コード例 #1
0
ファイル: test_qc.py プロジェクト: bcajes/hail
    def test_concordance(self):
        dataset = get_dataset()
        glob_conc, cols_conc, rows_conc = hl.concordance(dataset, dataset)

        self.assertEqual(sum([sum(glob_conc[i]) for i in range(5)]), dataset.count_rows() * dataset.count_cols())

        counts = dataset.aggregate_entries(hl.Struct(n_het=agg.filter(dataset.GT.is_het(), agg.count()),
                                                     n_hom_ref=agg.filter(dataset.GT.is_hom_ref(),
                                                                          agg.count()),
                                                     n_hom_var=agg.filter(dataset.GT.is_hom_var(),
                                                                          agg.count()),
                                                     nNoCall=agg.filter(hl.is_missing(dataset.GT),
                                                                        agg.count())))

        self.assertEqual(glob_conc[0][0], 0)
        self.assertEqual(glob_conc[1][1], counts.nNoCall)
        self.assertEqual(glob_conc[2][2], counts.n_hom_ref)
        self.assertEqual(glob_conc[3][3], counts.n_het)
        self.assertEqual(glob_conc[4][4], counts.n_hom_var)
        [self.assertEqual(glob_conc[i][j], 0) for i in range(5) for j in range(5) if i != j]

        self.assertTrue(cols_conc.all(hl.sum(hl.flatten(cols_conc.concordance)) == dataset.count_rows()))
        self.assertTrue(rows_conc.all(hl.sum(hl.flatten(rows_conc.concordance)) == dataset.count_cols()))

        cols_conc.write('/tmp/foo.kt', overwrite=True)
        rows_conc.write('/tmp/foo.kt', overwrite=True)
コード例 #2
0
ファイル: family_methods.py プロジェクト: bcajes/hail
 def solve(p_de_novo):
     return (
         hl.case()
             .when(kid.GQ < min_gq, failure)
             .when((kid.DP / (parent.DP) < min_dp_ratio) |
                   (kid_ad_ratio < min_child_ab), failure)
             .when((hl.sum(parent.AD) == 0), failure)
             .when(parent.AD[1] / hl.sum(parent.AD) > max_parent_ab, failure)
             .when(p_de_novo < min_p, failure)
             .when(~is_snp, hl.case()
                   .when((p_de_novo > 0.99) & (kid_ad_ratio > 0.3) & (n_alt_alleles == 1),
                         hl.struct(p_de_novo=p_de_novo, confidence='HIGH'))
                   .when((p_de_novo > 0.5) & (kid_ad_ratio > 0.3) & (n_alt_alleles <= 5),
                         hl.struct(p_de_novo=p_de_novo, confidence='MEDIUM'))
                   .when((p_de_novo > 0.05) & (kid_ad_ratio > 0.3),
                         hl.struct(p_de_novo=p_de_novo, confidence='LOW'))
                   .or_missing())
             .default(hl.case()
                      .when(((p_de_novo > 0.99) & (kid_ad_ratio > 0.3) & (dp_ratio > 0.2)) |
                            ((p_de_novo > 0.99) & (kid_ad_ratio > 0.3) & (n_alt_alleles == 1)) |
                            ((p_de_novo > 0.5) & (kid_ad_ratio > 0.3) & (n_alt_alleles < 10) & (kid.DP > 10)),
                            hl.struct(p_de_novo=p_de_novo, confidence='HIGH'))
                      .when((p_de_novo > 0.5) & ((kid_ad_ratio > 0.3) | (n_alt_alleles == 1)),
                            hl.struct(p_de_novo=p_de_novo, confidence='MEDIUM'))
                      .when((p_de_novo > 0.05) & (kid_ad_ratio > 0.2),
                            hl.struct(p_de_novo=p_de_novo, confidence='LOW'))
                      .or_missing()
                      )
     )
コード例 #3
0
ファイル: vcf_combiner.py プロジェクト: bcajes/hail
def combine(ts):
    # pylint: disable=protected-access
    tmp = ts.annotate(
        alleles=merge_alleles(ts.data.map(lambda d: d.alleles)),
        rsid=hl.find(hl.is_defined, ts.data.map(lambda d: d.rsid)),
        filters=hl.set(hl.flatten(ts.data.map(lambda d: hl.array(d.filters)))),
        info=hl.struct(
            DP=hl.sum(ts.data.map(lambda d: d.info.DP)),
            MQ_DP=hl.sum(ts.data.map(lambda d: d.info.MQ_DP)),
            QUALapprox=hl.sum(ts.data.map(lambda d: d.info.QUALapprox)),
            RAW_MQ=hl.sum(ts.data.map(lambda d: d.info.RAW_MQ)),
            VarDP=hl.sum(ts.data.map(lambda d: d.info.VarDP)),
            SB=hl.array([
                hl.sum(ts.data.map(lambda d: d.info.SB[0])),
                hl.sum(ts.data.map(lambda d: d.info.SB[1])),
                hl.sum(ts.data.map(lambda d: d.info.SB[2])),
                hl.sum(ts.data.map(lambda d: d.info.SB[3]))
            ])))
    tmp = tmp.annotate(
        __entries=hl.bind(
            lambda combined_allele_index:
            hl.range(0, hl.len(tmp.data)).flatmap(
                lambda i:
                hl.cond(hl.is_missing(tmp.data[i].__entries),
                        hl.range(0, hl.len(tmp.g[i].__cols))
                          .map(lambda _: hl.null(tmp.data[i].__entries.dtype.element_type)),
                        hl.bind(
                            lambda old_to_new: tmp.data[i].__entries.map(lambda e: renumber_entry(e, old_to_new)),
                            hl.range(0, hl.len(tmp.data[i].alleles)).map(
                                lambda j: combined_allele_index[tmp.data[i].alleles[j]])))),
            hl.dict(hl.range(0, hl.len(tmp.alleles)).map(
                lambda j: hl.tuple([tmp.alleles[j], j])))))
    tmp = tmp.annotate_globals(__cols=hl.flatten(tmp.g.map(lambda g: g.__cols)))

    return tmp.drop('data', 'g')
コード例 #4
0
def gnomad_coverage_stats_optimized(mt_path):
    mt = hl.read_matrix_table(mt_path)
    mt = mt.annotate_rows(mean=hl.agg.mean(mt.x),
                          count_array=hl.rbind(hl.agg.counter(hl.min(100, mt.x)),
                                               lambda c: hl.range(0, 100).map(lambda i: c.get(i, 0))))
    mt = mt.annotate_rows(median=hl.rbind(hl.sum(mt.count_array) / 2, lambda s: hl.find(lambda x: x > s,
                                                                                        hl.array_scan(
                                                                                            lambda i, j: i + j,
                                                                                            0,
                                                                                            mt.count_array))),
                          **{f'above_{x}': hl.sum(mt.count_array[x:]) for x in [1, 5, 10, 15, 20, 25, 30, 50, 100]}
                          )
    mt.rows()._force_count()
コード例 #5
0
ファイル: vcf_combiner.py プロジェクト: atgenomix/hail
def combine(ts):
    # pylint: disable=protected-access
    tmp = ts.annotate(
        alleles=merge_alleles(ts.data.map(lambda d: d.alleles)),
        rsid=hl.find(hl.is_defined, ts.data.map(lambda d: d.rsid)),
        info=hl.struct(
            MQ_DP=hl.sum(ts.data.map(lambda d: d.info.MQ_DP)),
            QUALapprox=hl.sum(ts.data.map(lambda d: d.info.QUALapprox)),
            RAW_MQ=hl.sum(ts.data.map(lambda d: d.info.RAW_MQ)),
            VarDP=hl.sum(ts.data.map(lambda d: d.info.VarDP)),
            SB_TABLE=hl.array([
                hl.sum(ts.data.map(lambda d: d.info.SB_TABLE[0])),
                hl.sum(ts.data.map(lambda d: d.info.SB_TABLE[1])),
                hl.sum(ts.data.map(lambda d: d.info.SB_TABLE[2])),
                hl.sum(ts.data.map(lambda d: d.info.SB_TABLE[3]))
            ])))
    tmp = tmp.annotate(
        __entries=hl.bind(
            lambda combined_allele_index:
            hl.range(0, hl.len(tmp.data)).flatmap(
                lambda i:
                hl.cond(hl.is_missing(tmp.data[i].__entries),
                        hl.range(0, hl.len(tmp.g[i].__cols))
                          .map(lambda _: hl.null(tmp.data[i].__entries.dtype.element_type)),
                        hl.bind(
                            lambda old_to_new: tmp.data[i].__entries.map(lambda e: renumber_entry(e, old_to_new)),
                            hl.array([0]).extend(
                                hl.range(0, hl.len(tmp.data[i].alleles)).map(
                                    lambda j: combined_allele_index[tmp.data[i].alleles[j]]))))),
            hl.dict(hl.range(1, hl.len(tmp.alleles) + 1).map(
                lambda j: hl.tuple([tmp.alleles[j - 1], j])))))
    tmp = tmp.annotate_globals(__cols=hl.flatten(tmp.g.map(lambda g: g.__cols)))

    return tmp.drop('data', 'g')
コード例 #6
0
def main(args):
    ss = args.ss.split(',')
    chr_pos_ref_alt_p_beta = args.chr_pos_ref_alt_p_beta.split(';')
    ss_names = args.ss_names.split(',')
    sumstats = []

    #  read in each set of sumstats
    for sumstat in range(len(ss)):
        ss_data = import_key(ss[sumstat], chr_pos_ref_alt_p_beta[sumstat],
                             ss_names[sumstat])
        sumstats.append(ss_data)

    ss_joined = sumstats[0]
    for sumstat in range(1, len(ss)):
        ss_joined = ss_joined.join(sumstats[sumstat], 'outer')

    ss_joined = annotate_nearest_gene(ss_joined,
                                      add_only_gene_symbols_as_str=True)
    ss_joined = ss_joined.key_by()
    ss_joined = ss_joined.select(chrom=ss_joined.locus.contig,
                                 pos=ss_joined.locus.position,
                                 ref=ss_joined.alleles[0],
                                 alt=ss_joined.alleles[1],
                                 nearest_genes=ss_joined.nearest_genes,
                                 **ss_joined.row.drop('locus', 'alleles',
                                                      'nearest_genes'))

    p_colnames = [x for x in ss_joined.row if x.startswith('p_')]
    ss_filt = ss_joined.filter(
        hl.sum([hl.is_defined(ss_joined[x]) for x in p_colnames]) > 1)

    ss_filt.export(args.out)
コード例 #7
0
def maf_filter(mt, maf, filter_ac0_after_pruning=False):
    """
    Takes matrix table, filters out failing genotypes, variants, and samples, and MAF prunes the
    table, and returns the matrix table

    :param mt: matrix table to prune (should be LD pruned and have x chrom removed).
    :param filter_ac0_after_pruning: filter variants no longer in the data, e.g. sum(AC) = 0?
    :return: returns maf filtered matrix table.
    """

    # Run hl.variant_qc() to get AFs
    mt = hl.variant_qc(mt)

    # Filter MAF
    logging.info(f'Filtering out variants with minor allele frequency < {maf}')
    mt = mt.filter_rows(mt.row.variant_qc.AF[1] > maf, keep=True)
    mt = mt.annotate_globals(maf_threshold_LDpruning=maf)

    if filter_ac0_after_pruning:
        logging.info(
            'Removing variants with alt allele count = 0 (monomorphic variants).'
        )
        mt = hl.variant_qc(mt)
        mt = mt.filter_rows(hl.sum(mt.row.variant_qc.AC) == hl.int(0),
                            keep=False)
        count = mt.count()
        logging.info(
            f"MT count after removing monomorphic variants and MAF filtering: {count}"
        )
    else:
        logging.info("MAF pruned mt count:" + str(mt.count()))

    return mt
コード例 #8
0
ファイル: family_methods.py プロジェクト: tianyunwang/hail
 def solve(p_de_novo):
     return (hl.case().when(kid.GQ < min_gq, failure).when(
         (kid.DP / (dad.DP + mom.DP) < min_dp_ratio)
         | ~(kid_ad_ratio >= min_child_ab), failure).when(
             (hl.sum(mom.AD) == 0) | (hl.sum(dad.AD) == 0),
             failure).when(
                 (mom.AD[1] / hl.sum(mom.AD) > max_parent_ab) |
                 (dad.AD[1] / hl.sum(dad.AD) > max_parent_ab),
                 failure).when(p_de_novo < min_p, failure).when(
                     ~is_snp,
                     hl.case().when(
                         (p_de_novo > 0.99) & (kid_ad_ratio > 0.3) &
                         (n_alt_alleles == 1),
                         hl.struct(p_de_novo=p_de_novo,
                                   confidence='HIGH')).when(
                                       (p_de_novo > 0.5) &
                                       (kid_ad_ratio > 0.3) &
                                       (n_alt_alleles <= 5),
                                       hl.struct(
                                           p_de_novo=p_de_novo,
                                           confidence='MEDIUM')).when(
                                               (p_de_novo > 0.05) &
                                               (kid_ad_ratio > 0.2),
                                               hl.struct(
                                                   p_de_novo=p_de_novo,
                                                   confidence='LOW')).
                     or_missing()).default(hl.case().when(
                         ((p_de_novo > 0.99) & (kid_ad_ratio > 0.3) &
                          (dp_ratio > 0.2)) | ((p_de_novo > 0.99) &
                                               (kid_ad_ratio > 0.3) &
                                               (n_alt_alleles == 1)) |
                         ((p_de_novo > 0.5) & (kid_ad_ratio > 0.3) &
                          (n_alt_alleles < 10) & (kid.DP > 10)),
                         hl.struct(p_de_novo=p_de_novo,
                                   confidence='HIGH')).when(
                                       (p_de_novo > 0.5) &
                                       ((kid_ad_ratio > 0.3) |
                                        (n_alt_alleles == 1)),
                                       hl.struct(
                                           p_de_novo=p_de_novo,
                                           confidence='MEDIUM')).when(
                                               (p_de_novo > 0.05) &
                                               (kid_ad_ratio > 0.2),
                                               hl.struct(
                                                   p_de_novo=p_de_novo,
                                                   confidence='LOW')).
                                           or_missing()))
コード例 #9
0
def qual_hist_expr(
    gt_expr: Optional[hl.expr.CallExpression] = None,
    gq_expr: Optional[hl.expr.NumericExpression] = None,
    dp_expr: Optional[hl.expr.NumericExpression] = None,
    ad_expr: Optional[hl.expr.ArrayNumericExpression] = None,
    adj_expr: Optional[hl.expr.BooleanExpression] = None,
) -> hl.expr.StructExpression:
    """
    Return a struct expression with genotype quality histograms based on the arguments given (dp, gq, ad).

    .. note::

        - If `gt_expr` is provided, will return histograms for non-reference samples only as well as all samples.
        - `gt_expr` is required for the allele-balance histogram, as it is only computed on het samples.
        - If `adj_expr` is provided, additional histograms are computed using only adj samples.

