コード例 #1
0
    def _setup_actor_critic_agent(self, config: Config, load_from_ckpt: bool,
                                  ckpt_path: str) -> None:
        r"""Sets up actor critic and agent.
        Args:
            config: MODEL config
        Returns:
            None
        """
        config.defrost()
        config.TORCH_GPU_ID = self.config.TORCH_GPU_ID
        config.freeze()

        if config.CMA.use:
            self.actor_critic = CMAPolicy(
                observation_space=self.envs.observation_spaces[0],
                action_space=self.envs.action_spaces[0],
                model_config=config,
            )
        else:
            self.actor_critic = Seq2SeqPolicy(
                observation_space=self.envs.observation_spaces[0],
                action_space=self.envs.action_spaces[0],
                model_config=config,
            )
        self.actor_critic.to(self.device)

        self.optimizer = torch.optim.Adam(self.actor_critic.parameters(),
                                          lr=self.config.DAGGER.LR)
        if load_from_ckpt:
            ckpt_dict = self.load_checkpoint(ckpt_path, map_location="cpu")
            self.actor_critic.load_state_dict(ckpt_dict["state_dict"])
            logger.info(f"Loaded weights from checkpoint: {ckpt_path}")
        logger.info("Finished setting up actor critic model.")
コード例 #2
0
ファイル: env_utils.py プロジェクト: Danmou/MerCur-Re
def construct_envs(
    config: Config, training: bool
) -> VectorEnv:
    r"""Create VectorEnv object with specified config and env class type.
    To allow better performance, dataset are split into small ones for
    each individual env, grouped by scenes.

    Args:
        config: configs that contain num_processes as well as information
        necessary to create individual environments.
        env_class: class type of the envs to be created.

    Returns:
        VectorEnv object created according to specification.
    """
    num_processes = config.NUM_PROCESSES
    dataset = make_dataset(config.TASK_CONFIG.DATASET.TYPE)
    scenes = dataset.get_scenes_to_load(config.TASK_CONFIG.DATASET)

    if len(scenes) > 0:
        random.shuffle(scenes)

        assert len(scenes) >= num_processes, (
            "reduce the number of processes as there "
            "aren't enough number of scenes"
        )

    scene_splits = [[] for _ in range(num_processes)]
    for idx, scene in enumerate(scenes):
        scene_splits[idx % len(scene_splits)].append(scene)

    assert sum(map(len, scene_splits)) == len(scenes)

    task = 'habitat_train_task' if training else 'habitat_eval_task'
    max_duration = gin.query_parameter(f'{task}.max_length')
    wrappers = [w.scoped_configurable_fn() for w in gin.query_parameter(f'{task}.wrappers')]
    kwargs = get_config(training=training, max_steps=max_duration*3)
    kwargs['max_duration'] = max_duration
    kwargs['action_repeat'] = 1
    kwargs['wrappers'] = [(wrapper, kwarg_fn(kwargs)) for wrapper, kwarg_fn in wrappers]
    env_kwargs = []
    for scenes in scene_splits:
        kw = kwargs.copy()
        config = kw['config'].clone()
        if len(scenes) > 0:
            config.defrost()
            config.DATASET.CONTENT_SCENES = scenes
            config.freeze()
        kw['config'] = config
        env_kwargs.append(kw)

    envs = habitat.VectorEnv(
        make_env_fn=make_env_fn,
        env_fn_args=tuple(
            # tuple(zip(configs, env_classes, range(num_processes)))
            tuple(zip(env_kwargs, range(num_processes)))
        ),
    )
    return envs
コード例 #3
0
def construct_envs(config: Config, env_class: Type[Union[Env,
                                                         RLEnv]]) -> VectorEnv:
    r"""Create VectorEnv object with specified config and env class type.
    To allow better performance, dataset are split into small ones for
    each individual env, grouped by scenes.

    Args:
        config: configs that contain num_processes as well as information
        necessary to create individual environments.
        env_class: class type of the envs to be created.

