resolution {} doesn't correspond to config "
                    "({}, {}).".format(
                        obs["rgb"].shape[:2],
                        vln_config.SIMULATOR.RGB_SENSOR.HEIGHT,
                        vln_config.SIMULATOR.RGB_SENSOR.WIDTH,
                    )
                )

    env.close()
コード例 #12
0
def test_r2r_vln_dataset():
    vln_config = get_config(CFG_TEST)
    if not r2r_vln_dataset.VLNDatasetV1.check_config_paths_exist(
            vln_config.DATASET):
        pytest.skip("Please download Matterport3D R2R dataset to data folder.")

    dataset = make_dataset(id_dataset=vln_config.DATASET.TYPE,
                           config=vln_config.DATASET)
    assert dataset
    assert (len(dataset.episodes) == R2R_VAL_SEEN_EPISODES
            ), "Val Seen split episode number mismatch"
    check_json_serializaiton(dataset)
コード例 #13
0
def test_multiple_files_pointnav_dataset(cfg_path: str):
    dataset_config = get_config(cfg_path).DATASET
    if not PointNavDatasetV1.check_config_paths_exist(dataset_config):
        pytest.skip("Test skipped as dataset files are missing.")
    scenes = PointNavDatasetV1.get_scenes_to_load(config=dataset_config)
    assert (len(scenes) >
            0), "Expected dataset contains separate episode file per scene."
    dataset_config.defrost()
    dataset_config.CONTENT_SCENES = scenes
    dataset_config.freeze()
    partial_dataset = make_dataset(id_dataset=dataset_config.TYPE,
                                   config=dataset_config)
    check_json_serializaiton(partial_dataset)
コード例 #14
0
def get_eval_dataset(shell_args, data_subset="val"):
    if shell_args.dataset == "mp3d":
        data_path = "data/datasets/pointnav/mp3d/v1/{split}/{split}.json.gz"
    elif shell_args.dataset == "gibson":
        data_path = "data/datasets/pointnav/gibson/v1/{split}/{split}.json.gz"
    else:
        raise NotImplementedError("No rule for this dataset.")

    config = get_dataset_config(data_path, data_subset,
                                shell_args.max_episode_length, 0, [], [])
    dataset = make_dataset(config.DATASET.TYPE, config=config.DATASET)

    assert len(dataset.episodes) > 0, "empty datasets"
    return dataset
コード例 #15
0
    def __init__(
        self,
        gpu_id: int,
        unique_dataset_name: str,
        split: str,
        data_path: str,
        images_before_reset: int,
        sensors: Optional[List[str]] = None,
        resolution: Optional[int] = 256,
    ) -> None:
        if sensors is None:
            sensors = ["RGB_SENSOR", "DEPTH_SENSOR"]
        self.images_before_reset = images_before_reset
        config = make_config(gpu_id, split, data_path, sensors, resolution)
        data_dir = os.path.join("data/scene_episodes/",
                                unique_dataset_name + "_" + split)
        self.dataset_name = config.DATASET.TYPE
        if not os.path.exists(data_dir):
            os.makedirs(data_dir)
        data_path = os.path.join(data_dir, "dataset_one_ep_per_scene.json.gz")
        # Creates a dataset where each episode is a random spawn point in each scene.
        if not os.path.exists(data_path):
            dataset = make_dataset(config.DATASET.TYPE, config=config.DATASET)
            # Get one episode per scene in dataset
            scene_episodes = {}
            for episode in dataset.episodes:
                if episode.scene_id not in scene_episodes:
                    scene_episodes[episode.scene_id] = episode
            scene_episodes = list(scene_episodes.values())
            print("scene episodes", len(scene_episodes))
            dataset.episodes = scene_episodes
            if not os.path.exists(data_path):
                # Multiproc do check again before write.
                json = dataset.to_json().encode("utf-8")
                with gzip.GzipFile(data_path, "w") as fout:
                    fout.write(json)
        dataset = mp3d_dataset.PointNavDatasetV1()
        with gzip.open(data_path, "rt") as f:
            dataset.from_json(f.read())