    :param gt_expr: Entry expression containing genotype
    :param gq_expr: Entry expression containing genotype quality
    :param dp_expr: Entry expression containing depth
    :param ad_expr: Entry expression containing allelic depth (bi-allelic here)
    :param adj_expr: Entry expression containing adj (high quality) genotype status
    :return: Genotype quality histograms expression
    """
    qual_hists = {}
    if gq_expr is not None:
        qual_hists["gq_hist"] = hl.agg.hist(gq_expr, 0, 100, 20)
    if dp_expr is not None:
        qual_hists["dp_hist"] = hl.agg.hist(dp_expr, 0, 100, 20)

    if gt_expr is not None:
        qual_hists = {
            **{
                f"{qual_hist_name}_all": qual_hist_expr
                for qual_hist_name, qual_hist_expr in qual_hists.items()
            },
            **{
                f"{qual_hist_name}_alt": hl.agg.filter(gt_expr.is_non_ref(), qual_hist_expr)
                for qual_hist_name, qual_hist_expr in qual_hists.items()
            },
        }
        if ad_expr is not None:
            qual_hists["ab_hist_alt"] = hl.agg.filter(
                gt_expr.is_het(),
                hl.agg.hist(ad_expr[1] / hl.sum(ad_expr), 0, 1, 20))

    else:
        qual_hists = {
            f"{qual_hist_name}_all": qual_hist_expr
            for qual_hist_name, qual_hist_expr in qual_hists.items()
        }

    if adj_expr is not None:
        qual_hists.update({
            f"{qual_hist_name}_adj": hl.agg.filter(adj_expr, qual_hist_expr)
            for qual_hist_name, qual_hist_expr in qual_hists.items()
        })

    return hl.struct(**qual_hists)
コード例 #10
0
def table_aggregate_int_stats():
    ht = hl.read_table(resource('many_ints_table.ht'))
    ht.aggregate(
        tuple([
            *(hl.agg.stats(ht[f'i{i}']) for i in range(5)),
            *(hl.agg.stats(hl.sum(ht[f'array{i}'])) for i in range(2)),
            *(hl.agg.explode(lambda elt: hl.agg.stats(elt), ht[f'array{i}'])
              for i in range(2))
        ]))
コード例 #11
0
def explode_phase_info(ht: hl.Table, remove_all_ref: bool = True) -> hl.Table:
    ht = ht.transmute(phase_info=hl.array(ht.phase_info))
    ht = ht.explode('phase_info')
    ht = ht.transmute(pop=ht.phase_info[0], phase_info=ht.phase_info[1])

    if remove_all_ref:
        ht = ht.filter(hl.sum(ht.phase_info.gt_counts.raw[1:]) > 0)

    return ht
コード例 #12
0
def table_aggregate_int_stats(ht_path):
    ht = hl.read_table(ht_path)
    ht.aggregate(
        tuple([
            *(hl.agg.stats(ht[f'i{i}']) for i in range(5)),
            *(hl.agg.stats(hl.sum(ht[f'array{i}'])) for i in range(2)),
            *(hl.agg.explode(lambda elt: hl.agg.stats(elt), ht[f'array{i}'])
              for i in range(2))
        ]))
コード例 #13
0
def split_multi(ds):
    sm = hl.SplitMulti(ds)
    sm.update_rows(a_index=sm.a_index(), was_split=sm.was_split())
    sm.update_entries(
         GT=hl.downcode(ds.GT, sm.a_index()),
         AD=hl.or_missing(hl.is_defined(ds.AD),
                         [hl.sum(ds.AD) - ds.AD[sm.a_index()], ds.AD[sm.a_index()]]),
         DP=ds.DP
    )
    split_ds = sm.result()
    return split_ds
コード例 #14
0
def chet_likelihood_expr(gt_counts, e: float = 1e-6, distance: int = None):
    """
    ### Het model
    | Haplotype | Freq    |
    |-----------|:-------:|
    | aB        | p       |
    | Ab        | q       |
    | ab        | e       |
    | AB        | 1-p-q-e |


    Therefore, we have the following frequencies:

    | v0/v1 |           BB          |           Bb          |       bb      |
    |-------|:---------------------:|:---------------------:|:-------------:|
    | AA    | (1-p-q-e)<sup>2</sup> |     2*(1-p-q-e)*q     | q<sup>2</sup> |
    | Aa    |     2*(1-p-q-e)*p     | 2*(p*q + (1-p-q-e)*e) |     2*q*e     |
    | aa    |      p<sup>2<sup>     |         2*p*e         | e<sup>2</sup> |

    :param gt_counts:
    :param e:
    :param distance:
    :return:
    """
    n = 2 * hl.sum(gt_counts)
    p = (gt_counts[3] + gt_counts[4] + gt_counts[7] + 2 * gt_counts[6]) / n
    q = (gt_counts[1] + gt_counts[4] + gt_counts[5] + 2 * gt_counts[2]) / n
    x = 1 - p - q - e

    # Compute log-likelihoods
    def compute_chet_log_like(n, p, q, x):
        res = (hl.cond((p > 0) & (q > 0),
                       hl.fold(
                           lambda i, j: i + j[0] * j[1], 0,
                           hl.zip(gt_counts, [
                               hl.log10(x) * 2,
                               hl.log10(2 * x * q),
                               hl.log10(q) * 2,
                               hl.log10(2 * x * p),
                               hl.log10(2 * (p * q + x * e)),
                               hl.log10(2 * q * e),
                               hl.log10(p) * 2,
                               hl.log10(2 * p * e),
                               hl.log10(e) * 2
                           ])), -1e-31))
        # If desired, add distance posterior based on value derived from regression
        if distance is not None:
            res = res + hl.max(-6,
                               hl.log10(0.03 + 0.03 * hl.log(distance - 1)))

        return res

    return hl.bind(compute_chet_log_like, n, p, q, x)
コード例 #15
0
            def with_pl(pl):
                new_exprs = {}
                dropped_fields = ['LA']
                if 'LGT' in fields:
                    new_exprs['GT'] = hl.rbind(
                        old_entry.LGT, lambda lgt: hl.if_else(
                            lgt.is_non_ref(),
                            hl.downcode(
                                lgt,
                                hl.or_else(local_a_index, hl.len(old_entry.LA))
                            ), lgt))
                    dropped_fields.append('LGT')
                if 'LPGT' in fields:
                    new_exprs['PGT'] = hl.rbind(
                        old_entry.LPGT, lambda lpgt: hl.if_else(
                            lpgt.is_non_ref(),
                            hl.downcode(
                                lpgt,
                                hl.or_else(local_a_index, hl.len(old_entry.LA))
                            ), lpgt))
                    dropped_fields.append('LPGT')
                if 'LAD' in fields:
                    non_ref_ad = hl.or_else(old_entry.LAD[local_a_index],
                                            0)  # zeroed if not in LAD
                    new_exprs['AD'] = hl.or_missing(
                        hl.is_defined(old_entry.LAD),
                        [hl.sum(old_entry.LAD) - non_ref_ad, non_ref_ad])
                    dropped_fields.append('LAD')
                if 'LPL' in fields:
                    new_exprs['PL'] = pl
                    if 'GQ' in fields:
                        new_exprs['GQ'] = hl.or_else(hl.gq_from_pl(pl),
                                                     old_entry.GQ)

                    dropped_fields.append('LPL')

                return (hl.case().when(
                    hl.len(ds.alleles) == 1,
                    old_entry.annotate(
                        **{
                            f[1:]: old_entry[f]
                            for f in ['LGT', 'LPGT', 'LAD', 'LPL']
                            if f in fields
                        }).drop(*dropped_fields)).when(
                            hl.or_else(old_entry.LGT.is_hom_ref(), False),
                            old_entry.annotate(
                                **{
                                    f: old_entry[f'L{f}'] if f in
                                    ['GT', 'PGT'] else e
                                    for f, e in new_exprs.items()
                                }).drop(*dropped_fields)).default(
                                    old_entry.annotate(**new_exprs).drop(
                                        *dropped_fields)))
コード例 #16
0
def variant_qc_aggregator(mt) -> hl.MatrixTable:
    """:func:`.variant_qc` as an aggregator."""
    bound_exprs = {}
    gq_dp_exprs = {}

    def has_field_of_type(name, dtype):
        return name in mt.entry and mt[name].dtype == dtype

    if has_field_of_type('DP', hl.tint32):
        gq_dp_exprs['dp_stats'] = hl.agg.stats(mt.DP).select(
            'mean', 'stdev', 'min', 'max')
    if has_field_of_type('GQ', hl.tint32):
        gq_dp_exprs['gq_stats'] = hl.agg.stats(mt.GQ).select(
            'mean', 'stdev', 'min', 'max')
    if not has_field_of_type('GT', hl.tcall):
        raise ValueError(
            "'variant_qc': expect an entry field 'GT' of type 'call'")
    bound_exprs['n_called'] = hl.agg.count_where(hl.is_defined(mt['GT']))
    bound_exprs['n_not_called'] = hl.agg.count_where(hl.is_missing(mt['GT']))
    n_cols = hl.agg.count()
    bound_exprs['n_filtered'] = hl.int64(n_cols) - hl.agg.count()
    bound_exprs['call_stats'] = hl.agg.call_stats(mt.GT, mt.alleles)
    return hl.rbind(
        hl.struct(**bound_exprs), lambda e1: hl.rbind(
            hl.case().when(
                hl.len(mt.alleles) == 2,
                hl.hardy_weinberg_test(
                    e1.call_stats.homozygote_count[0], e1.call_stats.AC[
                        1] - 2 * e1.call_stats.homozygote_count[1], e1.
                    call_stats.homozygote_count[1])).or_missing(), lambda hwe:
            hl.struct(
                **{
                    **gq_dp_exprs,
                    **e1.call_stats, 'call_rate':
                    hl.float(e1.n_called) /
                    (e1.n_called + e1.n_not_called + e1.n_filtered),
                    'n_called':
                    e1.n_called,
                    'n_not_called':
                    e1.n_not_called,
                    'n_filtered':
                    e1.n_filtered,
                    'n_het':
                    e1.n_called - hl.sum(e1.call_stats.homozygote_count),
                    'n_non_ref':
                    e1.n_called - e1.call_stats.homozygote_count[0],
                    'het_freq_hwe':
                    hwe.het_freq_hwe,
                    'p_value_hwe':
                    hwe.p_value
                })))
コード例 #17
0
ファイル: test_qc.py プロジェクト: maccum/hail
    def test_concordance(self):
        dataset = get_dataset()
        glob_conc, cols_conc, rows_conc = hl.concordance(dataset, dataset)

        self.assertEqual(sum([sum(glob_conc[i]) for i in range(5)]),
                         dataset.count_rows() * dataset.count_cols())

        counts = dataset.aggregate_entries(
            hl.Struct(n_het=agg.count(
                agg.filter(dataset.GT.is_het(), dataset.GT)),
                      n_hom_ref=agg.count(
                          agg.filter(dataset.GT.is_hom_ref(), dataset.GT)),
                      n_hom_var=agg.count(
                          agg.filter(dataset.GT.is_hom_var(), dataset.GT)),
                      nNoCall=agg.count(
                          agg.filter(hl.is_missing(dataset.GT), dataset.GT))))

        self.assertEqual(glob_conc[0][0], 0)
        self.assertEqual(glob_conc[1][1], counts.nNoCall)
        self.assertEqual(glob_conc[2][2], counts.n_hom_ref)
        self.assertEqual(glob_conc[3][3], counts.n_het)
        self.assertEqual(glob_conc[4][4], counts.n_hom_var)
        [
            self.assertEqual(glob_conc[i][j], 0) for i in range(5)
            for j in range(5) if i != j
        ]

        self.assertTrue(
            cols_conc.all(
                hl.sum(hl.flatten(cols_conc.concordance)) ==
                dataset.count_rows()))
        self.assertTrue(
            rows_conc.all(
                hl.sum(hl.flatten(rows_conc.concordance)) ==
                dataset.count_cols()))

        cols_conc.write('/tmp/foo.kt', overwrite=True)
        rows_conc.write('/tmp/foo.kt', overwrite=True)
コード例 #18
0
def get_platform_specific_intervals(platform_pc_loadings_ht: hl.Table,
                                    threshold: float) -> List[hl.Interval]:
    """
    This takes the platform PC loadings and returns a list of intervals where the sum of the loadings above the given threshold.
    The experimental / untested idea behind this, is that those intervals may be problematic on some platforms.

    :param Table platform_pc_loadings_ht: Platform PCA loadings indexed by interval
    :param float threshold: Minimal threshold
    :param str intervals_path: Path to the intervals file to use (default: b37 exome calling intervals)
    :return: List of intervals with PC loadings above the given threshold
    :rtype: list of Interval
    """
    platform_specific_intervals = platform_pc_loadings_ht.filter(
        hl.sum(hl.abs(platform_pc_loadings_ht.loadings)) >= threshold)
    return platform_specific_intervals.interval.collect()
コード例 #19
0
def load_gene_data(directory: str,
                   pheno_key_dict,
                   gene_ht_map_path: str,
                   n_cases: int = -1,
                   n_controls: int = -1,
                   heritability: float = -1.0,
                   saige_version: str = 'NA',
                   inv_normalized: str = 'NA',
                   overwrite: bool = False):
    output_ht_path = f'{directory}/gene_results.ht'
    print(f'Loading: {directory}/*.gene.txt ...')
    types = {f'Nmarker_MACCate_{i}': hl.tint32 for i in range(1, 9)}
    types.update({
        x: hl.tfloat64
        for x in ('Pvalue', 'Pvalue_Burden', 'Pvalue_SKAT', 'Pvalue_skato_NA',
                  'Pvalue_burden_NA', 'Pvalue_skat_NA')
    })
    ht = hl.import_table(f'{directory}/*.gene.txt',
                         delimiter=' ',
                         impute=True,
                         types=types)
    if n_cases == -1: n_cases = hl.null(hl.tint)
    if n_controls == -1: n_controls = hl.null(hl.tint)
    if heritability == -1.0: heritability = hl.null(hl.tfloat)
    if saige_version == 'NA': saige_version = hl.null(hl.tstr)
    if inv_normalized == 'NA': inv_normalized = hl.null(hl.tstr)

    fields = ht.Gene.split('_')
    gene_ht = hl.read_table(gene_ht_map_path).select('interval').distinct()
    ht = ht.key_by(
        gene_id=fields[0],
        gene_symbol=fields[1],
        annotation=fields[2],
        **pheno_key_dict).drop('Gene').naive_coalesce(10).annotate_globals(
            n_cases=n_cases,
            n_controls=n_controls,
            heritability=heritability,
            saige_version=saige_version,
            inv_normalized=inv_normalized)
    ht = ht.annotate(total_variants=hl.sum(
        [v for k, v in list(ht.row_value.items()) if 'Nmarker' in k]),
                     interval=gene_ht.key_by('gene_id')[ht.gene_id].interval)
    ht = ht.checkpoint(output_ht_path,
                       overwrite=overwrite,
                       _read_if_exists=not overwrite).drop(
                           'n_cases', 'n_controls')
コード例 #20
0
def filter_genotypes_ab(mt: hl.MatrixTable) -> hl.MatrixTable:
    """
    Filter high-quality genotypes based on allelic-balance expression.
    Expected AD and GT in entries fields.
    Rules:
      hom_ref: ab <= 0.1
      hets: 0.2 >= ab <= 0.8
      hom_var: ab >= 0.9

    :param mt: Input MT
    :return: Genotype-filtered MT
    """
    ab = mt.AD[1] / hl.sum(mt.AD)
    filter_condition_ab = ((mt.GT.is_hom_ref() & (ab <= 0.1)) |
                           (mt.GT.is_het() & (ab >= 0.2) &
                            (ab <= 0.8)) | (mt.GT.is_hom_var() & (ab >= 0.9)))
    return mt.filter_entries(filter_condition_ab, keep=True)
コード例 #21
0
def all_and_leave_one_out(x,
                          pop_array,
                          all_f=hl.sum,
                          loo_f=lambda i, x: hl.sum(x) - hl.or_else(x[i], 0)):
    """
    Applies a function to an input array for all populations, and for each of leave-one-out populations.