    Returns:
        VectorEnv object created according to specification.
    """

    num_processes = config.NUM_PROCESSES
    configs = []
    env_classes = [env_class for _ in range(num_processes)]
    dataset = make_dataset(config.TASK_CONFIG.DATASET.TYPE)
    scenes = dataset.get_scenes_to_load(config.TASK_CONFIG.DATASET)

    if len(scenes) > 0:
        random.shuffle(scenes)

        assert len(scenes) >= num_processes, (
            "reduce the number of processes as there "
            "aren't enough number of scenes")

    scene_splits = [[] for _ in range(num_processes)]
    for idx, scene in enumerate(scenes):
        scene_splits[idx % len(scene_splits)].append(scene)

    assert sum(map(len, scene_splits)) == len(scenes)

    for i in range(num_processes):

        task_config = config.TASK_CONFIG.clone()
        task_config.defrost()
        if len(scenes) > 0:
            task_config.DATASET.CONTENT_SCENES = scene_splits[i]

        task_config.SIMULATOR.HABITAT_SIM_V0.GPU_DEVICE_ID = (
            config.SIMULATOR_GPU_ID)

        task_config.SIMULATOR.AGENT_0.SENSORS = config.SENSORS
        task_config.freeze()

        config.defrost()
        config.TASK_CONFIG = task_config
        config.freeze()
        configs.append(config.clone())

    envs = habitat.VectorEnv(
        make_env_fn=make_env_fn,
        env_fn_args=tuple(
            tuple(zip(configs, env_classes, range(num_processes)))),
    )
    return envs
コード例 #4
0
ファイル: benchmark.py プロジェクト: JSeam2/sound-spaces
    def __init__(self, task_config: Optional[Config] = None) -> None:
        r"""..

        :param task_config: config to be used for creating the environment
        """
        dummy_config = Config()
        dummy_config.RL = Config()
        dummy_config.RL.SLACK_REWARD = -0.01
        dummy_config.RL.SUCCESS_REWARD = 10
        dummy_config.RL.WITH_TIME_PENALTY = True
        dummy_config.RL.DISTANCE_REWARD_SCALE = 1
        dummy_config.RL.WITH_DISTANCE_REWARD = True
        dummy_config.RL.defrost()
        dummy_config.TASK_CONFIG = task_config
        dummy_config.freeze()

        dataset = make_dataset(id_dataset=task_config.DATASET.TYPE,
                               config=task_config.DATASET)
        self._env = NavRLEnv(config=dummy_config, dataset=dataset)
コード例 #5
0
def construct_env_configs_mp3d(config: Config) -> List[Config]:
    r"""Create list of Habitat Configs for training on multiple processes
    To allow better performance, dataset are split into small ones for
    each individual env, grouped by scenes.
    Args:
        config: configs that contain num_processes as well as information
        necessary to create individual environments.
    Returns:
        List of Configs, one for each process
    """

    config.freeze()
    num_processes = config.NUM_PROCESSES
    configs = []
    # dataset = habitat.make_dataset(config.DATASET.TYPE)
    # scenes = dataset.get_scenes_to_load(config.DATASET)