        config.TASK.SENSORS = ["POINTGOAL_SENSOR"]
        if "SEMANTIC_SESNOR" in sensors:
            config.TASK.SENSOR.append("CLASS_SEGMENTATION_SENSOR")
            config.TASK.CLASS_SEGMENTATION_SENSOR.HEIGHT = config.TASK.HEIGHT
            config.TASK.CLASS_SEGMENTATION_SENSOR.WIDTH = config.TASK.WIDTH

        config.freeze()
        self.env = habitat.Env(config=config, dataset=dataset)
        random.shuffle(self.env.episodes)
        self.num_samples = 0
コード例 #16
0
def test_multiple_files_pointnav_dataset():
    dataset_config = get_config(CFG_MULTI_TEST).DATASET
    if not PointNavDatasetV1.check_config_paths_exist(dataset_config):
        pytest.skip("Test skipped as dataset files are missing.")
    scenes = PointNavDatasetV1.get_scenes_to_load(config=dataset_config)
    assert (len(scenes) >
            0), "Expected dataset contains separate episode file per scene."
    dataset_config.defrost()
    dataset_config.CONTENT_SCENES = scenes[:PARTIAL_LOAD_SCENES]
    dataset_config.freeze()
    partial_dataset = make_dataset(id_dataset=dataset_config.TYPE,
                                   config=dataset_config)
    assert (len(partial_dataset.scene_ids) == PARTIAL_LOAD_SCENES
            ), "Number of loaded scenes doesn't correspond."
    check_json_serializaiton(partial_dataset)
コード例 #17
0
    def __init__(self,
                 config: Config,
                 dataset: Optional[Dataset] = None) -> None:
        assert config.is_frozen(), ("Freeze the config before creating the "
                                    "environment, use config.freeze().")
        self._config = config
        self._dataset = dataset
        self._current_episode_index = None
        if self._dataset is None and config.DATASET.TYPE:
            self._dataset = make_dataset(id_dataset=config.DATASET.TYPE,
                                         config=config.DATASET)
        self._episodes = self._dataset.episodes if self._dataset else []
        self._current_episode = None
        iter_option_dict = {
            k.lower(): v
            for k, v in config.ENVIRONMENT.ITERATOR_OPTIONS.items()
        }
        self._episode_iterator = self._dataset.get_episode_iterator(
            **iter_option_dict)

        # load the first scene if dataset is present
        if self._dataset:
            assert (len(self._dataset.episodes) >
                    0), "dataset should have non-empty episodes list"
            self._config.defrost()
            self._config.SIMULATOR.SCENE = self._dataset.episodes[0].scene_id
            self._config.freeze()

        self._sim = make_sim(id_sim=self._config.SIMULATOR.TYPE,
                             config=self._config.SIMULATOR)
        self._task = make_task(
            self._config.TASK.TYPE,
            task_config=self._config.TASK,
            sim=self._sim,
            dataset=self._dataset,
        )
        self.observation_space = SpaceDict({
            **self._sim.sensor_suite.observation_spaces.spaces,
            **self._task.sensor_suite.observation_spaces.spaces,
        })
        self.action_space = self._sim.action_space
        self._max_episode_seconds = (
            self._config.ENVIRONMENT.MAX_EPISODE_SECONDS)
        self._max_episode_steps = self._config.ENVIRONMENT.MAX_EPISODE_STEPS
        self._elapsed_steps = 0
        self._episode_start_time: Optional[float] = None
        self._episode_over = False
コード例 #18
0
def test_eqa_task():
    eqa_config = get_config(CFG_TEST)

    if not mp3d_dataset.Matterport3dDatasetV1.check_config_paths_exist(
        eqa_config.DATASET
    ):
        pytest.skip("Please download Matterport3D EQA dataset to data folder.")

