コード例 #1
0
def range_table(n, n_partitions=None) -> 'hail.Table':
    """Construct a table with the row index and no other fields.

    Examples
    --------
    .. doctest::

        >>> df = hl.utils.range_table(100)

        >>> df.count()
        100

    Notes
    -----
    The resulting table contains one field:

     - `idx` (:py:data:`.tint32`) - Row index (key).

    This method is meant for testing and learning, and is not optimized for
    production performance.

    Parameters
    ----------
    n : int
        Number of rows.
    n_partitions : int, optional
        Number of partitions (uses Spark default parallelism if None).

    Returns
    -------
    :class:`.Table`
    """
    return hail.Table(Env.hail().table.Table.range(Env.hc()._jhc, n,
                                                   joption(n_partitions)))
コード例 #2
0
 def test_value_same_after_parsing(self):
     for t, v in self.values():
         row_v = ir.Literal(t, v)
         map_globals_ir = ir.TableMapGlobals(
             ir.TableRange(1, 1),
             ir.InsertFields(ir.Ref("global"), [("foo", row_v)], None))
         new_globals = hl.eval(hl.Table(map_globals_ir).index_globals())
         self.assertEqual(new_globals, hl.Struct(foo=v))
コード例 #3
0
ファイル: vcf_combiner.py プロジェクト: vedasha/hail
 def check(ht):
     keys = list(ht.key)
     if keys[0] != 'locus':
         raise TypeError(
             f'table inputs must have first key "locus", found {keys}')
     if keys != ['locus']:
         return hl.Table(TableKeyBy(ht._tir, ['locus'], is_sorted=True))
     return ht
コード例 #4
0
    def test_value_same_after_parsing(self):
        test_exprs = []
        expecteds = []
        for t, v in self.values():
            row_v = ir.Literal(t, v)
            map_globals_ir = ir.TableMapGlobals(
                ir.TableRange(1, 1),
                ir.InsertFields(ir.Ref("global"), [("foo", row_v)], None))

            test_exprs.append(hl.Table(map_globals_ir).index_globals())
            expecteds.append(hl.Struct(foo=v))

        actuals = hl._eval_many(*test_exprs)
        for expr, actual, expected in zip(test_exprs, actuals, expecteds):
            assert actual == expected, str(expr)
コード例 #5
0
ファイル: misc.py プロジェクト: populationgenomics/hail
def range_table(n, n_partitions=None) -> 'hail.Table':
    """Construct a table with the row index and no other fields.

    Examples
    --------

    >>> df = hl.utils.range_table(100)

    >>> df.count()
    100

    Notes
    -----
    The resulting table contains one field:

     - `idx` (:py:data:`.tint32`) - Row index (key).

    This method is meant for testing and learning, and is not optimized for
    production performance.

    Parameters
    ----------
    n : int
        Number of rows.
    n_partitions : int, optional
        Number of partitions (uses Spark default parallelism if None).

    Returns
    -------
    :class:`.Table`
    """
    check_nonnegative_and_in_range('range_table', 'n', n)
    if n_partitions is not None:
        check_positive_and_in_range('range_table', 'n_partitions',
                                    n_partitions)

    return hail.Table(hail.ir.TableRange(n, n_partitions))
コード例 #6
0
def sparse_split_multi(sparse_mt, *, filter_changed_loci=False):
    """Splits multiallelic variants on a sparse MatrixTable.

    Takes a dataset formatted like the output of :func:`.vcf_combiner`. The
    splitting will add `was_split` and `a_index` fields, as :func:`.split_multi`
    does. This function drops the `LA` (local alleles) field, as it re-computes
    entry fields based on the new, split globals alleles.

    Variants are split thus:

    - A row with only one (reference) or two (reference and alternate) alleles
      is unchanged, as local and global alleles are the same.

    - A row with multiple alternate alleles  will be split, with one row for
      each alternate allele, and each row will contain two alleles: ref and alt.
      The reference and alternate allele will be minrepped using
      :func:`.min_rep`.