    if num_processes == 1:
        scene_splits = [["pRbA3pwrgk9"]]
    else:
        small = [
            "rPc6DW4iMge",
            "e9zR4mvMWw7",
            "uNb9QFRL6hY",
            "qoiz87JEwZ2",
            "sKLMLpTHeUy",
            "s8pcmisQ38h",
            "759xd9YjKW5",
            "XcA2TqTSSAj",
            "SN83YJsR3w2",
            "8WUmhLawc2A",
            "JeFG25nYj2p",
            "17DRP5sb8fy",
            "Uxmj2M2itWa",
            "XcA2TqTSSAj",
            "SN83YJsR3w2",
            "8WUmhLawc2A",
            "JeFG25nYj2p",
            "17DRP5sb8fy",
            "Uxmj2M2itWa",
            "D7N2EKCX4Sj",
            "b8cTxDM8gDG",
            "sT4fr6TAbpF",
            "S9hNv5qa7GM",
            "82sE5b5pLXE",
            "pRbA3pwrgk9",
            "aayBHfsNo7d",
            "cV4RVeZvu5T",
            "i5noydFURQK",
            "YmJkqBEsHnH",
            "jh4fc5c5qoQ",
            "VVfe2KiqLaN",
            "29hnd4uzFmX",
            "Pm6F8kyY3z2",
            "JF19kD82Mey",
            "GdvgFV5R1Z5",
            "HxpKQynjfin",
            "vyrNrziPKCB",
        ]
        med = [
            "V2XKFyX4ASd",
            "VFuaQ6m2Qom",
            "ZMojNkEp431",
            "5LpN3gDmAk7",
            "r47D5H71a5s",
            "ULsKaCPVFJR",
            "E9uDoFAP3SH",
            "kEZ7cmS4wCh",
            "ac26ZMwG7aT",
            "dhjEzFoUFzH",
            "mJXqzFtmKg4",
            "p5wJjkQkbXX",
            "Vvot9Ly1tCj",
            "EDJbREhghzL",
            "VzqfbhrpDEA",
            "7y3sRwLe3Va",
        ]

        scene_splits = [[] for _ in range(config.NUM_PROCESSES)]
        distribute(
            small,
            scene_splits,
            num_gpus=8,
            procs_per_gpu=3,
            proc_offset=1,
            scenes_per_process=2,
        )
        distribute(
            med,
            scene_splits,
            num_gpus=8,
            procs_per_gpu=3,
            proc_offset=0,
            scenes_per_process=1,
        )

        # gpu0 = [['pRbA3pwrgk9', '82sE5b5pLXE', 'S9hNv5qa7GM'],
        #         ['Uxmj2M2itWa', '17DRP5sb8fy', 'JeFG25nYj2p'],
        #         ['5q7pvUzZiYa', '759xd9YjKW5', 's8pcmisQ38h'],
        #         ['e9zR4mvMWw7', 'rPc6DW4iMge', 'vyrNrziPKCB']]
        # gpu1 = [['sT4fr6TAbpF', 'b8cTxDM8gDG', 'D7N2EKCX4Sj'],
        #         ['8WUmhLawc2A', 'SN83YJsR3w2', 'XcA2TqTSSAj'],
        #         ['sKLMLpTHeUy', 'qoiz87JEwZ2', 'uNb9QFRL6hY'],
        #         ['V2XKFyX4ASd', 'VFuaQ6m2Qom', 'ZMojNkEp431']]
        # gpu2 = [['5LpN3gDmAk7', 'r47D5H71a5s', 'ULsKaCPVFJR', 'E9uDoFAP3SH'],
        #         ['VVfe2KiqLaN', 'jh4fc5c5qoQ', 'YmJkqBEsHnH'],  # small
        #         ['i5noydFURQK', 'cV4RVeZvu5T', 'aayBHfsNo7d']]  # small
        # gpu3 = [['kEZ7cmS4wCh', 'ac26ZMwG7aT', 'dhjEzFoUFzH'],
        #         ['mJXqzFtmKg4', 'p5wJjkQkbXX', 'Vvot9Ly1tCj']]
        # gpu4 = [['EDJbREhghzL', 'VzqfbhrpDEA', '7y3sRwLe3Va'],
        #         ['ur6pFq6Qu1A', 'PX4nDJXEHrG', 'PuKPg4mmafe']]
        # gpu5 = [['r1Q1Z4BcV1o', 'gTV8FGcVJC9', '1pXnuDYAj8r'],
        #         ['JF19kD82Mey', 'Pm6F8kyY3z2', '29hnd4uzFmX']]  # small
        # gpu6 = [['VLzqgDo317F', '1LXtFkjw3qL'],
        #         ['HxpKQynjfin', 'gZ6f7yhEvPG', 'GdvgFV5R1Z5']]  # small
        # gpu7 = [['D7G3Y4RVNrH', 'B6ByNegPMKs']]
        #
        # scene_splits = gpu0 + gpu1 + gpu2 + gpu3 + gpu4 + gpu5 + gpu6 + gpu7

    for i in range(num_processes):