    :param x: Input array
    :param pop_array: Population array
    :param all_f: Function for all populations. It takes the input array and returns a new value
    :param loo_f: Function for each of leave-one-out populations. It takes an index of leave-one-out
                  population and the input array, and returns an array of new values.
    ...
    :return: Array of new values for all populations and for each of leave-one-out populations.
    :rtype: ArrayExpression
    """
    arr = hl.array([all_f(x)])
    arr = arr.extend(hl.map(lambda i: loo_f(i, x),
                            hl.range(hl.len(pop_array))))
    return hl.or_missing(hl.any(hl.is_defined, x), arr)
コード例 #22
0
 def _genotype_fields(self):
     # Convert the mt genotype entries into num_alt, gq, ab, dp, and sample_id.
     is_called = hl.is_defined(self.mt.GT)
     return {
         'num_alt':
         hl.cond(is_called, self.mt.GT.n_alt_alleles(), -1),
         'gq':
         hl.cond(is_called, self.mt.GQ, hl.null(hl.tint)),
         'ab':
         hl.bind(
             lambda total: hl.cond(
                 (is_called) & (total != 0) & (hl.len(self.mt.AD) > 1),
                 hl.float(self.mt.AD[1] / total), hl.null(hl.tfloat)),
             hl.sum(self.mt.AD)),
         'dp':
         hl.cond(is_called, hl.int(hl.min(self.mt.DP, 32000)),
                 hl.null(hl.tfloat)),
         'sample_id':
         self.mt.s
     }
コード例 #23
0
ファイル: run_gwas.py プロジェクト: saponas/hail
def run_gwas(vcf_file, phenotypes_file, output_file):
    table = hl.import_table(phenotypes_file, impute=True).key_by('Sample')

    hl.import_vcf(vcf_file).write('tmp.mt')
    mt = hl.read_matrix_table('tmp.mt')

    mt = mt.annotate_cols(pheno=table[mt.s])
    mt = hl.sample_qc(mt)
    mt = mt.filter_cols((mt.sample_qc.dp_stats.mean >= 4)
                        & (mt.sample_qc.call_rate >= 0.97))
    ab = mt.AD[1] / hl.sum(mt.AD)
    filter_condition_ab = ((mt.GT.is_hom_ref() & (ab <= 0.1))
                           | (mt.GT.is_het() & (ab >= 0.25) & (ab <= 0.75))
                           | (mt.GT.is_hom_var() & (ab >= 0.9)))
    mt = mt.filter_entries(filter_condition_ab)
    mt = hl.variant_qc(mt)
    mt = mt.filter_rows(mt.variant_qc.AF[1] > 0.01)

    eigenvalues, pcs, _ = hl.hwe_normalized_pca(mt.GT)

    mt = mt.annotate_cols(scores=pcs[mt.s].scores)

    gwas = hl.linear_regression_rows(y=mt.pheno.CaffeineConsumption,
                                     x=mt.GT.n_alt_alleles(),
                                     covariates=[
                                         1.0, mt.pheno.isFemale, mt.scores[0],
                                         mt.scores[1], mt.scores[2]
                                     ])

    gwas = gwas.select(SNP=hl.variant_str(gwas.locus, gwas.alleles),
                       P=gwas.p_value)
    gwas = gwas.key_by(gwas.SNP)
    gwas = gwas.select(gwas.P)
    gwas.export(f'{output_file}.assoc', header=True)

    hl.export_plink(mt, output_file, fam_id=mt.s, ind_id=mt.s)
コード例 #24
0
def variant_qc(mt, name='variant_qc') -> MatrixTable:
    """Compute common variant statistics (quality control metrics).

    .. include:: ../_templates/req_tvariant.rst

    Examples
    --------

    >>> dataset_result = hl.variant_qc(dataset)

    Notes
    -----
    This method computes variant statistics from the genotype data, returning
    a new struct field `name` with the following metrics based on the fields
    present in the entry schema.

    If `mt` contains an entry field `DP` of type :py:data:`.tint32`, then the
    field `dp_stats` is computed. If `mt` contains an entry field `GQ` of type
    :py:data:`.tint32`, then the field `gq_stats` is computed. Both `dp_stats`
    and `gq_stats` are structs with with four fields:

    - `mean` (``float64``) -- Mean value.
    - `stdev` (``float64``) -- Standard deviation (zero degrees of freedom).
    - `min` (``int32``) -- Minimum value.
    - `max` (``int32``) -- Maximum value.

    If the dataset does not contain an entry field `GT` of type
    :py:data:`.tcall`, then an error is raised. The following fields are always
    computed from `GT`:

    - `AF` (``array<float64>``) -- Calculated allele frequency, one element
      per allele, including the reference. Sums to one. Equivalent to
      `AC` / `AN`.
    - `AC` (``array<int32>``) -- Calculated allele count, one element per
      allele, including the reference. Sums to `AN`.
    - `AN` (``int32``) -- Total number of called alleles.
    - `homozygote_count` (``array<int32>``) -- Number of homozygotes per
      allele. One element per allele, including the reference.
    - `n_called` (``int64``) -- Number of samples with a defined `GT`.
    - `n_not_called` (``int64``) -- Number of samples with a missing `GT`.
    - `call_rate` (``float32``) -- Fraction of samples with a defined `GT`.
      Equivalent to `n_called` / :meth:`.count_cols`.
    - `n_het` (``int64``) -- Number of heterozygous samples.
    - `n_non_ref` (``int64``) -- Number of samples with at least one called
      non-reference allele.
    - `het_freq_hwe` (``float64``) -- Expected frequency of heterozygous
      samples under Hardy-Weinberg equilibrium. See
      :func:`.functions.hardy_weinberg_test` for details.
    - `p_value_hwe` (``float64``) -- p-value from test of Hardy-Weinberg equilibrium.
      See :func:`.functions.hardy_weinberg_test` for details.

    Warning
    -------
    `het_freq_hwe` and `p_value_hwe` are calculated as in
    :func:`.functions.hardy_weinberg_test`, with non-diploid calls
    (``ploidy != 2``) ignored in the counts. As this test is only
    statistically rigorous in the biallelic setting, :func:`.variant_qc`
    sets both fields to missing for multiallelic variants. Consider using
    :func:`~hail.methods.split_multi` to split multi-allelic variants beforehand.

    Parameters
    ----------
    mt : :class:`.MatrixTable`
        Dataset.
    name : :obj:`str`
        Name for resulting field.

    Returns
    -------
    :class:`.MatrixTable`
    """
    require_row_key_variant(mt, 'variant_qc')

    exprs = {}
    struct_exprs = []

    def has_field_of_type(name, dtype):
        return name in mt.entry and mt[name].dtype == dtype

    n_samples = mt.count_cols()

    if has_field_of_type('DP', hl.tint32):
        exprs['dp_stats'] = hl.agg.stats(mt.DP).select('mean', 'stdev', 'min', 'max')

    if has_field_of_type('GQ', hl.tint32):
        exprs['gq_stats'] = hl.agg.stats(mt.GQ).select('mean', 'stdev', 'min', 'max')

    if not has_field_of_type('GT',  hl.tcall):
        raise ValueError(f"'variant_qc': expect an entry field 'GT' of type 'call'")
    exprs['n_called'] = hl.agg.count_where(hl.is_defined(mt['GT']))
    struct_exprs.append(hl.agg.call_stats(mt.GT, mt.alleles))


    # the structure of this function makes it easy to add new nested computations
    def flatten_struct(*struct_exprs):
        flat = {}
        for struct in struct_exprs:
            for k, v in struct.items():
                flat[k] = v
        return hl.struct(
            **flat,
            **exprs,
        )

    mt = mt.annotate_rows(**{name: hl.bind(flatten_struct, *struct_exprs)})

    hwe = hl.hardy_weinberg_test(mt[name].homozygote_count[0],
                                 mt[name].AC[1] - 2 * mt[name].homozygote_count[1],
                                 mt[name].homozygote_count[1])
    hwe = hwe.select(het_freq_hwe=hwe.het_freq_hwe, p_value_hwe=hwe.p_value)
    mt = mt.annotate_rows(**{name: mt[name].annotate(n_not_called=n_samples - mt[name].n_called,
                                                     call_rate=mt[name].n_called / n_samples,
                                                     n_het=mt[name].n_called - hl.sum(mt[name].homozygote_count),
                                                     n_non_ref=mt[name].n_called - mt[name].homozygote_count[0],
                                                     **hl.cond(hl.len(mt.alleles) == 2,
                                                               hwe,
                                                               hl.null(hwe.dtype)))})
    return mt
コード例 #25
0
def fs_from_sb(
    sb: Union[hl.expr.ArrayNumericExpression, hl.expr.ArrayExpression],
    normalize: bool = True,
    min_cell_count: int = 200,
    min_count: int = 4,
    min_p_value: float = 1e-320,
) -> hl.expr.Int64Expression:
    """
    Computes `FS` (Fisher strand balance) annotation from  the `SB` (strand balance table) field.
    `FS` is the phred-scaled value of the double-sided Fisher exact test on strand balance.

    Using default values will have the same behavior as the GATK implementation, that is:
    - If sum(counts) > 2*`min_cell_count` (default to GATK value of 200), they are normalized
    - If sum(counts) < `min_count` (default to GATK value of 4), returns missing
    - Any p-value < `min_p_value` (default to GATK value of 1e-320) is truncated to that value

    In addition to the default GATK behavior, setting `normalize` to `False` will perform a chi-squared test
    for large counts (> `min_cell_count`) instead of normalizing the cell values.

    .. note::

        This function can either take
        - an array of length four containing the forward and reverse strands' counts of ref and alt alleles: [ref fwd, ref rev, alt fwd, alt rev]
        - a two dimensional array with arrays of length two, containing the counts: [[ref fwd, ref rev], [alt fwd, alt rev]]

    GATK code here: https://github.com/broadinstitute/gatk/blob/master/src/main/java/org/broadinstitute/hellbender/tools/walkers/annotator/FisherStrand.java

    :param sb: Count of ref/alt reads on each strand
    :param normalize: Whether to normalize counts is sum(counts) > min_cell_count (normalize=True), or use a chi sq instead of FET (normalize=False)
    :param min_cell_count: Maximum count for performing a FET
    :param min_count: Minimum total count to output FS (otherwise null it output)
    :return: FS value
    """
    if not isinstance(sb, hl.expr.ArrayNumericExpression):
        sb = hl.bind(lambda x: hl.flatten(x), sb)

    sb_sum = hl.bind(lambda x: hl.sum(x), sb)

    # Normalize table if counts get too large
    if normalize:
        fs_expr = hl.bind(
            lambda sb, sb_sum: hl.cond(
                sb_sum <= 2 * min_cell_count,
                sb,
                sb.map(lambda x: hl.int(x / (sb_sum / min_cell_count))),
            ),
            sb,
            sb_sum,
        )

        # FET
        fs_expr = to_phred(
            hl.max(
                hl.fisher_exact_test(
                    fs_expr[0], fs_expr[1], fs_expr[2], fs_expr[3]
                ).p_value,
                min_p_value,
            )
        )
    else:
        fs_expr = to_phred(
            hl.max(
                hl.contingency_table_test(
                    sb[0], sb[1], sb[2], sb[3], min_cell_count=min_cell_count
                ).p_value,
                min_p_value,
            )
        )

    # Return null if counts <= `min_count`
    return hl.or_missing(
        sb_sum > min_count, hl.max(0, fs_expr)  # Needed to avoid -0.0 values
    )
コード例 #26
0
def sample_qc(mt, name='sample_qc') -> MatrixTable:
    """Compute per-sample metrics useful for quality control.

    .. include:: ../_templates/req_tvariant.rst

    Examples
    --------

    Compute sample QC metrics and remove low-quality samples:

    >>> dataset = hl.sample_qc(dataset, name='sample_qc')
    >>> filtered_dataset = dataset.filter_cols((dataset.sample_qc.dp_stats.mean > 20) & (dataset.sample_qc.r_ti_tv > 1.5))

    Notes
    -----

    This method computes summary statistics per sample from a genetic matrix and stores
    the results as a new column-indexed struct field in the matrix, named based on the
    `name` parameter.

    If `mt` contains an entry field `DP` of type :py:data:`.tint32`, then the
    field `dp_stats` is computed. If `mt` contains an entry field `GQ` of type
    :py:data:`.tint32`, then the field `gq_stats` is computed. Both `dp_stats`
    and `gq_stats` are structs with with four fields:

    - `mean` (``float64``) -- Mean value.
    - `stdev` (``float64``) -- Standard deviation (zero degrees of freedom).
    - `min` (``int32``) -- Minimum value.
    - `max` (``int32``) -- Maximum value.

    If the dataset does not contain an entry field `GT` of type
    :py:data:`.tcall`, then an error is raised. The following fields are always
    computed from `GT`:

    - `call_rate` (``float64``) -- Fraction of calls non-missing.
    - `n_called` (``int64``) -- Number of non-missing calls.
    - `n_not_called` (``int64``) -- Number of missing calls.
    - `n_hom_ref` (``int64``) -- Number of homozygous reference calls.
    - `n_het` (``int64``) -- Number of heterozygous calls.
    - `n_hom_var` (``int64``) -- Number of homozygous alternate calls.
    - `n_non_ref` (``int64``) -- Sum of ``n_het`` and ``n_hom_var``.
    - `n_snp` (``int64``) -- Number of SNP alternate alleles.
    - `n_insertion` (``int64``) -- Number of insertion alternate alleles.
    - `n_deletion` (``int64``) -- Number of deletion alternate alleles.
    - `n_singleton` (``int64``) -- Number of private alleles.
    - `n_transition` (``int64``) -- Number of transition (A-G, C-T) alternate alleles.
    - `n_transversion` (``int64``) -- Number of transversion alternate alleles.
    - `n_star` (``int64``) -- Number of star (upstream deletion) alleles.
    - `r_ti_tv` (``float64``) -- Transition/Transversion ratio.
    - `r_het_hom_var` (``float64``) -- Het/HomVar call ratio.
    - `r_insertion_deletion` (``float64``) -- Insertion/Deletion allele ratio.