    The split multi logic handles the following entry fields:

        .. code-block:: text

          struct {
            LGT: call
            LAD: array<int32>
            DP: int32
            GQ: int32
            LPL: array<int32>
            RGQ: int32
            LPGT: call
            LA: array<int32>
            END: int32
          }

    All fields except for `LA` are optional, and only handled if they exist.

    - `LA` is used to find the corresponding local allele index for the desired
      global `a_index`, and then dropped from the resulting dataset. If `LA`
      does not contain the global `a_index`, calls will be downcoded to hom ref
      and `PL` will be set to missing.

    - `LGT` and `LPGT` are downcoded using the corresponding local `a_index`.
      They are renamed to `GT` and `PGT` respectively, as the resulting call is
      no longer local.

    - `LAD` is used to create an `AD` field consisting of the allele depths
      corresponding to the reference and global `a_index` alleles.

    - `DP` is preserved unchanged.

    - `GQ` is recalculated from the updated `PL`, if it exists, but otherwise
      preserved unchanged.

    - `PL` array elements are calculated from the minimum `LPL` value for all
      allele pairs that downcode to the desired one. (This logic is identical to
      the `PL` logic in :func:`.split_mult_hts`.) If a row has an alternate
      allele but it is not present in `LA`, the `PL` field is set to missing.
      The `PL` for `ref/<NON_REF>` in that case can be drawn from `RGQ`.

    - `RGQ` (the reference genotype quality) is preserved unchanged.

    - `END` is untouched.

    Notes
    -----
    This version of split-multi doesn't deal with either duplicate loci (in
    which case the explode could possibly result in out-of-order rows, although
    the actual split_multi function also doesn't handle that case).

    It also checks that min-repping will not change the locus and will error if
    it does. (I believe the VCF combiner checks that this holds true,
    currently.)

    Parameters
    ----------
    sparse_mt : :class:`.MatrixTable`
        Sparse MatrixTable to split.
    filter_changed_loci : :obj:`.bool`
        Rather than erroring if any REF/ALT pair changes locus under :func:`.min_rep`
        filter that variant instead.

    Returns
    -------
    :class:`.MatrixTable`
        The split MatrixTable in sparse format.

    """

    hl.methods.misc.require_row_key_variant(sparse_mt, "sparse_split_multi")

    entries = hl.utils.java.Env.get_uid()
    cols = hl.utils.java.Env.get_uid()
    ds = sparse_mt.localize_entries(entries, cols)
    new_id = hl.utils.java.Env.get_uid()

    def struct_from_min_rep(i):
        return hl.bind(
            lambda mr:
            (hl.case().
             when(
                 ds.locus == mr.locus,
                 hl.struct(locus=ds.locus,
                           alleles=[mr.alleles[0], mr.alleles[1]],
                           a_index=i,
                           was_split=True)).when(
                               filter_changed_loci,
                               hl.null(
                                   hl.tstruct(locus=ds.locus.dtype,
                                              alleles=hl.tarray(hl.tstr),
                                              a_index=hl.tint,
                                              was_split=hl.tbool))).
             or_error("Found non-left-aligned variant in sparse_split_multi\n"
                      + "old locus: " + hl.str(ds.locus) + "\n" + "old ref  : "
                      + ds.alleles[0] + "\n" + "old alt  : " + ds.alleles[
                          i] + "\n" + "mr locus : " + hl.str(
                              mr.locus) + "\n" + "mr ref   : " + mr.alleles[
                                  0] + "\n" + "mr alt   : " + mr.alleles[1])),
            hl.min_rep(ds.locus, [ds.alleles[0], ds.alleles[i]]))

    explode_structs = hl.cond(
        hl.len(ds.alleles) < 3, [
            hl.struct(
                locus=ds.locus, alleles=ds.alleles, a_index=1, was_split=False)
        ],
        hl._sort_by(
            hl.cond(
                filter_changed_loci,
                hl.range(1,
                         hl.len(ds.alleles)).map(struct_from_min_rep).filter(
                             hl.is_defined),
                hl.range(1, hl.len(ds.alleles)).map(struct_from_min_rep)),
            lambda l, r: hl._compare(l.alleles, r.alleles) < 0))