        task_config = config.clone()
        task_config.defrost()
        task_config.DATASET.CONTENT_SCENES = scene_splits[i]

        task_config.SIMULATOR.HABITAT_SIM_V0.GPU_DEVICE_ID = config.SIMULATOR_GPU_IDS[
            i % len(config.SIMULATOR_GPU_IDS)
        ]

        task_config.freeze()

        configs.append(task_config.clone())

    return configs
コード例 #6
0
def construct_env_configs(
    config: Config, allow_scene_repeat: bool = False,
) -> List[Config]:
    """Create list of Habitat Configs for training on multiple processes To
    allow better performance, dataset are split into small ones for each
    individual env, grouped by scenes.

    # Parameters

    config : configs that contain num_processes as well as information
             necessary to create individual environments.
    allow_scene_repeat: if `True` and the number of distinct scenes
        in the dataset is less than the total number of processes this will
        result in scenes being repeated across processes. If `False`, then
        if the total number of processes is greater than the number of scenes,
        this will result in a RuntimeError exception being raised.

    # Returns

    List of Configs, one for each process.
    """

    config.freeze()
    num_processes = config.NUM_PROCESSES
    configs = []
    dataset = habitat.make_dataset(config.DATASET.TYPE)
    scenes = dataset.get_scenes_to_load(config.DATASET)

    if len(scenes) > 0:
        if len(scenes) < num_processes:
            if not allow_scene_repeat:
                raise RuntimeError(
                    "reduce the number of processes as there aren't enough number of scenes."
                )
            else:
                scenes = (scenes * (1 + (num_processes // len(scenes))))[:num_processes]

    scene_splits: List[List] = [[] for _ in range(num_processes)]
    for idx, scene in enumerate(scenes):
        scene_splits[idx % len(scene_splits)].append(scene)

    assert sum(map(len, scene_splits)) == len(scenes)

    for i in range(num_processes):

        task_config = config.clone()
        task_config.defrost()
        if len(scenes) > 0:
            task_config.DATASET.CONTENT_SCENES = scene_splits[i]

        if len(config.SIMULATOR_GPU_IDS) == 0:
            task_config.SIMULATOR.HABITAT_SIM_V0.GPU_DEVICE_ID = -1
        else:
            task_config.SIMULATOR.HABITAT_SIM_V0.GPU_DEVICE_ID = config.SIMULATOR_GPU_IDS[
                i % len(config.SIMULATOR_GPU_IDS)
            ]

        task_config.freeze()

        configs.append(task_config.clone())

    return configs
コード例 #7
0
ファイル: cma.py プロジェクト: GT-RIPL/robo-vln
    def __init__(self, observation_space: Space, num_actions: int,
                 model_config: Config):
        super().__init__()
        self.model_config = model_config
        model_config.defrost()
        model_config.INSTRUCTION_ENCODER.final_state_only = False
        model_config.freeze()

        # Init the instruction encoder
        self.instruction_encoder = InstructionEncoder(
            model_config.INSTRUCTION_ENCODER)

        # Init the depth encoder
        assert model_config.DEPTH_ENCODER.cnn_type in [
            "VlnResnetDepthEncoder"
        ], "DEPTH_ENCODER.cnn_type must be VlnResnetDepthEncoder"
        self.depth_encoder = VlnResnetDepthEncoder(
            observation_space,
            output_size=model_config.DEPTH_ENCODER.output_size,
            checkpoint=model_config.DEPTH_ENCODER.ddppo_checkpoint,
            backbone=model_config.DEPTH_ENCODER.backbone,
            spatial_output=True,
        )

        # Init the RGB encoder
        assert model_config.RGB_ENCODER.cnn_type in [
            "TorchVisionResNet50"
        ], "RGB_ENCODER.cnn_type must be TorchVisionResNet50'."