    Missing values ``NA`` may result from division by zero.

    Parameters
    ----------
    mt : :class:`.MatrixTable`
        Dataset.
    name : :obj:`str`
        Name for resulting field.

    Returns
    -------
    :class:`.MatrixTable`
        Dataset with a new column-indexed field `name`.
    """

    require_row_key_variant(mt, 'sample_qc')

    from hail.expr.functions import _num_allele_type , _allele_types

    allele_types = _allele_types[:]
    allele_types.extend(['Transition', 'Transversion'])
    allele_enum = {i: v for i, v in enumerate(allele_types)}
    allele_ints = {v: k for k, v in allele_enum.items()}

    def allele_type(ref, alt):
        return hl.bind(lambda at: hl.cond(at == allele_ints['SNP'],
                                          hl.cond(hl.is_transition(ref, alt),
                                                  allele_ints['Transition'],
                                                  allele_ints['Transversion']),
                                          at),
                       _num_allele_type(ref, alt))

    variant_ac = Env.get_uid()
    variant_atypes = Env.get_uid()
    mt = mt.annotate_rows(**{variant_ac: hl.agg.call_stats(mt.GT, mt.alleles).AC,
                             variant_atypes: mt.alleles[1:].map(lambda alt: allele_type(mt.alleles[0], alt))})

    exprs = {}

    def has_field_of_type(name, dtype):
        return name in mt.entry and mt[name].dtype == dtype

    if has_field_of_type('DP', hl.tint32):
        exprs['dp_stats'] = hl.agg.stats(mt.DP).select('mean', 'stdev', 'min', 'max')

    if has_field_of_type('GQ', hl.tint32):
        exprs['gq_stats'] = hl.agg.stats(mt.GQ).select('mean', 'stdev', 'min', 'max')

    if not has_field_of_type('GT',  hl.tcall):
        raise ValueError(f"'sample_qc': expect an entry field 'GT' of type 'call'")

    exprs['n_called'] = hl.agg.count_where(hl.is_defined(mt['GT']))
    exprs['n_not_called'] = hl.agg.count_where(hl.is_missing(mt['GT']))
    exprs['n_hom_ref'] = hl.agg.count_where(mt['GT'].is_hom_ref())
    exprs['n_het'] = hl.agg.count_where(mt['GT'].is_het())
    exprs['n_singleton'] = hl.agg.sum(hl.sum(hl.range(0, mt['GT'].ploidy).map(lambda i: mt[variant_ac][mt['GT'][i]] == 1)))

    def get_allele_type(allele_idx):
        return hl.cond(allele_idx > 0, mt[variant_atypes][allele_idx - 1], hl.null(hl.tint32))

    exprs['allele_type_counts'] = hl.agg.explode(
        lambda elt: hl.agg.counter(elt),
        hl.range(0, mt['GT'].ploidy).map(lambda i: get_allele_type(mt['GT'][i])))

    mt = mt.annotate_cols(**{name: hl.struct(**exprs)})

    zero = hl.int64(0)

    select_exprs = {}
    if 'dp_stats' in exprs:
        select_exprs['dp_stats'] = mt[name].dp_stats
    if 'gq_stats' in exprs:
        select_exprs['gq_stats'] = mt[name].gq_stats

    select_exprs = {
        **select_exprs,
        'call_rate': hl.float64(mt[name].n_called) / (mt[name].n_called + mt[name].n_not_called),
        'n_called': mt[name].n_called,
        'n_not_called': mt[name].n_not_called,
        'n_hom_ref': mt[name].n_hom_ref,
        'n_het': mt[name].n_het,
        'n_hom_var': mt[name].n_called - mt[name].n_hom_ref - mt[name].n_het,
        'n_non_ref': mt[name].n_called - mt[name].n_hom_ref,
        'n_singleton': mt[name].n_singleton,
        'n_snp': mt[name].allele_type_counts.get(allele_ints["Transition"], zero) + \
                 mt[name].allele_type_counts.get(allele_ints["Transversion"], zero),
        'n_insertion': mt[name].allele_type_counts.get(allele_ints["Insertion"], zero),
        'n_deletion': mt[name].allele_type_counts.get(allele_ints["Deletion"], zero),
        'n_transition': mt[name].allele_type_counts.get(allele_ints["Transition"], zero),
        'n_transversion': mt[name].allele_type_counts.get(allele_ints["Transversion"], zero),
        'n_star': mt[name].allele_type_counts.get(allele_ints["Star"], zero)
    }

    mt = mt.annotate_cols(**{name: mt[name].select(**select_exprs)})

    mt = mt.annotate_cols(**{name: mt[name].annotate(
        r_ti_tv=divide_null(hl.float64(mt[name].n_transition), mt[name].n_transversion),
        r_het_hom_var=divide_null(hl.float64(mt[name].n_het), mt[name].n_hom_var),
        r_insertion_deletion=divide_null(hl.float64(mt[name].n_insertion), mt[name].n_deletion)
    )})        

    mt = mt.drop(variant_ac, variant_atypes)

    return mt
コード例 #27
0
ファイル: qc.py プロジェクト: troels/hail
 def n_discordant(counter):
     return hl.sum(
         hl.array(counter).filter(lambda tup: ~hl.literal(
             {i**2
              for i in range(5)}).contains(tup[0])).map(lambda tup: tup[1]))
コード例 #28
0
def create_binned_concordance(data_type: str, truth_sample: str, metric: str,
                              nbins: int, overwrite: bool) -> None:
    """
    Creates and writes a concordance table binned by rank (both absolute and relative) for a given data type, truth sample and metric.

    :param str data_type: One 'exomes' or 'genomes'
    :param str truth_sample: Which truth sample concordance to load
    :param str metric: One of the evaluation metrics (or a RF hash)
    :param int nbins: Number of bins for the rank
    :param bool overwrite: Whether to overwrite existing table
    :return: Nothing -- just writes the table
    :rtype: None
    """

    if hl.hadoop_exists(
            binned_concordance_path(data_type, truth_sample, metric) +
            '/_SUCCESS') and not overwrite:
        logger.warn(
            f"Skipping binned concordance creation as {binned_concordance_path(data_type, truth_sample, metric)} exists and overwrite=False"
        )
    else:
        ht = hl.read_table(
            annotations_ht_path(data_type, f'{truth_sample}_concordance'))
        # Remove 1bp indels for syndip as cannot be trusted
        if truth_sample == 'syndip':
            ht = ht.filter(
                hl.is_indel(ht.alleles[0], ht.alleles[1]) &
                (hl.abs(hl.len(ht.alleles[0]) - hl.len(ht.alleles[1])) == 1),
                keep=False)
            high_conf_intervals = hl.import_locus_intervals(
                syndip_high_conf_regions_bed_path)
        else:
            high_conf_intervals = hl.import_locus_intervals(
                NA12878_high_conf_regions_bed_path)

        lcr = hl.import_locus_intervals(lcr_intervals_path)
        segdup = hl.import_locus_intervals(segdup_intervals_path)
        ht = ht.filter(
            hl.is_defined(high_conf_intervals[ht.locus])
            & hl.is_missing(lcr[ht.locus]) & hl.is_missing(segdup[ht.locus]))

        if metric in ['vqsr', 'rf_2.0.2', 'rf_2.0.2_beta', 'cnn']:
            metric_ht = hl.read_table(score_ranking_path(data_type, metric))
        else:
            metric_ht = hl.read_table(
                rf_path(data_type, 'rf_result', run_hash=metric))

        metric_snvs, metrics_indels = metric_ht.aggregate([
            hl.agg.count_where(
                hl.is_snp(metric_ht.alleles[0], metric_ht.alleles[1])),
            hl.agg.count_where(
                ~hl.is_snp(metric_ht.alleles[0], metric_ht.alleles[1]))
        ])

        snvs, indels = ht.aggregate([
            hl.agg.count_where(hl.is_snp(ht.alleles[0], ht.alleles[1])),
            hl.agg.count_where(~hl.is_snp(ht.alleles[0], ht.alleles[1]))
        ])

        ht = ht.annotate_globals(global_counts=hl.struct(
            snvs=metric_snvs, indels=metrics_indels),
                                 counts=hl.struct(snvs=snvs, indels=indels))

        ht = ht.annotate(
            snv=hl.is_snp(ht.alleles[0], ht.alleles[1]),
            score=metric_ht[ht.key].score,
            global_rank=metric_ht[ht.key].rank,
            # TP => allele is found in both data sets
            n_tp=ht.concordance[3][3] + ht.concordance[3][4] +
            ht.concordance[4][3] + ht.concordance[4][4],
            # FP => allele is found only in test data set
            n_fp=hl.sum(ht.concordance[3][:2]) + hl.sum(ht.concordance[4][:2]),
            # FN => allele is found only in truth data set
            n_fn=hl.sum(ht.concordance[:2].map(lambda x: x[3] + x[4])))

        ht = add_rank(ht, -1.0 * ht.score)

        ht = ht.annotate(rank=[
            hl.tuple([
                'global_rank', (ht.global_rank + 1) /
                hl.cond(ht.snv, ht.globals.global_counts.snvs,
                        ht.globals.global_counts.indels)
            ]),
            hl.tuple([
                'truth_sample_rank', (ht.rank + 1) / hl.cond(
                    ht.snv, ht.globals.counts.snvs, ht.globals.counts.indels)
            ])
        ])

        ht = ht.explode(ht.rank)
        ht = ht.annotate(rank_name=ht.rank[0], bin=hl.int(ht.rank[1] * nbins))

        ht = ht.group_by('rank_name', 'snv', 'bin').aggregate(
            # Look at site-level metrics -> tp > fp > fn -- only important for multi-sample comparisons
            tp=hl.agg.count_where(ht.n_tp > 0),
            fp=hl.agg.count_where((ht.n_tp == 0) & (ht.n_fp > 0)),
            fn=hl.agg.count_where((ht.n_tp == 0) & (ht.n_fp == 0)
                                  & (ht.n_fn > 0)),
            min_score=hl.agg.min(ht.score),
            max_score=hl.agg.max(ht.score),
            n_alleles=hl.agg.count()).repartition(5)

        ht.write(binned_concordance_path(data_type, truth_sample, metric),
                 overwrite=overwrite)
コード例 #29
0
ファイル: qc.py プロジェクト: troels/hail
def variant_qc(mt, name='variant_qc') -> MatrixTable:
    """Compute common variant statistics (quality control metrics).

    .. include:: ../_templates/req_tvariant.rst

    Examples
    --------

    >>> dataset_result = hl.variant_qc(dataset)

    Notes
    -----
    This method computes variant statistics from the genotype data, returning
    a new struct field `name` with the following metrics based on the fields
    present in the entry schema.

    If `mt` contains an entry field `DP` of type :py:data:`.tint32`, then the
    field `dp_stats` is computed. If `mt` contains an entry field `GQ` of type
    :py:data:`.tint32`, then the field `gq_stats` is computed. Both `dp_stats`
    and `gq_stats` are structs with with four fields:

    - `mean` (``float64``) -- Mean value.
    - `stdev` (``float64``) -- Standard deviation (zero degrees of freedom).
    - `min` (``int32``) -- Minimum value.
    - `max` (``int32``) -- Maximum value.

    If the dataset does not contain an entry field `GT` of type
    :py:data:`.tcall`, then an error is raised. The following fields are always
    computed from `GT`:

    - `AF` (``array<float64>``) -- Calculated allele frequency, one element
      per allele, including the reference. Sums to one. Equivalent to
      `AC` / `AN`.
    - `AC` (``array<int32>``) -- Calculated allele count, one element per
      allele, including the reference. Sums to `AN`.
    - `AN` (``int32``) -- Total number of called alleles.
    - `homozygote_count` (``array<int32>``) -- Number of homozygotes per
      allele. One element per allele, including the reference.
    - `call_rate` (``float64``) -- Fraction of calls neither missing nor filtered.
      Equivalent to `n_called` / :meth:`.count_cols`.
    - `n_called` (``int64``) -- Number of samples with a defined `GT`.
    - `n_not_called` (``int64``) -- Number of samples with a missing `GT`.
    - `n_filtered` (``int64``) -- Number of filtered entries.
    - `n_het` (``int64``) -- Number of heterozygous samples.
    - `n_non_ref` (``int64``) -- Number of samples with at least one called
      non-reference allele.
    - `het_freq_hwe` (``float64``) -- Expected frequency of heterozygous
      samples under Hardy-Weinberg equilibrium. See
      :func:`.functions.hardy_weinberg_test` for details.
    - `p_value_hwe` (``float64``) -- p-value from test of Hardy-Weinberg equilibrium.
      See :func:`.functions.hardy_weinberg_test` for details.

    Warning
    -------
    `het_freq_hwe` and `p_value_hwe` are calculated as in
    :func:`.functions.hardy_weinberg_test`, with non-diploid calls
    (``ploidy != 2``) ignored in the counts. As this test is only
    statistically rigorous in the biallelic setting, :func:`.variant_qc`
    sets both fields to missing for multiallelic variants. Consider using
    :func:`~hail.methods.split_multi` to split multi-allelic variants beforehand.

    Parameters
    ----------
    mt : :class:`.MatrixTable`
        Dataset.
    name : :obj:`str`
        Name for resulting field.