    ds = ds.annotate(**{new_id: explode_structs}).explode(new_id)

    def transform_entries(old_entry):
        def with_local_a_index(local_a_index):
            fields = set(old_entry.keys())

            def with_pl(pl):
                new_exprs = {}
                dropped_fields = ['LA']
                if 'LGT' in fields:
                    new_exprs['GT'] = hl.downcode(
                        old_entry.LGT,
                        hl.or_else(local_a_index, hl.len(old_entry.LA)))
                    dropped_fields.append('LGT')
                if 'LPGT' in fields:
                    new_exprs['PGT'] = hl.downcode(
                        old_entry.LPGT,
                        hl.or_else(local_a_index, hl.len(old_entry.LA)))
                    dropped_fields.append('LPGT')
                if 'LAD' in fields:
                    non_ref_ad = hl.or_else(old_entry.LAD[local_a_index],
                                            0)  # zeroed if not in LAD
                    new_exprs['AD'] = hl.or_missing(
                        hl.is_defined(old_entry.LAD),
                        [hl.sum(old_entry.LAD) - non_ref_ad, non_ref_ad])
                    dropped_fields.append('LAD')
                if 'LPL' in fields:
                    new_exprs['PL'] = pl
                    if 'GQ' in fields:
                        new_exprs['GQ'] = hl.or_else(hl.gq_from_pl(pl),
                                                     old_entry.GQ)

                    dropped_fields.append('LPL')

                return (hl.case().when(
                    hl.len(ds.alleles) == 1,
                    old_entry.annotate(
                        **{
                            f[1:]: old_entry[f]
                            for f in ['LGT', 'LPGT', 'LAD', 'LPL']
                            if f in fields
                        }).drop(*dropped_fields)).when(
                            hl.or_else(old_entry.LGT.is_hom_ref(), False),
                            old_entry.annotate(
                                **{
                                    f: old_entry[f'L{f}'] if f in
                                    ['GT', 'PGT'] else e
                                    for f, e in new_exprs.items()
                                }).drop(*dropped_fields)).default(
                                    old_entry.annotate(**new_exprs).drop(
                                        *dropped_fields)))

            if 'LPL' in fields:
                new_pl = hl.or_missing(
                    hl.is_defined(old_entry.LPL),
                    hl.or_missing(
                        hl.is_defined(local_a_index),
                        hl.range(0, 3).map(lambda i: hl.min(
                            hl.range(0, hl.triangle(hl.len(old_entry.LA))).
                            filter(lambda j: hl.downcode(
                                hl.unphased_diploid_gt_index_call(j),
                                local_a_index) == hl.
                                   unphased_diploid_gt_index_call(i)).map(
                                       lambda idx: old_entry.LPL[idx])))))
                return hl.bind(with_pl, new_pl)
            else:
                return with_pl(None)

        lai = hl.fold(
            lambda accum, elt: hl.cond(old_entry.LA[elt] == ds[new_id].a_index,
                                       elt, accum), hl.null(hl.tint32),
            hl.range(0, hl.len(old_entry.LA)))
        return hl.bind(with_local_a_index, lai)

    new_row = ds.row.annotate(
        **{
            'locus': ds[new_id].locus,
            'alleles': ds[new_id].alleles,
            'a_index': ds[new_id].a_index,
            'was_split': ds[new_id].was_split,
            entries: ds[entries].map(transform_entries)
        }).drop(new_id)

    ds = hl.Table(
        hl.ir.TableKeyBy(hl.ir.TableMapRows(
            hl.ir.TableKeyBy(ds._tir, ['locus']), new_row._ir),
                         ['locus', 'alleles'],
                         is_sorted=True))
    return ds._unlocalize_entries(entries, cols,
                                  list(sparse_mt.col_key.keys()))