        device = (torch.device("cuda", model_config.TORCH_GPU_ID)
                  if torch.cuda.is_available() else torch.device("cpu"))
        self.rgb_encoder = TorchVisionResNet50(
            observation_space,
            model_config.RGB_ENCODER.output_size,
            model_config.RGB_ENCODER.resnet_output_size,
            device,
            spatial_output=True,
        )

        if model_config.CMA.use_prev_action:
            self.prev_action_embedding = nn.Embedding(num_actions + 1, 32)

        self.rcm_state_encoder = model_config.CMA.rcm_state_encoder

        hidden_size = model_config.STATE_ENCODER.hidden_size
        self._hidden_size = hidden_size

        if self.rcm_state_encoder:
            self.state_encoder = RCMStateEncoder(
                self.rgb_encoder.output_shape[0],
                self.depth_encoder.output_shape[0],
                model_config.STATE_ENCODER.hidden_size,
                self.prev_action_embedding.embedding_dim,
            )
        else:
            self.rgb_linear = nn.Sequential(
                nn.AdaptiveAvgPool1d(1),
                nn.Flatten(),
                nn.Linear(
                    self.rgb_encoder.output_shape[0],
                    model_config.RGB_ENCODER.output_size,
                ),
                nn.ReLU(True),
            )
            self.depth_linear = nn.Sequential(
                nn.Flatten(),
                nn.Linear(
                    np.prod(self.depth_encoder.output_shape),
                    model_config.DEPTH_ENCODER.output_size,
                ),
                nn.ReLU(True),
            )

            # Init the RNN state decoder
            rnn_input_size = model_config.DEPTH_ENCODER.output_size
            rnn_input_size += model_config.RGB_ENCODER.output_size
            if model_config.CMA.use_prev_action:
                rnn_input_size += self.prev_action_embedding.embedding_dim

            self.state_encoder = RNNStateEncoder(
                input_size=rnn_input_size,
                hidden_size=model_config.STATE_ENCODER.hidden_size,
                num_layers=1,
                rnn_type=model_config.STATE_ENCODER.rnn_type,
            )

        self._output_size = (model_config.STATE_ENCODER.hidden_size +
                             model_config.RGB_ENCODER.output_size +
                             model_config.DEPTH_ENCODER.output_size +
                             self.instruction_encoder.output_size)

        self.rgb_kv = nn.Conv1d(
            self.rgb_encoder.output_shape[0],
            hidden_size // 2 + model_config.RGB_ENCODER.output_size,
            1,
        )

        self.depth_kv = nn.Conv1d(
            self.depth_encoder.output_shape[0],
            hidden_size // 2 + model_config.DEPTH_ENCODER.output_size,
            1,
        )

        # self.depth_kv = nn.Conv1d(
        #     self.depth_encoder.output_shape[0],
        #     hidden_size,
        #     1,
        # )

        self.state_q = nn.Linear(hidden_size, hidden_size // 2)
        self.text_k = nn.Conv1d(self.instruction_encoder.output_size,
                                hidden_size // 2, 1)
        self.text_q = nn.Linear(self.instruction_encoder.output_size,
                                hidden_size // 2)

        self.register_buffer("_scale",
                             torch.tensor(1.0 / ((hidden_size // 2)**0.5)))

        if model_config.CMA.use_prev_action:
            self.second_state_compress = nn.Sequential(
                nn.Linear(
                    self._output_size +
                    self.prev_action_embedding.embedding_dim,
                    self._hidden_size,
                ),
                nn.ReLU(True),
            )
        else:
            self.second_state_compress = nn.Sequential(
                nn.Linear(
                    self._output_size,
                    self._hidden_size,
                ),
                nn.ReLU(True),
            )

        self.second_state_encoder = RNNStateEncoder(
            input_size=self._hidden_size,
            hidden_size=self._hidden_size,
            num_layers=1,
            rnn_type=model_config.STATE_ENCODER.rnn_type,
        )
        self._output_size = model_config.STATE_ENCODER.hidden_size

        self.progress_monitor = nn.Linear(self.output_size, 1)

        self.linear = nn.Linear(self.model_config.STATE_ENCODER.hidden_size,
                                num_actions)
        self.stop_linear = nn.Linear(
            self.model_config.STATE_ENCODER.hidden_size, 1)

        self._init_layers()

        self.train()
コード例 #8
0
ファイル: env_utils.py プロジェクト: ziadalh/sound-spaces
def construct_envs(config: Config, env_class: Type[Union[Env,
                                                         RLEnv]]) -> VectorEnv:
    r"""Create VectorEnv object with specified config and env class type.
    To allow better performance, dataset are split into small ones for
    each individual env, grouped by scenes.