    Returns
    -------
    :class:`.MatrixTable`
    """
    require_row_key_variant(mt, 'variant_qc')

    bound_exprs = {}
    gq_dp_exprs = {}

    def has_field_of_type(name, dtype):
        return name in mt.entry and mt[name].dtype == dtype

    if has_field_of_type('DP', hl.tint32):
        gq_dp_exprs['dp_stats'] = hl.agg.stats(mt.DP).select(
            'mean', 'stdev', 'min', 'max')

    if has_field_of_type('GQ', hl.tint32):
        gq_dp_exprs['gq_stats'] = hl.agg.stats(mt.GQ).select(
            'mean', 'stdev', 'min', 'max')

    if not has_field_of_type('GT', hl.tcall):
        raise ValueError(
            f"'variant_qc': expect an entry field 'GT' of type 'call'")

    bound_exprs['n_called'] = hl.agg.count_where(hl.is_defined(mt['GT']))
    bound_exprs['n_not_called'] = hl.agg.count_where(hl.is_missing(mt['GT']))
    bound_exprs['n_filtered'] = mt.count_cols(_localize=False) - hl.agg.count()
    bound_exprs['call_stats'] = hl.agg.call_stats(mt.GT, mt.alleles)

    result = hl.rbind(
        hl.struct(**bound_exprs), lambda e1: hl.rbind(
            hl.case().when(
                hl.len(mt.alleles) == 2,
                hl.hardy_weinberg_test(
                    e1.call_stats.homozygote_count[0], e1.call_stats.AC[
                        1] - 2 * e1.call_stats.homozygote_count[1], e1.
                    call_stats.homozygote_count[1])).or_missing(), lambda hwe:
            hl.struct(
                **{
                    **gq_dp_exprs,
                    **e1.call_stats, 'call_rate':
                    hl.float(e1.n_called) /
                    (e1.n_called + e1.n_not_called + e1.n_filtered),
                    'n_called':
                    e1.n_called,
                    'n_not_called':
                    e1.n_not_called,
                    'n_filtered':
                    e1.n_filtered,
                    'n_het':
                    e1.n_called - hl.sum(e1.call_stats.homozygote_count),
                    'n_non_ref':
                    e1.n_called - e1.call_stats.homozygote_count[0],
                    'het_freq_hwe':
                    hwe.het_freq_hwe,
                    'p_value_hwe':
                    hwe.p_value
                })))

    return mt.annotate_rows(**{name: result})
コード例 #30
0
def merge_sample_qc_expr(
    sample_qc_exprs: List[hl.expr.StructExpression],
) -> hl.expr.StructExpression:
    """
    Create an expression that merges results from non-overlapping strata of hail.sample_qc.

    E.g.:

    - Compute autosomes and sex chromosomes metrics separately, then merge results
    - Compute bi-allelic and multi-allelic metrics separately, then merge results

    Note regarding the merging of ``dp_stats`` and ``gq_stats``:
    Because ``n`` is needed to aggregate ``stdev``, ``n_called`` is used for this purpose.
    This should work very well on a standard GATK VCF and it essentially assumes that:

    - samples that are called have `DP` and `GQ` fields
    - samples that are not called do not have `DP` and `GQ` fields

    Even if these assumptions are broken for some genotypes, it shouldn't matter too much.

    :param sample_qc_exprs: List of sample QC struct expressions for each stratification
    :return: Combined sample QC results
    """
    # List of metrics that can be aggregated by summing
    additive_metrics = ([
        "n_called",
        "n_not_called",
        "n_filtered",
        "n_hom_ref",
        "n_het",
        "n_hom_var",
        "n_non_ref",
        "n_snp",
        "n_insertion",
        "n_deletion",
        "n_singleton",
        "n_transition",
        "n_transversion",
        "n_star",
        "n_singleton_ti",
        "n_singleton_tv",
    ] + ["gq_over_" + f"{GQ}" for GQ in range(0, 70, 10)] +
                        ["dp_over_" + f"{DP}" for DP in range(0, 40, 10)])

    # List of metrics that are ratio of summed metrics (name, nominator, denominator)
    ratio_metrics = [
        ("call_rate", "n_called", "n_not_called"),
        ("r_ti_tv", "n_transition", "n_transversion"),
        ("r_ti_tv_singleton", "n_singleton_ti", "n_singleton_tv"),
        ("r_het_hom_var", "n_het", "n_hom_var"),
        ("r_insertion_deletion", "n_insertion", "n_deletion"),
    ]

    # List of metrics that are struct generated by a stats counter
    stats_metrics = ["gq_stats", "dp_stats"]

    # Gather metrics present in sample qc fields
    sample_qc_fields = set(sample_qc_exprs[0])
    for sample_qc_expr in sample_qc_exprs[1:]:
        sample_qc_fields = sample_qc_fields.union(set(sample_qc_expr))

    # Merge additive metrics in sample qc fields
    merged_exprs = {
        metric:
        hl.sum([sample_qc_expr[metric] for sample_qc_expr in sample_qc_exprs])
        for metric in additive_metrics if metric in sample_qc_fields
    }

    # Merge ratio metrics in sample qc fields
    merged_exprs.update({
        metric: hl.float64(divide_null(merged_exprs[nom], merged_exprs[denom]))
        for metric, nom, denom in ratio_metrics
        if nom in sample_qc_fields and denom in sample_qc_fields
    })

    # Merge stats counter metrics in sample qc fields
    # Use n_called as n for DP and GQ stats
    if "n_called" in sample_qc_fields:
        merged_exprs.update({
            metric: merge_stats_counters_expr([
                sample_qc_expr[metric].annotate(n=sample_qc_expr.n_called)
                for sample_qc_expr in sample_qc_exprs
            ]).drop("n")
            for metric in stats_metrics if metric in sample_qc_fields
        })

    return hl.struct(**merged_exprs)
コード例 #31
0
def same_hap_likelihood_expr(gt_counts, e: float = 1e-6, distance: int = None):
    """
    ### Same haplotype model

    | Haplotype | Frequency |
    |-----------|:---------:|
    | aB        |     p     |
    | Ab        |     e     |
    | ab        |     q     |
    | AB        | 1-p-q-e   |

    With: p >= q and p = 0 if in perfect LD.


    Therefore, we have the following frequencies:

    | v0/v1 |           BB          |           Bb          |       bb      |
    |-------|:---------------------:|:---------------------:|:-------------:|
    | AA    | (1-p-q-e)<sup>2</sup> |     2*(1-p-q-e)*e     | e<sup>2</sup> |
    | Ab    |     2*(1-p-q-e)*p     | 2*(p*e + (1-p-q-e)*q) |     2*q*e     |
    | ab    |      p<sup>2<sup>     |         2*p*q         | q<sup>2</sup> |

    :param gt_counts:
    :param e:
    :param distance:
    :return:
    """
    n = 2 * hl.sum(gt_counts)
    f1 = hl.sum(gt_counts[3:6] + 2 * hl.sum(gt_counts[6:])) / n
    f2 = (gt_counts[1] + gt_counts[4] + gt_counts[7] + 2 *
          (gt_counts[2] + gt_counts[5] + gt_counts[8])) / n
    p = hl.cond(f1 > f2, f1, f2)
    q = (gt_counts[4] + gt_counts[5] + gt_counts[7] + 2 * gt_counts[8]) / n
    x = 1 - p - q - e

    # Compute log-likelihoods
    def compute_same_hap_log_like(n, p, q, x):
        res = (
            hl.cond(
                q > 0,
                hl.fold(
                    lambda i, j: i + j[0] * j[1], 0.0,
                    hl.zip(gt_counts, [
                        hl.log10(x) * 2,
                        hl.log10(2 * x * e),
                        hl.log10(e) * 2,
                        hl.log10(2 * x * p),
                        hl.log10(2 * (p * e + x * q)),
                        hl.log10(2 * q * e),
                        hl.log10(p) * 2,
                        hl.log10(2 * p * q),
                        hl.log10(q) * 2
                    ])),
                -1e31  # Very large negative value if no q is present
            ))

        # If desired, add distance posterior based on value derived from regression
        if distance is not None:
            res = res + hl.max(-6,
                               hl.log10(0.97 - 0.03 * hl.log(distance + 1)))

        return res

    return hl.bind(compute_same_hap_log_like, n, p, q, x)
コード例 #32
0
ファイル: family_methods.py プロジェクト: bcajes/hail
def de_novo(mt: MatrixTable,
            pedigree: Pedigree,
            pop_frequency_prior,
            *,
            min_gq: int = 20,
            min_p: float = 0.05,
            max_parent_ab: float = 0.05,
            min_child_ab: float = 0.20,
            min_dp_ratio: float = 0.10) -> Table:
    r"""Call putative *de novo* events from trio data.

    .. include:: ../_templates/req_tstring.rst

    .. include:: ../_templates/req_tvariant.rst

    .. include:: ../_templates/req_biallelic.rst

    Examples
    --------

    Call de novo events:

    >>> pedigree = hl.Pedigree.read('data/trios.fam')
    >>> priors = hl.import_table('data/gnomadFreq.tsv', impute=True)
    >>> priors = priors.transmute(**hl.parse_variant(priors.Variant)).key_by('locus', 'alleles')
    >>> de_novo_results = hl.de_novo(dataset, pedigree, pop_frequency_prior=priors[dataset.row_key].AF)

    Notes
    -----
    This method assumes the GATK high-throughput sequencing fields exist:
    `GT`, `AD`, `DP`, `GQ`, `PL`.

    This method replicates the functionality of `Kaitlin Samocha's de novo
    caller <https://github.com/ksamocha/de_novo_scripts>`__. The version
    corresponding to git commit ``bde3e40`` is implemented in Hail with her
    permission and assistance.

    This method produces a :class:`.Table` with the following fields:

     - `locus` (``locus``) -- Variant locus.
     - `alleles` (``array<str>``) -- Variant alleles.
     - `id` (``str``) -- Proband sample ID.
     - `prior` (``float64``) -- Site frequency prior. It is the maximum of:
       the computed dataset alternate allele frequency, the
       `pop_frequency_prior` parameter, and the global prior
       ``1 / 3e7``.
     - `proband` (``struct``) -- Proband column fields from `mt`.
     - `father` (``struct``) -- Father column fields from `mt`.
     - `mother` (``struct``) -- Mother column fields from `mt`.
     - `proband_entry` (``struct``) -- Proband entry fields from `mt`.
     - `father_entry` (``struct``) -- Father entry fields from `mt`.
     - `proband_entry` (``struct``) -- Mother entry fields from `mt`.
     - `is_female` (``bool``) -- ``True`` if proband is female.
     - `p_de_novo` (``float64``) -- Unfiltered posterior probability
       that the event is *de novo* rather than a missed heterozygous
       event in a parent.
     - `confidence` (``str``) Validation confidence. One of: ``'HIGH'``,
       ``'MEDIUM'``, ``'LOW'``.

    The key of the table is ``['locus', 'alleles', 'id']``.

    The model looks for de novo events in which both parents are homozygous
    reference and the proband is a heterozygous. The model makes the simplifying
    assumption that when this configuration ``x = (AA, AA, AB)`` of calls
    occurs, exactly one of the following is true:

     - ``d``: a de novo mutation occurred in the proband and all calls are
       accurate.
     - ``m``: at least one parental allele is actually heterozygous and
       the proband call is accurate.

    We can then estimate the posterior probability of a de novo mutation as:

    .. math::

        \mathrm{P_{\text{de novo}}} = \frac{\mathrm{P}(d\,|\,x)}{\mathrm{P}(d\,|\,x) + \mathrm{P}(m\,|\,x)}

    Applying Bayes rule to the numerator and denominator yields

    .. math::

        \frac{\mathrm{P}(x\,|\,d)\,\mathrm{P}(d)}{\mathrm{P}(x\,|\,d)\,\mathrm{P}(d) +
        \mathrm{P}(x\,|\,m)\,\mathrm{P}(m)}

    The prior on de novo mutation is estimated from the rate in the literature:

    .. math::

        \mathrm{P}(d) = \frac{1 \text{mutation}}{30,000,000\, \text{bases}}

    The prior used for at least one alternate allele between the parents
    depends on the alternate allele frequency:

    .. math::

        \mathrm{P}(m) = 1 - (1 - AF)^4

    The likelihoods :math:`\mathrm{P}(x\,|\,d)` and :math:`\mathrm{P}(x\,|\,m)`
    are computed from the PL (genotype likelihood) fields using these
    factorizations:

    .. math::

        \mathrm{P}(x = (AA, AA, AB) \,|\,d) = \Big(
        &\mathrm{P}(x_{\mathrm{father}} = AA \,|\, \mathrm{father} = AA) \\
        \cdot &\mathrm{P}(x_{\mathrm{mother}} = AA \,|\, \mathrm{mother} =
        AA) \\ \cdot &\mathrm{P}(x_{\mathrm{proband}} = AB \,|\,
        \mathrm{proband} = AB) \Big)

    .. math::

        \mathrm{P}(x = (AA, AA, AB) \,|\,m) = \Big( &
        \mathrm{P}(x_{\mathrm{father}} = AA \,|\, \mathrm{father} = AB)
        \cdot \mathrm{P}(x_{\mathrm{mother}} = AA \,|\, \mathrm{mother} =
        AA) \\ + \, &\mathrm{P}(x_{\mathrm{father}} = AA \,|\,
        \mathrm{father} = AA) \cdot \mathrm{P}(x_{\mathrm{mother}} = AA
        \,|\, \mathrm{mother} = AB) \Big) \\ \cdot \,
        &\mathrm{P}(x_{\mathrm{proband}} = AB \,|\, \mathrm{proband} = AB)

    (Technically, the second factorization assumes there is exactly (rather
    than at least) one alternate allele among the parents, which may be
    justified on the grounds that it is typically the most likely case by far.)

    While this posterior probability is a good metric for grouping putative de
    novo mutations by validation likelihood, there exist error modes in
    high-throughput sequencing data that are not appropriately accounted for by
    the phred-scaled genotype likelihoods. To this end, a number of hard filters
    are applied in order to assign validation likelihood.

    These filters are different for SNPs and insertions/deletions. In the below
    rules, the following variables are used:

     - ``DR`` refers to the ratio of the read depth in the proband to the
       combined read depth in the parents.
     - ``AB`` refers to the read allele balance of the proband (number of
       alternate reads divided by total reads).
     - ``AC`` refers to the count of alternate alleles across all individuals
       in the dataset at the site.
     - ``p`` refers to :math:`\mathrm{P_{\text{de novo}}}`.
     - ``min_p`` refers to the ``min_p`` function parameter.

    HIGH-quality SNV:

    .. code-block:: text

        p > 0.99 && AB > 0.3 && DR > 0.2
            or
        p > 0.99 && AB > 0.3 && AC == 1

    MEDIUM-quality SNV:

    .. code-block:: text

        p > 0.5 && AB > 0.3
            or
        p > 0.5 && AB > 0.2 && AC == 1

    LOW-quality SNV:

    .. code-block:: text

        p > min_p && AB > 0.2

    HIGH-quality indel:

    .. code-block:: text

        p > 0.99 && AB > 0.3 && DR > 0.2
            or
        p > 0.99 && AB > 0.3 && AC == 1

    MEDIUM-quality indel:

    .. code-block:: text

        p > 0.5 && AB > 0.3
            or
        p > 0.5 && AB > 0.2 and AC == 1

    LOW-quality indel:

    .. code-block:: text

        p > min_p && AB > 0.2

    Additionally, de novo candidates are not considered if the proband GQ is
    smaller than the ``min_gq`` parameter, if the proband allele balance is
    lower than the ``min_child_ab`` parameter, if the depth ratio between the
    proband and parents is smaller than the ``min_depth_ratio`` parameter, or if
    the allele balance in a parent is above the ``max_parent_ab`` parameter.

    Parameters
    ----------
    mt : :class:`.MatrixTable`
        High-throughput sequencing dataset.
    pedigree : :class:`.Pedigree`
        Sample pedigree.
    pop_frequency_prior : :class:`.Float64Expression`
        Expression for population alternate allele frequency prior.
    min_gq
        Minimum proband GQ to be considered for *de novo* calling.
    min_p
        Minimum posterior probability to be considered for *de novo* calling.
    max_parent_ab
        Maximum parent allele balance.
    min_child_ab
        Minimum proband allele balance/
    min_dp_ratio
        Minimum ratio between proband read depth and parental read depth.