    dataset = make_dataset(
        id_dataset=eqa_config.DATASET.TYPE, config=eqa_config.DATASET
    )
    with habitat.Env(config=eqa_config, dataset=dataset) as env:
        env.episodes = list(
            filter(
                lambda e: int(e.episode_id)
                in TEST_EPISODE_SET[:EPISODES_LIMIT],
                dataset.episodes,
            )
        )

        env.reset()

        for i in range(10):
            action = sample_non_stop_action(env.action_space)
            if action["action"] != AnswerAction.name:
                env.step(action)
            metrics = env.get_metrics()
            del metrics["episode_info"]
            logger.info(metrics)

        correct_answer_id = env.current_episode.question.answer_token
        env.step(
            {
                "action": AnswerAction.name,
                "action_args": {"answer_id": correct_answer_id},
            }
        )

        metrics = env.get_metrics()
        del metrics["episode_info"]
        logger.info(metrics)
        assert metrics["answer_accuracy"] == 1

        with pytest.raises(AssertionError):
            env.step({"action": MoveForwardAction.name})
コード例 #19
0
ファイル: benchmark.py プロジェクト: JSeam2/sound-spaces
    def __init__(self, task_config: Optional[Config] = None) -> None:
        r"""..

        :param task_config: config to be used for creating the environment
        """
        dummy_config = Config()
        dummy_config.RL = Config()
        dummy_config.RL.SLACK_REWARD = -0.01
        dummy_config.RL.SUCCESS_REWARD = 10
        dummy_config.RL.WITH_TIME_PENALTY = True
        dummy_config.RL.DISTANCE_REWARD_SCALE = 1
        dummy_config.RL.WITH_DISTANCE_REWARD = True
        dummy_config.RL.defrost()
        dummy_config.TASK_CONFIG = task_config
        dummy_config.freeze()

        dataset = make_dataset(id_dataset=task_config.DATASET.TYPE,
                               config=task_config.DATASET)
        self._env = NavRLEnv(config=dummy_config, dataset=dataset)
コード例 #20
0
    def setup(self, create_decoder=True):
        assert self.shell_args.update_policy_decoder_features or self.shell_args.update_encoder_features
        super(HabitatRLTrainAndEvalRunner, self).setup(create_decoder)
        self.shell_args.cuda = not self.shell_args.no_cuda and torch.cuda.is_available(
        )

        print("Starting make dataset")
        start_t = time.time()
        config = self.configs[0]
        dataset = make_dataset(config.DATASET.TYPE, config=config.DATASET)
        observation_shape_chw = (3, config.SIMULATOR.RGB_SENSOR.HEIGHT,
                                 config.SIMULATOR.RGB_SENSOR.WIDTH)
        print("made dataset")

        assert len(dataset.episodes) > 0, "empty datasets"
        if self.shell_args.num_train_scenes > 0:
            scene_ids = sorted(dataset.scene_ids)
            random.seed(0)
            random.shuffle(scene_ids)
            used_scene_ids = set(scene_ids[:self.shell_args.num_train_scenes])
            dataset.filter_episodes(lambda x: x.scene_id in used_scene_ids)

        if self.shell_args.record_video:
            random.shuffle(dataset.episodes)

        datasets = dataset.get_splits(self.shell_args.num_processes,
                                      remove_unused_episodes=True,
                                      collate_scene_ids=True)

        print("Dataset creation time %.3f" % (time.time() - start_t))

        self.rollouts = RolloutStorageWithMultipleObservations(
            self.shell_args.num_forward_rollout_steps,
            self.shell_args.num_processes,
            observation_shape_chw,
            self.gym_action_space,
            self.agent.recurrent_hidden_state_size,
            self.observation_space,
            "rgb",
        )
        self.rollouts.to(self.device)

        print("Feeding dummy batch")
        dummy_start = time.time()
        self.optimizer.update(self.rollouts, self.shell_args)
        print("Done feeding dummy batch %.3f" % (time.time() - dummy_start))

        self.logger = None
        if self.shell_args.tensorboard:
            self.logger = tensorboard_logger.Logger(
                os.path.join(self.shell_args.log_prefix,
                             self.shell_args.tensorboard_dirname,
                             self.time_str + "_train"))