    Args:
        config: configs that contain num_processes as well as information
        necessary to create individual environments.
        env_class: class type of the envs to be created
    Returns:
        VectorEnv object created according to specification.
    """

    num_processes = config.NUM_PROCESSES
    configs = []
    env_classes = [env_class for _ in range(num_processes)]
    dataset = make_dataset(config.TASK_CONFIG.DATASET.TYPE)
    scenes = dataset.get_scenes_to_load(config.TASK_CONFIG.DATASET)

    # rearrange scenes in the order of scene size since there is a severe imbalance of data size
    if "replica" in config.TASK_CONFIG.DATASET.SCENES_DIR:
        scenes_new = list()
        for scene in SCENES:
            if scene in scenes:
                scenes_new.append(scene)
        scenes = scenes_new

    if len(scenes) > 0:
        # random.shuffle(scenes)
        assert len(scenes) >= num_processes, (
            "reduce the number of processes as there "
            "aren't enough number of scenes")

    scene_splits = [[] for _ in range(num_processes)]
    for idx, scene in enumerate(scenes):
        scene_splits[idx % len(scene_splits)].append(scene)

    assert sum(map(len, scene_splits)) == len(scenes)

    for i in range(num_processes):
        task_config = config.TASK_CONFIG.clone()
        task_config.defrost()
        if len(scenes) > 0:
            task_config.DATASET.CONTENT_SCENES = scene_splits[i]
            logging.debug('All scenes: {}'.format(','.join(scene_splits[i])))

        # overwrite the task config with top-level config file
        task_config.SIMULATOR.HABITAT_SIM_V0.GPU_DEVICE_ID = (
            config.SIMULATOR_GPU_ID)
        task_config.SIMULATOR.AGENT_0.SENSORS = config.SENSORS
        task_config.freeze()

        config.defrost()
        config.TASK_CONFIG = task_config
        config.freeze()
        configs.append(config.clone())

    # use VectorEnv for the best performance and ThreadedVectorEnv for debugging
    if config.USE_SYNC_VECENV:
        env_launcher = SyncVectorEnv
        logging.info('Using SyncVectorEnv')
    elif config.USE_VECENV:
        env_launcher = habitat.VectorEnv
        logging.info('Using VectorEnv')
    else:
        env_launcher = habitat.ThreadedVectorEnv
        logging.info('Using ThreadedVectorEnv')
    envs = env_launcher(
        make_env_fn=make_env_fn,
        env_fn_args=tuple(
            tuple(zip(configs, env_classes, range(num_processes)))),
    )
    return envs
コード例 #9
0
def construct_env_configs(config: Config) -> List[Config]:
    """Create list of Habitat Configs for training on multiple processes To
    allow better performance, dataset are split into small ones for each
    individual env, grouped by scenes.

    # Parameters

    config : configs that contain num_processes as well as information
             necessary to create individual environments.

    # Returns

    List of Configs, one for each process.
    """

    config.freeze()
    num_processes = config.NUM_PROCESSES
    configs = []
    dataset = habitat.make_dataset(config.DATASET.TYPE)
    scenes = dataset.get_scenes_to_load(config.DATASET)