    Returns
    -------
    :class:`.Table`
    """
    DE_NOVO_PRIOR = 1 / 30000000
    MIN_POP_PRIOR = 100 / 30000000

    required_entry_fields = {'GT', 'AD', 'DP', 'GQ', 'PL'}
    missing_fields = required_entry_fields - set(mt.entry)
    if missing_fields:
        raise ValueError(f"'de_novo': expected 'MatrixTable' to have at least {required_entry_fields}, "
                         f"missing {missing_fields}")

    mt = mt.annotate_rows(__prior=pop_frequency_prior,
                          __alt_alleles=hl.agg.sum(mt.GT.n_alt_alleles()),
                          __total_alleles=2 * hl.agg.sum(hl.is_defined(mt.GT)))
    # subtract 1 from __alt_alleles to correct for the observed genotype
    mt = mt.annotate_rows(__site_freq=hl.max((mt.__alt_alleles - 1) / mt.__total_alleles, mt.__prior, MIN_POP_PRIOR))
    mt = require_biallelic(mt, 'de_novo')

    # FIXME check that __site_freq is between 0 and 1 when possible in expr
    tm = trio_matrix(mt, pedigree, complete_trios=True)

    autosomal = tm.locus.in_autosome_or_par() | (tm.locus.in_x_nonpar() & tm.is_female)
    hemi_x = tm.locus.in_x_nonpar() & ~tm.is_female
    hemi_y = tm.locus.in_y_nonpar() & ~tm.is_female
    hemi_mt = tm.locus.in_mito() & tm.is_female

    is_snp = hl.is_snp(tm.alleles[0], tm.alleles[1])
    n_alt_alleles = tm.__alt_alleles
    prior = tm.__site_freq
    het_hom_hom = tm.proband_entry.GT.is_het() & tm.father_entry.GT.is_hom_ref() & tm.mother_entry.GT.is_hom_ref()
    kid_ad_fail = tm.proband_entry.AD[1] / hl.sum(tm.proband_entry.AD) < min_child_ab

    failure = hl.null(hl.tstruct(p_de_novo=hl.tfloat64, confidence=hl.tstr))

    kid = tm.proband_entry
    dad = tm.father_entry
    mom = tm.mother_entry

    kid_linear_pl = 10 ** (-kid.PL / 10)
    kid_pp = hl.bind(lambda x: x / hl.sum(x), kid_linear_pl)

    dad_linear_pl = 10 ** (-dad.PL / 10)
    dad_pp = hl.bind(lambda x: x / hl.sum(x), dad_linear_pl)

    mom_linear_pl = 10 ** (-mom.PL / 10)
    mom_pp = hl.bind(lambda x: x / hl.sum(x), mom_linear_pl)

    kid_ad_ratio = kid.AD[1] / hl.sum(kid.AD)
    dp_ratio = kid.DP / (dad.DP + mom.DP)

    def call_auto(kid_pp, dad_pp, mom_pp, kid_ad_ratio):
        p_data_given_dn = dad_pp[0] * mom_pp[0] * kid_pp[1] * DE_NOVO_PRIOR
        p_het_in_parent = 1 - (1 - prior) ** 4
        p_data_given_missed_het = (dad_pp[1] * mom_pp[0] + dad_pp[0] * mom_pp[1]) * kid_pp[1] * p_het_in_parent
        p_de_novo = p_data_given_dn / (p_data_given_dn + p_data_given_missed_het)

        def solve(p_de_novo):
            return (
                hl.case()
                    .when(kid.GQ < min_gq, failure)
                    .when((kid.DP / (dad.DP + mom.DP) < min_dp_ratio) |
                          ~(kid_ad_ratio >= min_child_ab), failure)
                    .when((hl.sum(mom.AD) == 0) | (hl.sum(dad.AD) == 0), failure)
                    .when((mom.AD[1] / hl.sum(mom.AD) > max_parent_ab) |
                          (dad.AD[1] / hl.sum(dad.AD) > max_parent_ab), failure)
                    .when(p_de_novo < min_p, failure)
                    .when(~is_snp, hl.case()
                          .when((p_de_novo > 0.99) & (kid_ad_ratio > 0.3) & (n_alt_alleles == 1),
                                hl.struct(p_de_novo=p_de_novo, confidence='HIGH'))
                          .when((p_de_novo > 0.5) & (kid_ad_ratio > 0.3) & (n_alt_alleles <= 5),
                                hl.struct(p_de_novo=p_de_novo, confidence='MEDIUM'))
                          .when((p_de_novo > 0.05) & (kid_ad_ratio > 0.2),
                                hl.struct(p_de_novo=p_de_novo, confidence='LOW'))
                          .or_missing())
                    .default(hl.case()
                             .when(((p_de_novo > 0.99) & (kid_ad_ratio > 0.3) & (dp_ratio > 0.2)) |
                                   ((p_de_novo > 0.99) & (kid_ad_ratio > 0.3) & (n_alt_alleles == 1)) |
                                   ((p_de_novo > 0.5) & (kid_ad_ratio > 0.3) & (n_alt_alleles < 10) & (kid.DP > 10)),
                                   hl.struct(p_de_novo=p_de_novo, confidence='HIGH'))
                             .when((p_de_novo > 0.5) & ((kid_ad_ratio > 0.3) | (n_alt_alleles == 1)),
                                   hl.struct(p_de_novo=p_de_novo, confidence='MEDIUM'))
                             .when((p_de_novo > 0.05) & (kid_ad_ratio > 0.2),
                                   hl.struct(p_de_novo=p_de_novo, confidence='LOW'))
                             .or_missing()
                             )
            )

        return hl.bind(solve, p_de_novo)

    def call_hemi(kid_pp, parent, parent_pp, kid_ad_ratio):
        p_data_given_dn = parent_pp[0] * kid_pp[1] * DE_NOVO_PRIOR
        p_het_in_parent = 1 - (1 - prior) ** 4
        p_data_given_missed_het = (parent_pp[1] + parent_pp[2]) * kid_pp[2] * p_het_in_parent
        p_de_novo = p_data_given_dn / (p_data_given_dn + p_data_given_missed_het)

        def solve(p_de_novo):
            return (
                hl.case()
                    .when(kid.GQ < min_gq, failure)
                    .when((kid.DP / (parent.DP) < min_dp_ratio) |
                          (kid_ad_ratio < min_child_ab), failure)
                    .when((hl.sum(parent.AD) == 0), failure)
                    .when(parent.AD[1] / hl.sum(parent.AD) > max_parent_ab, failure)
                    .when(p_de_novo < min_p, failure)
                    .when(~is_snp, hl.case()
                          .when((p_de_novo > 0.99) & (kid_ad_ratio > 0.3) & (n_alt_alleles == 1),
                                hl.struct(p_de_novo=p_de_novo, confidence='HIGH'))
                          .when((p_de_novo > 0.5) & (kid_ad_ratio > 0.3) & (n_alt_alleles <= 5),
                                hl.struct(p_de_novo=p_de_novo, confidence='MEDIUM'))
                          .when((p_de_novo > 0.05) & (kid_ad_ratio > 0.3),
                                hl.struct(p_de_novo=p_de_novo, confidence='LOW'))
                          .or_missing())
                    .default(hl.case()
                             .when(((p_de_novo > 0.99) & (kid_ad_ratio > 0.3) & (dp_ratio > 0.2)) |
                                   ((p_de_novo > 0.99) & (kid_ad_ratio > 0.3) & (n_alt_alleles == 1)) |
                                   ((p_de_novo > 0.5) & (kid_ad_ratio > 0.3) & (n_alt_alleles < 10) & (kid.DP > 10)),
                                   hl.struct(p_de_novo=p_de_novo, confidence='HIGH'))
                             .when((p_de_novo > 0.5) & ((kid_ad_ratio > 0.3) | (n_alt_alleles == 1)),
                                   hl.struct(p_de_novo=p_de_novo, confidence='MEDIUM'))
                             .when((p_de_novo > 0.05) & (kid_ad_ratio > 0.2),
                                   hl.struct(p_de_novo=p_de_novo, confidence='LOW'))
                             .or_missing()
                             )
            )

        return hl.bind(solve, p_de_novo)

    de_novo_call = (
        hl.case()
            .when(~het_hom_hom | kid_ad_fail, failure)
            .when(autosomal, hl.bind(call_auto, kid_pp, dad_pp, mom_pp, kid_ad_ratio))
            .when(hemi_x | hemi_mt, hl.bind(call_hemi, kid_pp, mom, mom_pp, kid_ad_ratio))
            .when(hemi_y, hl.bind(call_hemi, kid_pp, dad, dad_pp, kid_ad_ratio))
            .or_missing()
    )

    tm = tm.annotate_entries(__call=de_novo_call)
    tm = tm.filter_entries(hl.is_defined(tm.__call))
    entries = tm.entries()
    return (entries.select('__site_freq',
                           'proband',
                           'father',
                           'mother',
                           'proband_entry',
                           'father_entry',
                           'mother_entry',
                           'is_female',
                           **entries.__call)
            .rename({'__site_freq': 'prior'}))
コード例 #33
0
ファイル: ld_score_regression.py プロジェクト: jigold/hail
def ld_score_regression(weight_expr,
                        ld_score_expr,
                        chi_sq_exprs,
                        n_samples_exprs,
                        n_blocks=200,
                        two_step_threshold=30,
                        n_reference_panel_variants=None) -> Table:
    r"""Estimate SNP-heritability and level of confounding biases from
    GWAS summary statistics.

    Given a set or multiple sets of genome-wide association study (GWAS)
    summary statistics, :func:`.ld_score_regression` estimates the heritability
    of a trait or set of traits and the level of confounding biases present in
    the underlying studies by regressing chi-squared statistics on LD scores,
    leveraging the model:

    .. math::

        \mathrm{E}[\chi_j^2] = 1 + Na + \frac{Nh_g^2}{M}l_j

    *  :math:`\mathrm{E}[\chi_j^2]` is the expected chi-squared statistic
       for variant :math:`j` resulting from a test of association between
       variant :math:`j` and a trait.
    *  :math:`l_j = \sum_{k} r_{jk}^2` is the LD score of variant
       :math:`j`, calculated as the sum of squared correlation coefficients
       between variant :math:`j` and nearby variants. See :func:`ld_score`
       for further details.
    *  :math:`a` captures the contribution of confounding biases, such as
       cryptic relatedness and uncontrolled population structure, to the
       association test statistic.
    *  :math:`h_g^2` is the SNP-heritability, or the proportion of variation
       in the trait explained by the effects of variants included in the
       regression model above.
    *  :math:`M` is the number of variants used to estimate :math:`h_g^2`.
    *  :math:`N` is the number of samples in the underlying association study.

    For more details on the method implemented in this function, see:

    * `LD Score regression distinguishes confounding from polygenicity in genome-wide association studies (Bulik-Sullivan et al, 2015) <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495769/>`__

    Examples
    --------

    Run the method on a matrix table of summary statistics, where the rows
    are variants and the columns are different phenotypes:

    >>> mt_gwas = hl.read_matrix_table('data/ld_score_regression.sumstats.mt')
    >>> ht_results = hl.experimental.ld_score_regression(
    ...     weight_expr=mt_gwas['ld_score'],
    ...     ld_score_expr=mt_gwas['ld_score'],
    ...     chi_sq_exprs=mt_gwas['chi_squared'],
    ...     n_samples_exprs=mt_gwas['n'])


    Run the method on a table with summary statistics for a single
    phenotype:

    >>> ht_gwas = hl.read_table('data/ld_score_regression.sumstats.ht')
    >>> ht_results = hl.experimental.ld_score_regression(
    ...     weight_expr=ht_gwas['ld_score'],
    ...     ld_score_expr=ht_gwas['ld_score'],
    ...     chi_sq_exprs=ht_gwas['chi_squared_50_irnt'],
    ...     n_samples_exprs=ht_gwas['n_50_irnt'])

    Run the method on a table with summary statistics for multiple
    phenotypes:

    >>> ht_gwas = hl.read_table('data/ld_score_regression.sumstats.ht')
    >>> ht_results = hl.experimental.ld_score_regression(
    ...     weight_expr=ht_gwas['ld_score'],
    ...     ld_score_expr=ht_gwas['ld_score'],
    ...     chi_sq_exprs=[ht_gwas['chi_squared_50_irnt'],
    ...                        ht_gwas['chi_squared_20160']],
    ...     n_samples_exprs=[ht_gwas['n_50_irnt'],
    ...                      ht_gwas['n_20160']])

    Notes
    -----
    The ``exprs`` provided as arguments to :func:`.ld_score_regression`
    must all be from the same object, either a :class:`Table` or a
    :class:`MatrixTable`.

    **If the arguments originate from a table:**

    *  The table must be keyed by fields ``locus`` of type
       :class:`.tlocus` and ``alleles``, a :py:data:`.tarray` of
       :py:data:`.tstr` elements.
    *  ``weight_expr``, ``ld_score_expr``, ``chi_sq_exprs``, and
       ``n_samples_exprs`` are must be row-indexed fields.
    *  The number of expressions passed to ``n_samples_exprs`` must be
       equal to one or the number of expressions passed to
       ``chi_sq_exprs``. If just one expression is passed to
       ``n_samples_exprs``, that sample size expression is assumed to
       apply to all sets of statistics passed to ``chi_sq_exprs``.
       Otherwise, the expressions passed to ``chi_sq_exprs`` and
       ``n_samples_exprs`` are matched by index.
    *  The ``phenotype`` field that keys the table returned by
       :func:`.ld_score_regression` will have generic :obj:`int` values
       ``0``, ``1``, etc. corresponding to the ``0th``, ``1st``, etc.
       expressions passed to the ``chi_sq_exprs`` argument.

    **If the arguments originate from a matrix table:**

    *  The dimensions of the matrix table must be variants
       (rows) by phenotypes (columns).
    *  The rows of the matrix table must be keyed by fields
       ``locus`` of type :class:`.tlocus` and ``alleles``,
       a :py:data:`.tarray` of :py:data:`.tstr` elements.
    *  The columns of the matrix table must be keyed by a field
       of type :py:data:`.tstr` that uniquely identifies phenotypes
       represented in the matrix table. The column key must be a single
       expression; compound keys are not accepted.
    *  ``weight_expr`` and ``ld_score_expr`` must be row-indexed
       fields.
    *  ``chi_sq_exprs`` must be a single entry-indexed field
       (not a list of fields).
    *  ``n_samples_exprs`` must be a single entry-indexed field
       (not a list of fields).
    *  The ``phenotype`` field that keys the table returned by
       :func:`.ld_score_regression` will have values corresponding to the
       column keys of the input matrix table.