        self.datasets = {"train": datasets, "val": self.eval_datasets}

        self.train_stats = dict(
            num_episodes=np.zeros(self.shell_args.num_processes,
                                  dtype=np.int32),
            num_steps=np.zeros(self.shell_args.num_processes, dtype=np.int32),
            reward=np.zeros(self.shell_args.num_processes, dtype=np.float32),
            spl=np.zeros(self.shell_args.num_processes, dtype=np.float32),
            visited_states=np.zeros(self.shell_args.num_processes,
                                    dtype=np.int32),
            success=np.zeros(self.shell_args.num_processes, dtype=np.int32),
            end_geodesic_distance=np.zeros(self.shell_args.num_processes,
                                           dtype=np.float32),
            start_geodesic_distance=np.zeros(self.shell_args.num_processes,
                                             dtype=np.float32),
            delta_geodesic_distance=np.zeros(self.shell_args.num_processes,
                                             dtype=np.float32),
            distance_from_start=np.zeros(self.shell_args.num_processes,
                                         dtype=np.float32),
        )
コード例 #21
0
ファイル: env_utils.py プロジェクト: ziadalh/sound-spaces
def construct_envs(config: Config, env_class: Type[Union[Env,
                                                         RLEnv]]) -> VectorEnv:
    r"""Create VectorEnv object with specified config and env class type.
    To allow better performance, dataset are split into small ones for
    each individual env, grouped by scenes.

    Args:
        config: configs that contain num_processes as well as information
        necessary to create individual environments.
        env_class: class type of the envs to be created
    Returns:
        VectorEnv object created according to specification.
    """

    num_processes = config.NUM_PROCESSES
    configs = []
    env_classes = [env_class for _ in range(num_processes)]
    dataset = make_dataset(config.TASK_CONFIG.DATASET.TYPE)
    scenes = dataset.get_scenes_to_load(config.TASK_CONFIG.DATASET)

    # rearrange scenes in the order of scene size since there is a severe imbalance of data size
    if "replica" in config.TASK_CONFIG.DATASET.SCENES_DIR:
        scenes_new = list()
        for scene in SCENES:
            if scene in scenes:
                scenes_new.append(scene)
        scenes = scenes_new

    if len(scenes) > 0:
        # random.shuffle(scenes)
        assert len(scenes) >= num_processes, (
            "reduce the number of processes as there "
            "aren't enough number of scenes")

    scene_splits = [[] for _ in range(num_processes)]
    for idx, scene in enumerate(scenes):
        scene_splits[idx % len(scene_splits)].append(scene)

    assert sum(map(len, scene_splits)) == len(scenes)

    for i in range(num_processes):
        task_config = config.TASK_CONFIG.clone()
        task_config.defrost()
        if len(scenes) > 0:
            task_config.DATASET.CONTENT_SCENES = scene_splits[i]
            logging.debug('All scenes: {}'.format(','.join(scene_splits[i])))

        # overwrite the task config with top-level config file
        task_config.SIMULATOR.HABITAT_SIM_V0.GPU_DEVICE_ID = (
            config.SIMULATOR_GPU_ID)
        task_config.SIMULATOR.AGENT_0.SENSORS = config.SENSORS
        task_config.freeze()

        config.defrost()
        config.TASK_CONFIG = task_config
        config.freeze()
        configs.append(config.clone())

    # use VectorEnv for the best performance and ThreadedVectorEnv for debugging
    if config.USE_SYNC_VECENV:
        env_launcher = SyncVectorEnv
        logging.info('Using SyncVectorEnv')
    elif config.USE_VECENV:
        env_launcher = habitat.VectorEnv
        logging.info('Using VectorEnv')
    else:
        env_launcher = habitat.ThreadedVectorEnv
        logging.info('Using ThreadedVectorEnv')
    envs = env_launcher(
        make_env_fn=make_env_fn,
        env_fn_args=tuple(
            tuple(zip(configs, env_classes, range(num_processes)))),
    )
    return envs
コード例 #22
0
ファイル: env.py プロジェクト: NickLucche/habitat-lab
    def __init__(self,
                 config: Config,
                 dataset: Optional[Dataset] = None) -> None:
        """Constructor. Mimics the :ref:`Env` constructor.