    # scenes = [
    #     "sT4fr6TAbpF",
    #     "HxpKQynjfin",
    #     "8WUmhLawc2A",
    #     "r47D5H71a5s",
    #     "Pm6F8kyY3z2",
    #     "17DRP5sb8fy",
    #     "Vvot9Ly1tCj",
    #     "GdvgFV5R1Z5",
    #     "sT4fr6TAbpF",
    #     "HxpKQynjfin",
    #     "8WUmhLawc2A",
    #     "r47D5H71a5s",
    #     "Pm6F8kyY3z2",
    #     "17DRP5sb8fy",
    #     "Vvot9Ly1tCj",
    #     "GdvgFV5R1Z5",
    #     "sT4fr6TAbpF",
    #     "HxpKQynjfin",
    #     "8WUmhLawc2A",
    #     "r47D5H71a5s",
    #     "Pm6F8kyY3z2",
    #     "17DRP5sb8fy",
    #     "Vvot9Ly1tCj",
    #     "GdvgFV5R1Z5",
    # ]

    # scenes = ['rPc6DW4iMge', 'e9zR4mvMWw7', 'uNb9QFRL6hY', 'sKLMLpTHeUy', 's8pcmisQ38h', '759xd9YjKW5',
    #           'XcA2TqTSSAj', 'SN83YJsR3w2', '8WUmhLawc2A', 'JeFG25nYj2p', '17DRP5sb8fy', 'Uxmj2M2itWa',
    #           'b8cTxDM8gDG', 'sT4fr6TAbpF', 'S9hNv5qa7GM', '82sE5b5pLXE', 'pRbA3pwrgk9', 'aayBHfsNo7d',
    #           'cV4RVeZvu5T', 'i5noydFURQK', 'jh4fc5c5qoQ', 'VVfe2KiqLaN', '29hnd4uzFmX', 'Pm6F8kyY3z2',
    #           'JF19kD82Mey', 'GdvgFV5R1Z5', 'HxpKQynjfin']

    # scenes = ['rPc6DW4iMge', 'e9zR4mvMWw7', 'uNb9QFRL6hY', 'qoiz87JEwZ2', 'sKLMLpTHeUy', 's8pcmisQ38h', '759xd9YjKW5',
    #           '5q7pvUzZiYa', 'XcA2TqTSSAj', 'SN83YJsR3w2', '8WUmhLawc2A', 'JeFG25nYj2p', '17DRP5sb8fy', 'Uxmj2M2itWa',
    #           'D7N2EKCX4Sj', 'b8cTxDM8gDG', 'sT4fr6TAbpF', 'S9hNv5qa7GM', '82sE5b5pLXE', 'pRbA3pwrgk9', 'aayBHfsNo7d',
    #           'cV4RVeZvu5T', 'i5noydFURQK', 'YmJkqBEsHnH', 'jh4fc5c5qoQ', 'VVfe2KiqLaN', '29hnd4uzFmX', 'Pm6F8kyY3z2',
    #           'JF19kD82Mey', 'GdvgFV5R1Z5', 'HxpKQynjfin', 'vyrNrziPKCB']

    # scenes = ['29hnd4uzFmX', 'i5noydFURQK', 'cV4RVeZvu5T', '82sE5b5pLXE', 'JeFG25nYj2p', '8WUmhLawc2A', 'VFuaQ6m2Qom',
    #           'rPc6DW4iMge', '29hnd4uzFmX', 'i5noydFURQK', 'cV4RVeZvu5T', '82sE5b5pLXE',
    #           'JeFG25nYj2p', '8WUmhLawc2A', 'VFuaQ6m2Qom', 'rPc6DW4iMge']

    if len(scenes) > 0:
        # random.shuffle(scenes)

        assert len(scenes) >= num_processes, (
            "reduce the number of processes as there "
            "aren't enough number of scenes")

    scene_splits: List[List] = [[] for _ in range(num_processes)]
    for idx, scene in enumerate(scenes):
        scene_splits[idx % len(scene_splits)].append(scene)

    assert sum(map(len, scene_splits)) == len(scenes)

    for i in range(num_processes):

        task_config = config.clone()
        task_config.defrost()
        if len(scenes) > 0:
            task_config.DATASET.CONTENT_SCENES = scene_splits[i]

        task_config.SIMULATOR.HABITAT_SIM_V0.GPU_DEVICE_ID = config.SIMULATOR_GPU_IDS[
            i % len(config.SIMULATOR_GPU_IDS)]

        task_config.freeze()

        configs.append(task_config.clone())

    return configs