    This function returns a :class:`Table` with one row per set of summary
    statistics passed to the ``chi_sq_exprs`` argument. The following
    row-indexed fields are included in the table:

    *  **phenotype** (:py:data:`.tstr`) -- The name of the phenotype. The
       returned table is keyed by this field. See the notes below for
       details on the possible values of this field.
    *  **mean_chi_sq** (:py:data:`.tfloat64`) -- The mean chi-squared
       test statistic for the given phenotype.
    *  **intercept** (`Struct`) -- Contains fields:

       -  **estimate** (:py:data:`.tfloat64`) -- A point estimate of the
          intercept :math:`1 + Na`.
       -  **standard_error**  (:py:data:`.tfloat64`) -- An estimate of
          the standard error of this point estimate.

    *  **snp_heritability** (`Struct`) -- Contains fields:

       -  **estimate** (:py:data:`.tfloat64`) -- A point estimate of the
          SNP-heritability :math:`h_g^2`.
       -  **standard_error** (:py:data:`.tfloat64`) -- An estimate of
          the standard error of this point estimate.

    Warning
    -------
    :func:`.ld_score_regression` considers only the rows for which both row
    fields ``weight_expr`` and ``ld_score_expr`` are defined. Rows with missing
    values in either field are removed prior to fitting the LD score
    regression model.

    Parameters
    ----------
    weight_expr : :class:`.Float64Expression`
                  Row-indexed expression for the LD scores used to derive
                  variant weights in the model.
    ld_score_expr : :class:`.Float64Expression`
                    Row-indexed expression for the LD scores used as covariates
                    in the model.
    chi_sq_exprs : :class:`.Float64Expression` or :obj:`list` of
                        :class:`.Float64Expression`
                        One or more row-indexed (if table) or entry-indexed
                        (if matrix table) expressions for chi-squared
                        statistics resulting from genome-wide association
                        studies.
    n_samples_exprs: :class:`.NumericExpression` or :obj:`list` of
                     :class:`.NumericExpression`
                     One or more row-indexed (if table) or entry-indexed
                     (if matrix table) expressions indicating the number of
                     samples used in the studies that generated the test
                     statistics supplied to ``chi_sq_exprs``.
    n_blocks : :obj:`int`
               The number of blocks used in the jackknife approach to
               estimating standard errors.
    two_step_threshold : :obj:`int`
                         Variants with chi-squared statistics greater than this
                         value are excluded in the first step of the two-step
                         procedure used to fit the model.
    n_reference_panel_variants : :obj:`int`, optional
                                 Number of variants used to estimate the
                                 SNP-heritability :math:`h_g^2`.

    Returns
    -------
    :class:`.Table`
        Table keyed by ``phenotype`` with intercept and heritability estimates
        for each phenotype passed to the function."""

    chi_sq_exprs = wrap_to_list(chi_sq_exprs)
    n_samples_exprs = wrap_to_list(n_samples_exprs)

    assert ((len(chi_sq_exprs) == len(n_samples_exprs)) or
            (len(n_samples_exprs) == 1))
    __k = 2  # number of covariates, including intercept

    ds = chi_sq_exprs[0]._indices.source

    analyze('ld_score_regression/weight_expr',
            weight_expr,
            ds._row_indices)
    analyze('ld_score_regression/ld_score_expr',
            ld_score_expr,
            ds._row_indices)

    # format input dataset
    if isinstance(ds, MatrixTable):
        if len(chi_sq_exprs) != 1:
            raise ValueError("""Only one chi_sq_expr allowed if originating
                from a matrix table.""")
        if len(n_samples_exprs) != 1:
            raise ValueError("""Only one n_samples_expr allowed if
                originating from a matrix table.""")

        col_key = list(ds.col_key)
        if len(col_key) != 1:
            raise ValueError("""Matrix table must be keyed by a single
                phenotype field.""")

        analyze('ld_score_regression/chi_squared_expr',
                chi_sq_exprs[0],
                ds._entry_indices)
        analyze('ld_score_regression/n_samples_expr',
                n_samples_exprs[0],
                ds._entry_indices)

        ds = ds._select_all(row_exprs={'__locus': ds.locus,
                                       '__alleles': ds.alleles,
                                       '__w_initial': weight_expr,
                                       '__w_initial_floor': hl.max(weight_expr,
                                                                   1.0),
                                       '__x': ld_score_expr,
                                       '__x_floor': hl.max(ld_score_expr,
                                                           1.0)},
                            row_key=['__locus', '__alleles'],
                            col_exprs={'__y_name': ds[col_key[0]]},
                            col_key=['__y_name'],
                            entry_exprs={'__y': chi_sq_exprs[0],
                                         '__n': n_samples_exprs[0]})
        ds = ds.annotate_entries(**{'__w': ds.__w_initial})

        ds = ds.filter_rows(hl.is_defined(ds.__locus) &
                            hl.is_defined(ds.__alleles) &
                            hl.is_defined(ds.__w_initial) &
                            hl.is_defined(ds.__x))

    else:
        assert isinstance(ds, Table)
        for y in chi_sq_exprs:
            analyze('ld_score_regression/chi_squared_expr', y, ds._row_indices)
        for n in n_samples_exprs:
            analyze('ld_score_regression/n_samples_expr', n, ds._row_indices)

        ys = ['__y{:}'.format(i) for i, _ in enumerate(chi_sq_exprs)]
        ws = ['__w{:}'.format(i) for i, _ in enumerate(chi_sq_exprs)]
        ns = ['__n{:}'.format(i) for i, _ in enumerate(n_samples_exprs)]

        ds = ds.select(**dict(**{'__locus': ds.locus,
                                 '__alleles': ds.alleles,
                                 '__w_initial': weight_expr,
                                 '__x': ld_score_expr},
                              **{y: chi_sq_exprs[i]
                                 for i, y in enumerate(ys)},
                              **{w: weight_expr for w in ws},
                              **{n: n_samples_exprs[i]
                                 for i, n in enumerate(ns)}))
        ds = ds.key_by(ds.__locus, ds.__alleles)

        table_tmp_file = new_temp_file()
        ds.write(table_tmp_file)
        ds = hl.read_table(table_tmp_file)

        hts = [ds.select(**{'__w_initial': ds.__w_initial,
                            '__w_initial_floor': hl.max(ds.__w_initial,
                                                        1.0),
                            '__x': ds.__x,
                            '__x_floor': hl.max(ds.__x, 1.0),
                            '__y_name': i,
                            '__y': ds[ys[i]],
                            '__w': ds[ws[i]],
                            '__n': hl.int(ds[ns[i]])})
               for i, y in enumerate(ys)]

        mts = [ht.to_matrix_table(row_key=['__locus',
                                           '__alleles'],
                                  col_key=['__y_name'],
                                  row_fields=['__w_initial',
                                              '__w_initial_floor',
                                              '__x',
                                              '__x_floor'])
               for ht in hts]

        ds = mts[0]
        for i in range(1, len(ys)):
            ds = ds.union_cols(mts[i])

        ds = ds.filter_rows(hl.is_defined(ds.__locus) &
                            hl.is_defined(ds.__alleles) &
                            hl.is_defined(ds.__w_initial) &
                            hl.is_defined(ds.__x))

    mt_tmp_file1 = new_temp_file()
    ds.write(mt_tmp_file1)
    mt = hl.read_matrix_table(mt_tmp_file1)

    if not n_reference_panel_variants:
        M = mt.count_rows()
    else:
        M = n_reference_panel_variants

    # block variants for each phenotype
    n_phenotypes = mt.count_cols()

    mt = mt.annotate_entries(__in_step1=(hl.is_defined(mt.__y) &
                                         (mt.__y < two_step_threshold)),
                             __in_step2=hl.is_defined(mt.__y))

    mt = mt.annotate_cols(__col_idx=hl.int(hl.scan.count()),
                          __m_step1=hl.agg.count_where(mt.__in_step1),
                          __m_step2=hl.agg.count_where(mt.__in_step2))

    col_keys = list(mt.col_key)

    ht = mt.localize_entries(entries_array_field_name='__entries',
                             columns_array_field_name='__cols')

    ht = ht.annotate(__entries=hl.rbind(
        hl.scan.array_agg(
            lambda entry: hl.scan.count_where(entry.__in_step1),
            ht.__entries),
        lambda step1_indices: hl.map(
            lambda i: hl.rbind(
                hl.int(hl.or_else(step1_indices[i], 0)),
                ht.__cols[i].__m_step1,
                ht.__entries[i],
                lambda step1_idx, m_step1, entry: hl.rbind(
                    hl.map(
                        lambda j: hl.int(hl.floor(j * (m_step1 / n_blocks))),
                        hl.range(0, n_blocks + 1)),
                    lambda step1_separators: hl.rbind(
                        hl.set(step1_separators).contains(step1_idx),
                        hl.sum(
                            hl.map(
                                lambda s1: step1_idx >= s1,
                                step1_separators)) - 1,
                        lambda is_separator, step1_block: entry.annotate(
                            __step1_block=step1_block,
                            __step2_block=hl.cond(~entry.__in_step1 & is_separator,
                                                  step1_block - 1,
                                                  step1_block))))),
            hl.range(0, hl.len(ht.__entries)))))

    mt = ht._unlocalize_entries('__entries', '__cols', col_keys)

    mt_tmp_file2 = new_temp_file()
    mt.write(mt_tmp_file2)
    mt = hl.read_matrix_table(mt_tmp_file2)
    
    # initial coefficient estimates
    mt = mt.annotate_cols(__initial_betas=[
        1.0, (hl.agg.mean(mt.__y) - 1.0) / hl.agg.mean(mt.__x)])
    mt = mt.annotate_cols(__step1_betas=mt.__initial_betas,
                          __step2_betas=mt.__initial_betas)

    # step 1 iteratively reweighted least squares
    for i in range(3):
        mt = mt.annotate_entries(__w=hl.cond(
            mt.__in_step1,
            1.0/(mt.__w_initial_floor * 2.0 * (mt.__step1_betas[0] +
                                               mt.__step1_betas[1] *
                                               mt.__x_floor)**2),
            0.0))
        mt = mt.annotate_cols(__step1_betas=hl.agg.filter(
            mt.__in_step1,
            hl.agg.linreg(y=mt.__y,
                          x=[1.0, mt.__x],
                          weight=mt.__w).beta))
        mt = mt.annotate_cols(__step1_h2=hl.max(hl.min(
            mt.__step1_betas[1] * M / hl.agg.mean(mt.__n), 1.0), 0.0))
        mt = mt.annotate_cols(__step1_betas=[
            mt.__step1_betas[0],
            mt.__step1_h2 * hl.agg.mean(mt.__n) / M])

    # step 1 block jackknife
    mt = mt.annotate_cols(__step1_block_betas=[
        hl.agg.filter((mt.__step1_block != i) & mt.__in_step1,
                      hl.agg.linreg(y=mt.__y,
                                    x=[1.0, mt.__x],
                                    weight=mt.__w).beta)
        for i in range(n_blocks)])

    mt = mt.annotate_cols(__step1_block_betas_bias_corrected=hl.map(
        lambda x: n_blocks * mt.__step1_betas - (n_blocks - 1) * x,
        mt.__step1_block_betas))

    mt = mt.annotate_cols(
        __step1_jackknife_mean=hl.map(
            lambda i: hl.mean(
                hl.map(lambda x: x[i],
                       mt.__step1_block_betas_bias_corrected)),
            hl.range(0, __k)),
        __step1_jackknife_variance=hl.map(
            lambda i: (hl.sum(
                hl.map(lambda x: x[i]**2,
                       mt.__step1_block_betas_bias_corrected)) -
                       hl.sum(
                hl.map(lambda x: x[i],
                       mt.__step1_block_betas_bias_corrected))**2 /
                       n_blocks) /
            (n_blocks - 1) / n_blocks,
            hl.range(0, __k)))

    # step 2 iteratively reweighted least squares
    for i in range(3):
        mt = mt.annotate_entries(__w=hl.cond(
            mt.__in_step2,
            1.0/(mt.__w_initial_floor *
                 2.0 * (mt.__step2_betas[0] +
                        mt.__step2_betas[1] *
                        mt.__x_floor)**2),
            0.0))
        mt = mt.annotate_cols(__step2_betas=[
            mt.__step1_betas[0],
            hl.agg.filter(mt.__in_step2,
                          hl.agg.linreg(y=mt.__y - mt.__step1_betas[0],
                                        x=[mt.__x],
                                        weight=mt.__w).beta[0])])
        mt = mt.annotate_cols(__step2_h2=hl.max(hl.min(
            mt.__step2_betas[1] * M/hl.agg.mean(mt.__n), 1.0), 0.0))
        mt = mt.annotate_cols(__step2_betas=[
            mt.__step1_betas[0],
            mt.__step2_h2 * hl.agg.mean(mt.__n)/M])

    # step 2 block jackknife
    mt = mt.annotate_cols(__step2_block_betas=[
        hl.agg.filter((mt.__step2_block != i) & mt.__in_step2,
                      hl.agg.linreg(y=mt.__y - mt.__step1_betas[0],
                                    x=[mt.__x],
                                    weight=mt.__w).beta[0])
        for i in range(n_blocks)])

    mt = mt.annotate_cols(__step2_block_betas_bias_corrected=hl.map(
        lambda x: n_blocks * mt.__step2_betas[1] - (n_blocks - 1) * x,
        mt.__step2_block_betas))

    mt = mt.annotate_cols(
        __step2_jackknife_mean=hl.mean(
            mt.__step2_block_betas_bias_corrected),
        __step2_jackknife_variance=(
            hl.sum(mt.__step2_block_betas_bias_corrected**2) -
            hl.sum(mt.__step2_block_betas_bias_corrected)**2 /
            n_blocks) / (n_blocks - 1) / n_blocks)

    # combine step 1 and step 2 block jackknifes
    mt = mt.annotate_entries(
        __step2_initial_w=1.0/(mt.__w_initial_floor *
                               2.0 * (mt.__initial_betas[0] +
                                      mt.__initial_betas[1] *
                                      mt.__x_floor)**2))

    mt = mt.annotate_cols(
        __final_betas=[
            mt.__step1_betas[0],
            mt.__step2_betas[1]],
        __c=(hl.agg.sum(mt.__step2_initial_w * mt.__x) /
             hl.agg.sum(mt.__step2_initial_w * mt.__x**2)))

    mt = mt.annotate_cols(__final_block_betas=hl.map(
        lambda i: (mt.__step2_block_betas[i] - mt.__c *
                   (mt.__step1_block_betas[i][0] - mt.__final_betas[0])),
        hl.range(0, n_blocks)))

    mt = mt.annotate_cols(
        __final_block_betas_bias_corrected=(n_blocks * mt.__final_betas[1] -
                                            (n_blocks - 1) *
                                            mt.__final_block_betas))

    mt = mt.annotate_cols(
        __final_jackknife_mean=[
            mt.__step1_jackknife_mean[0],
            hl.mean(mt.__final_block_betas_bias_corrected)],
        __final_jackknife_variance=[
            mt.__step1_jackknife_variance[0],
            (hl.sum(mt.__final_block_betas_bias_corrected**2) -
             hl.sum(mt.__final_block_betas_bias_corrected)**2 /
             n_blocks) / (n_blocks - 1) / n_blocks])

    # convert coefficient to heritability estimate
    mt = mt.annotate_cols(
        phenotype=mt.__y_name,
        mean_chi_sq=hl.agg.mean(mt.__y),
        intercept=hl.struct(
            estimate=mt.__final_betas[0],
            standard_error=hl.sqrt(mt.__final_jackknife_variance[0])),
        snp_heritability=hl.struct(
            estimate=(M/hl.agg.mean(mt.__n)) * mt.__final_betas[1],
            standard_error=hl.sqrt((M/hl.agg.mean(mt.__n))**2 *
                                   mt.__final_jackknife_variance[1])))

    # format and return results
    ht = mt.cols()
    ht = ht.key_by(ht.phenotype)
    ht = ht.select(ht.mean_chi_sq,
                   ht.intercept,
                   ht.snp_heritability)

    ht_tmp_file = new_temp_file()
    ht.write(ht_tmp_file)
    ht = hl.read_table(ht_tmp_file)
    
    return ht
コード例 #34
0
ファイル: family_methods.py プロジェクト: tianyunwang/hail
def de_novo(mt: MatrixTable,
            pedigree: Pedigree,
            pop_frequency_prior,
            *,
            min_gq: int = 20,
            min_p: float = 0.05,
            max_parent_ab: float = 0.05,
            min_child_ab: float = 0.20,
            min_dp_ratio: float = 0.10) -> Table:
    r"""Call putative *de novo* events from trio data.