        Args:
            :param config: config for the environment. Should contain id for
            simulator and ``task_name`` for each task, which are passed into ``make_sim`` and
            ``make_task``.
            :param dataset: reference to dataset used for first task instance level
            information. Can be defined as :py:`None` in which case
            dataset will be built using ``make_dataset`` and ``config``.
        """
        # let superclass instantiate current task by merging first task in TASKS to TASK
        if len(config.MULTI_TASK.TASKS):
            logger.info(
                "Overwriting config.TASK ({}) with first entry in config.MULTI_TASK.TASKS ({})."
                .format(config.TASK.TYPE, config.MULTI_TASK.TASKS[0].TYPE))
            config.defrost()
            config.TASK.merge_from_other_cfg(config.MULTI_TASK.TASKS[0])
            config.freeze()
            # TASKS[0] dataset has higher priority over default one (if specified), instatiate it before
            if dataset is None and config.MULTI_TASK.TASKS[0].DATASET.TYPE:
                dataset = make_dataset(
                    id_dataset=config.MULTI_TASK.TASKS[0].DATASET.TYPE,
                    config=config.MULTI_TASK.TASKS[0].DATASET,
                )
        # initialize first task leveraging Env
        super().__init__(config, dataset=dataset)
        # instatiate other tasks
        self._tasks = [self._task]
        self._curr_task_idx = 0
        # keep each tasks episode iterator to avoid re-creation
        self._episode_iterators = [self._episode_iterator]
        for task in config.MULTI_TASK.TASKS[1:]:
            self._tasks.append(
                make_task(
                    task.TYPE,
                    config=task,
                    sim=self._sim,
                    # each task gets its dataset
                    dataset=make_dataset(  # TODO: lazy make_dataset support
                        id_dataset=task.DATASET.TYPE,
                        config=task.DATASET),
                ))
            # get task episode iterator
            iter_option_dict = {
                k.lower(): v
                for k, v in task.EPISODE_ITERATOR_OPTIONS.items()
            }
            iter_option_dict["seed"] = self._config.SEED
            task_ep_iterator: EpisodeIterator = self._tasks[
                -1]._dataset.get_episode_iterator(**iter_option_dict)
            self._episode_iterators.append(task_ep_iterator)
        # episode counter
        self._eps_counter = -1
        self._cumulative_steps_counter = 0
        # when and how to change task is defined here
        self._task_sampling_behavior = (
            config.MULTI_TASK.TASK_ITERATOR.TASK_SAMPLING)
        self._change_task_behavior = (
            config.MULTI_TASK.TASK_ITERATOR.TASK_CHANGE_TIMESTEP)
        # custom task label can be specified
        self._curr_task_label = self._task._config.get("TASK_LABEL",
                                                       self._curr_task_idx)
        # add task_idx to observation space
        self.observation_space = spaces.Dict({
            **self._sim.sensor_suite.observation_spaces.spaces,
            **self._task.sensor_suite.observation_spaces.spaces,
            "task_idx":
            spaces.Discrete(len(self._tasks)),
        })
コード例 #23
0
ファイル: flee_test.py プロジェクト: CAVED123/SPLITNET
                            [])
config.defrost()
for sensor in config.SIMULATOR.AGENT_0.SENSORS:
    config.SIMULATOR[sensor].HEIGHT = RESOLUTION
    config.SIMULATOR[sensor].WIDTH = RESOLUTION
config.TASK.COLLISION_REWARD = 0  # -0.1
config.ENVIRONMENT.MAX_EPISODE_STEPS = 250
config.TASK.TOP_DOWN_MAP.DRAW_SOURCE_AND_TARGET = False
config.TASK.NUM_EPISODES_BEFORE_JUMP = -1
config.TASK.GRID_SIZE = 1
config.TASK.NEW_GRID_CELL_REWARD = 1
config.TASK.RETURN_VISITED_GRID = False

config.freeze()

dataset = make_dataset(config.DATASET.TYPE, config=config.DATASET)
datasets = {"val": dataset}

env = ExplorationRLEnv(config=config, datasets=datasets)
goal_radius = env.episodes[0].goals[0].radius
if goal_radius is None:
    goal_radius = config.SIMULATOR.FORWARD_STEP_SIZE
sim = env.habitat_env.sim
follower = ShortestPathFollower(sim, goal_radius, False)
follower.mode = "geodesic_path"

max_dists = []
for _ in tqdm.tqdm(range(len(env.episodes))):
    env.reset()
    points = []
    dists = []
コード例 #24
0
def test_mp3d_eqa_sim_correspondence():
    eqa_config = get_config(CFG_TEST)

    if not mp3d_dataset.Matterport3dDatasetV1.check_config_paths_exist(
        eqa_config.DATASET
    ):
        pytest.skip(
            "Please download Matterport3D EQA dataset to " "data folder."
        )

    dataset = make_dataset(
        id_dataset=eqa_config.DATASET.TYPE, config=eqa_config.DATASET
    )
    env = habitat.Env(config=eqa_config, dataset=dataset)
    env.episodes = [
        episode
        for episode in dataset.episodes
        if int(episode.episode_id) in TEST_EPISODE_SET[:EPISODES_LIMIT]
    ]

    ep_i = 0
    cycles_n = 2
    while cycles_n > 0:
        env.reset()
        episode = env.current_episode
        assert (
            len(episode.goals) == 1
        ), "Episode has no goals or more than one."
        assert (
            len(episode.shortest_paths) == 1
        ), "Episode has no shortest paths or more than one."
        start_state = env.sim.get_agent_state()
        assert np.allclose(
            start_state.position, episode.start_position
        ), "Agent's start position diverges from the shortest path's one."

        rgb_mean = 0
        logger.info(
            "{id} {question}\n{answer}".format(
                id=episode.episode_id,
                question=episode.question.question_text,
                answer=episode.question.answer_text,
            )
        )

        for step_id, point in enumerate(episode.shortest_paths[0]):
            cur_state = env.sim.get_agent_state()

            logger.info(
                "diff position: {} diff rotation: {} "
                "cur_state.position: {} shortest_path.position: {} "
                "cur_state.rotation: {} shortest_path.rotation: {} action: {}"
                "".format(
                    cur_state.position - point.position,
                    cur_state.rotation - point.rotation,
                    cur_state.position,
                    point.position,
                    cur_state.rotation,
                    point.rotation,
                    point.action,
                )
            )

            assert np.allclose(
                [cur_state.position[0], cur_state.position[2]],
                [point.position[0], point.position[2]],
                atol=CLOSE_STEP_THRESHOLD * (step_id + 1),
            ), "Agent's path diverges from the shortest path."

            obs = env.step(point.action)

            if not env.episode_over:
                rgb_mean += obs["rgb"][:, :, :3].mean()

        if ep_i < len(RGB_EPISODE_MEANS):
            rgb_mean = rgb_mean / len(episode.shortest_paths[0])
            assert np.isclose(
                RGB_EPISODE_MEANS[int(episode.episode_id)], rgb_mean
            ), "RGB output doesn't match the ground truth."

        ep_i = (ep_i + 1) % EPISODES_LIMIT
        if ep_i == 0:
            cycles_n -= 1

    env.close()
コード例 #25
0
def main():
    parser = argparse.ArgumentParser()
    # parser.add_argument('--sound', default=False, action='store_true')
    parser.add_argument(
        "--run-type",
        choices=["train", "eval"],
        default='eval',
        help="run type of the experiment (train or eval)",
    )
    parser.add_argument(
        "--exp-config",
        type=str,
        # required=True,
        default='baselines/config/audiogoal_rgb_demo.yaml',
        help="path to config yaml containing info about experiment",
    )
    parser.add_argument(
        "opts",
        default=None,
        nargs=argparse.REMAINDER,
        help="Modify config options from command line",
    )
    parser.add_argument(
        "--debug",
        default=False,
        action='store_true',
        help="Modify config options from command line",
    )
    parser.add_argument(
        "--keys",
        default='',
        type=str,
        help="Modify config options from command line",
    )
    args = parser.parse_args()

    # file_handler = logging.FileHandler(log_file, mode=mode)
    stdout_handler = logging.StreamHandler(sys.stdout)
    level = logging.INFO if not args.debug else logging.DEBUG
    logging.basicConfig(level=level,
                        handlers=[stdout_handler],
                        format='%(asctime)s, %(levelname)s: %(message)s',
                        datefmt="%Y-%m-%d %H:%M:%S")

    config = get_config(config_paths=args.exp_config,
                        opts=args.opts,
                        run_type=args.run_type)
    config.defrost()
    config.TASK_CONFIG.TASK.MEASUREMENTS.append("TOP_DOWN_MAP")
    config.TASK_CONFIG.DATASET.SPLIT = config.EVAL.SPLIT
    if args.keys == '':
        config.TASK_CONFIG.SIMULATOR.RGB_SENSOR.WIDTH = config.TASK_CONFIG.SIMULATOR.RGB_SENSOR.HEIGHT = \
            config.TASK_CONFIG.SIMULATOR.DEPTH_SENSOR.WIDTH = config.TASK_CONFIG.SIMULATOR.DEPTH_SENSOR.HEIGHT = 256
        config.TASK_CONFIG.SIMULATOR.CONTINUOUS_VIEW_CHANGE = False
    else:
        config.TASK_CONFIG.TASK.TOP_DOWN_MAP.DRAW_GOAL_POSITIONS = False
    config.freeze()
    print(config)
    dataset = make_dataset(id_dataset=config.TASK_CONFIG.DATASET.TYPE,
                           config=config.TASK_CONFIG.DATASET)
    env = NavRLEnv(config=config, dataset=dataset)

    if args.keys == '':
        interactive_demo(config, env)
    else:
        keys = args.keys.split(',')
        following(config, env, keys)
コード例 #26
0
import cv2
from env_utils.vistarget_nav_task import CustomVisTargetSensor

for split in splits:
    config = get_config('IL_configs/base.yaml')
    configs = []
    habitat_api_path = os.path.join(os.path.dirname(habitat.__file__), '../')
    config.defrost()
    config.TASK_CONFIG.DATASET.SCENES_DIR = os.path.join(
        habitat_api_path, config.TASK_CONFIG.DATASET.SCENES_DIR)
    config.TASK_CONFIG.DATASET.DATA_PATH = os.path.join(
        habitat_api_path, config.TASK_CONFIG.DATASET.DATA_PATH)
    config.TASK_CONFIG.DATASET.SPLIT = split
    config.freeze()

    dataset = make_dataset('PointNav-v1')
    scenes = config.TASK_CONFIG.DATASET.CONTENT_SCENES
    if "*" in config.TASK_CONFIG.DATASET.CONTENT_SCENES:
        scenes = dataset.get_scenes_to_load(config.TASK_CONFIG.DATASET)
    # 17DRP5sb8fy 1LXtFkjw3qL 1pXnuDYAj8r 29hnd4uzFmX 2n8kARJN3HM 5LpN3gDmAk7 5q7pvUzZiYa 759xd9YjKW5 7y3sRwLe3Va 82sE5b5pLXE
    # 8WUmhLawc2A B6ByNegPMKs D7G3Y4RVNrH D7N2EKCX4Sj E9uDoFAP3SH EDJbREhghzL GdvgFV5R1Z5 HxpKQynjfin JF19kD82Mey JeFG25nYj2p
    # JmbYfDe2QKZ
    valid_scenes = []
    for scene_name in scenes:
        if split == 'train':
            scene_data_list = [x for x in train_data_list if scene_name in x]
        elif split == 'val':
            scene_data_list = [x for x in val_data_list if scene_name in x]
        changed = False
        for each_data in scene_data_list:
            valid = ((time.time() - os.stat(each_data).st_mtime) / 3600) > 24
コード例 #27
0
    def __init__(self, split, gpu_id, envs_processed, envs_to_process, opts, vectorize=False, seed=0) -> None:
        # self.vectorize = vectorize
        self.vectorize = False

        # print("gpu_id", gpu_id)
        resolution = opts.W
        if opts.no_sem_images and opts.no_txt_semantic and opts.no_binary_semantic:
            sensors = ["RGB_SENSOR", "DEPTH_SENSOR"]
        else:
            sensors = ["RGB_SENSOR", "DEPTH_SENSOR", "SEMANTIC_SENSOR"]
        if split == "train":
            data_path = opts.train_data_path
        elif split == "val":
            data_path = opts.val_data_path
        elif split == "test":
            data_path = opts.test_data_path
        else:
            raise Exception("Invalid split")
        unique_dataset_name = opts.dataset

        self.num_parallel_envs = 1

        self.images_before_reset = opts.images_before_reset
        config = make_config(
            opts.config,
            gpu_id,
            split,
            data_path,
            sensors,
            resolution,
            opts.scenes_dir,
        )
        data_dir = os.path.join(
            "./util/scripts/mp3d_data_gen_deps/scene_episodes", unique_dataset_name + "_" + split
        )
        self.dataset_name = config.DATASET.TYPE
        # print(data_dir)
        if not os.path.exists(data_dir):
            os.makedirs(data_dir)
        data_path = os.path.join(data_dir, "dataset_one_ep_per_scene.json.gz")
        # Creates a dataset where each episode is a random spawn point in each scene.
        if not (os.path.exists(data_path)):
            print("Creating dataset...", flush=True)
            dataset = make_dataset(config.DATASET.TYPE, config=config.DATASET)
            # Get one episode per scene in dataset
            scene_episodes = {}
            for episode in tqdm.tqdm(dataset.episodes):
                if episode.scene_id not in scene_episodes:
                    scene_episodes[episode.scene_id] = episode

            scene_episodes = list(scene_episodes.values())
            dataset.episodes = scene_episodes
            if not os.path.exists(data_path):
                # Multiproc do check again before write.
                json = dataset.to_json().encode("utf-8")
                with gzip.GzipFile(data_path, "w") as fout:
                    fout.write(json)
            print("Finished dataset...", flush=True)

        # Load in data and update the location to the proper location (else
        # get a weird, uninformative, error -- Affine2Dtransform())
        dataset = mp3d_dataset.PointNavDatasetV1()
        with gzip.open(data_path, "rt") as f:
            dataset.from_json(f.read())

            envs = []
            for i in range(0, len(dataset.episodes)):
                scene_id = dataset.episodes[i].scene_id.split("/")[-2]
                # Check if scene already processed
                if scene_id not in envs_processed:
                    # Check if user wants to process this scene (if no scene is specified then ignore this condition)
                    if len(envs_to_process) == 0 or scene_id in envs_to_process:
                        dataset.episodes[i].scene_id = dataset.episodes[i].scene_id.replace(
                            '/checkpoint/erikwijmans/data/mp3d/',
                                opts.scenes_dir + '/mp3d/')
                        envs.append(dataset.episodes[i])
            dataset.episodes = envs

        config.TASK.SENSORS = ["POINTGOAL_SENSOR"]

        config.freeze()

        self.rng = np.random.RandomState(seed)

        # Now look at vector environments
        if self.vectorize:
            configs, datasets = _load_datasets(
                (
                    opts.config,
                    gpu_id,
                    split,
                    data_path,
                    sensors,
                    resolution,
                    opts.scenes_dir,
                ),
                dataset,
                data_path,
                opts.scenes_dir + '/mp3d/',
                num_workers=self.num_parallel_envs,
            )
            num_envs = len(configs)

            env_fn_args = tuple(zip(configs, datasets, range(num_envs)))
            envs = habitat.VectorEnv(
                env_fn_args=env_fn_args,
                multiprocessing_start_method="forkserver",
            )

            self.env = envs
            self.num_train_envs = int(0.9 * (self.num_parallel_envs))
            self.num_val_envs = self.num_parallel_envs - self.num_train_envs
        else:
            self.env = habitat.Env(config=config, dataset=dataset) # TODO: End randomization here
            self.env_sim = self.env.sim
            self.rng.shuffle(self.env.episodes)
            self.env_sim = self.env.sim

        self.num_samples = 0

        # Set up intrinsic parameters
        self.hfov = config.SIMULATOR.DEPTH_SENSOR.HFOV * np.pi / 180.0
        self.W = resolution
        self.K = np.array(
            [
                [1.0 / np.tan(self.hfov / 2.0), 0.0, 0.0, 0.0],
                [0, 1.0 / np.tan(self.hfov / 2.0), 0.0, 0.0],
                [0.0, 0.0, 1.0, 0.0],
                [0.0, 0.0, 0.0, 1.0],
            ],
            dtype=np.float32,
        )

        self.invK = np.linalg.inv(self.K)

        self.config = config
        self.opts = opts

        if self.opts.normalize_image:
            self.transform = transforms.Compose(
                [
                    transforms.ToTensor(),
                    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
                ]
            )  # Using same normalization as BigGan
        else:
            self.transform = transforms.ToTensor()