    .. include:: ../_templates/req_tstring.rst

    .. include:: ../_templates/req_tvariant.rst

    .. include:: ../_templates/req_biallelic.rst

    Examples
    --------

    Call de novo events:

    >>> pedigree = hl.Pedigree.read('data/trios.fam')
    >>> priors = hl.import_table('data/gnomadFreq.tsv', impute=True)
    >>> priors = priors.transmute(**hl.parse_variant(priors.Variant)).key_by('locus', 'alleles')
    >>> de_novo_results = hl.de_novo(dataset, pedigree, pop_frequency_prior=priors[dataset.row_key].AF)

    Notes
    -----
    This method assumes the GATK high-throughput sequencing fields exist:
    `GT`, `AD`, `DP`, `GQ`, `PL`.

    This method replicates the functionality of `Kaitlin Samocha's de novo
    caller <https://github.com/ksamocha/de_novo_scripts>`__. The version
    corresponding to git commit ``bde3e40`` is implemented in Hail with her
    permission and assistance.

    This method produces a :class:`.Table` with the following fields:

     - `locus` (``locus``) -- Variant locus.
     - `alleles` (``array<str>``) -- Variant alleles.
     - `id` (``str``) -- Proband sample ID.
     - `prior` (``float64``) -- Site frequency prior. It is the maximum of:
       the computed dataset alternate allele frequency, the
       `pop_frequency_prior` parameter, and the global prior
       ``1 / 3e7``.
     - `proband` (``struct``) -- Proband column fields from `mt`.
     - `father` (``struct``) -- Father column fields from `mt`.
     - `mother` (``struct``) -- Mother column fields from `mt`.
     - `proband_entry` (``struct``) -- Proband entry fields from `mt`.
     - `father_entry` (``struct``) -- Father entry fields from `mt`.
     - `proband_entry` (``struct``) -- Mother entry fields from `mt`.
     - `is_female` (``bool``) -- ``True`` if proband is female.
     - `p_de_novo` (``float64``) -- Unfiltered posterior probability
       that the event is *de novo* rather than a missed heterozygous
       event in a parent.
     - `confidence` (``str``) Validation confidence. One of: ``'HIGH'``,
       ``'MEDIUM'``, ``'LOW'``.

    The key of the table is ``['locus', 'alleles', 'id']``.

    The model looks for de novo events in which both parents are homozygous
    reference and the proband is a heterozygous. The model makes the simplifying
    assumption that when this configuration ``x = (AA, AA, AB)`` of calls
    occurs, exactly one of the following is true:

     - ``d``: a de novo mutation occurred in the proband and all calls are
       accurate.
     - ``m``: at least one parental allele is actually heterozygous and
       the proband call is accurate.

    We can then estimate the posterior probability of a de novo mutation as:

    .. math::

        \mathrm{P_{\text{de novo}}} = \frac{\mathrm{P}(d\,|\,x)}{\mathrm{P}(d\,|\,x) + \mathrm{P}(m\,|\,x)}

    Applying Bayes rule to the numerator and denominator yields

    .. math::

        \frac{\mathrm{P}(x\,|\,d)\,\mathrm{P}(d)}{\mathrm{P}(x\,|\,d)\,\mathrm{P}(d) +
        \mathrm{P}(x\,|\,m)\,\mathrm{P}(m)}

    The prior on de novo mutation is estimated from the rate in the literature:

    .. math::

        \mathrm{P}(d) = \frac{1 \text{mutation}}{30,000,000\, \text{bases}}

    The prior used for at least one alternate allele between the parents
    depends on the alternate allele frequency:

    .. math::

        \mathrm{P}(m) = 1 - (1 - AF)^4

    The likelihoods :math:`\mathrm{P}(x\,|\,d)` and :math:`\mathrm{P}(x\,|\,m)`
    are computed from the PL (genotype likelihood) fields using these
    factorizations:

    .. math::

        \mathrm{P}(x = (AA, AA, AB) \,|\,d) = \Big(
        &\mathrm{P}(x_{\mathrm{father}} = AA \,|\, \mathrm{father} = AA) \\
        \cdot &\mathrm{P}(x_{\mathrm{mother}} = AA \,|\, \mathrm{mother} =
        AA) \\ \cdot &\mathrm{P}(x_{\mathrm{proband}} = AB \,|\,
        \mathrm{proband} = AB) \Big)

    .. math::

        \mathrm{P}(x = (AA, AA, AB) \,|\,m) = \Big( &
        \mathrm{P}(x_{\mathrm{father}} = AA \,|\, \mathrm{father} = AB)
        \cdot \mathrm{P}(x_{\mathrm{mother}} = AA \,|\, \mathrm{mother} =
        AA) \\ + \, &\mathrm{P}(x_{\mathrm{father}} = AA \,|\,
        \mathrm{father} = AA) \cdot \mathrm{P}(x_{\mathrm{mother}} = AA
        \,|\, \mathrm{mother} = AB) \Big) \\ \cdot \,
        &\mathrm{P}(x_{\mathrm{proband}} = AB \,|\, \mathrm{proband} = AB)

    (Technically, the second factorization assumes there is exactly (rather
    than at least) one alternate allele among the parents, which may be
    justified on the grounds that it is typically the most likely case by far.)

    While this posterior probability is a good metric for grouping putative de
    novo mutations by validation likelihood, there exist error modes in
    high-throughput sequencing data that are not appropriately accounted for by
    the phred-scaled genotype likelihoods. To this end, a number of hard filters
    are applied in order to assign validation likelihood.

    These filters are different for SNPs and insertions/deletions. In the below
    rules, the following variables are used:

     - ``DR`` refers to the ratio of the read depth in the proband to the
       combined read depth in the parents.
     - ``AB`` refers to the read allele balance of the proband (number of
       alternate reads divided by total reads).
     - ``AC`` refers to the count of alternate alleles across all individuals
       in the dataset at the site.
     - ``p`` refers to :math:`\mathrm{P_{\text{de novo}}}`.
     - ``min_p`` refers to the ``min_p`` function parameter.

    HIGH-quality SNV:

    .. code-block:: text

        p > 0.99 && AB > 0.3 && DR > 0.2
            or
        p > 0.99 && AB > 0.3 && AC == 1

    MEDIUM-quality SNV:

    .. code-block:: text

        p > 0.5 && AB > 0.3
            or
        p > 0.5 && AB > 0.2 && AC == 1

    LOW-quality SNV:

    .. code-block:: text

        p > min_p && AB > 0.2

    HIGH-quality indel:

    .. code-block:: text

        p > 0.99 && AB > 0.3 && DR > 0.2
            or
        p > 0.99 && AB > 0.3 && AC == 1

    MEDIUM-quality indel:

    .. code-block:: text

        p > 0.5 && AB > 0.3
            or
        p > 0.5 && AB > 0.2 and AC == 1

    LOW-quality indel:

    .. code-block:: text

        p > min_p && AB > 0.2

    Additionally, de novo candidates are not considered if the proband GQ is
    smaller than the ``min_gq`` parameter, if the proband allele balance is
    lower than the ``min_child_ab`` parameter, if the depth ratio between the
    proband and parents is smaller than the ``min_depth_ratio`` parameter, or if
    the allele balance in a parent is above the ``max_parent_ab`` parameter.

    Parameters
    ----------
    mt : :class:`.MatrixTable`
        High-throughput sequencing dataset.
    pedigree : :class:`.Pedigree`
        Sample pedigree.
    pop_frequency_prior : :class:`.Float64Expression`
        Expression for population alternate allele frequency prior.
    min_gq
        Minimum proband GQ to be considered for *de novo* calling.
    min_p
        Minimum posterior probability to be considered for *de novo* calling.
    max_parent_ab
        Maximum parent allele balance.
    min_child_ab
        Minimum proband allele balance/
    min_dp_ratio
        Minimum ratio between proband read depth and parental read depth.

    Returns
    -------
    :class:`.Table`
    """
    DE_NOVO_PRIOR = 1 / 30000000
    MIN_POP_PRIOR = 100 / 30000000

    required_entry_fields = {'GT', 'AD', 'DP', 'GQ', 'PL'}
    missing_fields = required_entry_fields - set(mt.entry)
    if missing_fields:
        raise ValueError(
            f"'de_novo': expected 'MatrixTable' to have at least {required_entry_fields}, "
            f"missing {missing_fields}")

    mt = mt.annotate_rows(__prior=pop_frequency_prior,
                          __alt_alleles=hl.agg.sum(mt.GT.n_alt_alleles()),
                          __total_alleles=2 * hl.agg.sum(hl.is_defined(mt.GT)))
    # subtract 1 from __alt_alleles to correct for the observed genotype
    mt = mt.annotate_rows(
        __site_freq=hl.max((mt.__alt_alleles - 1) /
                           mt.__total_alleles, mt.__prior, MIN_POP_PRIOR))
    mt = require_biallelic(mt, 'de_novo')

    # FIXME check that __site_freq is between 0 and 1 when possible in expr
    tm = trio_matrix(mt, pedigree, complete_trios=True)

    autosomal = tm.locus.in_autosome_or_par() | (tm.locus.in_x_nonpar()
                                                 & tm.is_female)
    hemi_x = tm.locus.in_x_nonpar() & ~tm.is_female
    hemi_y = tm.locus.in_y_nonpar() & ~tm.is_female
    hemi_mt = tm.locus.in_mito() & tm.is_female

    is_snp = hl.is_snp(tm.alleles[0], tm.alleles[1])
    n_alt_alleles = tm.__alt_alleles
    prior = tm.__site_freq
    het_hom_hom = tm.proband_entry.GT.is_het() & tm.father_entry.GT.is_hom_ref(
    ) & tm.mother_entry.GT.is_hom_ref()
    kid_ad_fail = tm.proband_entry.AD[1] / hl.sum(
        tm.proband_entry.AD) < min_child_ab

    failure = hl.null(hl.tstruct(p_de_novo=hl.tfloat64, confidence=hl.tstr))

    kid = tm.proband_entry
    dad = tm.father_entry
    mom = tm.mother_entry

    kid_linear_pl = 10**(-kid.PL / 10)
    kid_pp = hl.bind(lambda x: x / hl.sum(x), kid_linear_pl)

    dad_linear_pl = 10**(-dad.PL / 10)
    dad_pp = hl.bind(lambda x: x / hl.sum(x), dad_linear_pl)

    mom_linear_pl = 10**(-mom.PL / 10)
    mom_pp = hl.bind(lambda x: x / hl.sum(x), mom_linear_pl)

    kid_ad_ratio = kid.AD[1] / hl.sum(kid.AD)
    dp_ratio = kid.DP / (dad.DP + mom.DP)

    def call_auto(kid_pp, dad_pp, mom_pp, kid_ad_ratio):
        p_data_given_dn = dad_pp[0] * mom_pp[0] * kid_pp[1] * DE_NOVO_PRIOR
        p_het_in_parent = 1 - (1 - prior)**4
        p_data_given_missed_het = (dad_pp[1] * mom_pp[0] + dad_pp[0] *
                                   mom_pp[1]) * kid_pp[1] * p_het_in_parent
        p_de_novo = p_data_given_dn / (p_data_given_dn +
                                       p_data_given_missed_het)

        def solve(p_de_novo):
            return (hl.case().when(kid.GQ < min_gq, failure).when(
                (kid.DP / (dad.DP + mom.DP) < min_dp_ratio)
                | ~(kid_ad_ratio >= min_child_ab), failure).when(
                    (hl.sum(mom.AD) == 0) | (hl.sum(dad.AD) == 0),
                    failure).when(
                        (mom.AD[1] / hl.sum(mom.AD) > max_parent_ab) |
                        (dad.AD[1] / hl.sum(dad.AD) > max_parent_ab),
                        failure).when(p_de_novo < min_p, failure).when(
                            ~is_snp,
                            hl.case().when(
                                (p_de_novo > 0.99) & (kid_ad_ratio > 0.3) &
                                (n_alt_alleles == 1),
                                hl.struct(p_de_novo=p_de_novo,
                                          confidence='HIGH')).when(
                                              (p_de_novo > 0.5) &
                                              (kid_ad_ratio > 0.3) &
                                              (n_alt_alleles <= 5),
                                              hl.struct(
                                                  p_de_novo=p_de_novo,
                                                  confidence='MEDIUM')).when(
                                                      (p_de_novo > 0.05) &
                                                      (kid_ad_ratio > 0.2),
                                                      hl.struct(
                                                          p_de_novo=p_de_novo,
                                                          confidence='LOW')).
                            or_missing()).default(hl.case().when(
                                ((p_de_novo > 0.99) & (kid_ad_ratio > 0.3) &
                                 (dp_ratio > 0.2)) | ((p_de_novo > 0.99) &
                                                      (kid_ad_ratio > 0.3) &
                                                      (n_alt_alleles == 1)) |
                                ((p_de_novo > 0.5) & (kid_ad_ratio > 0.3) &
                                 (n_alt_alleles < 10) & (kid.DP > 10)),
                                hl.struct(p_de_novo=p_de_novo,
                                          confidence='HIGH')).when(
                                              (p_de_novo > 0.5) &
                                              ((kid_ad_ratio > 0.3) |
                                               (n_alt_alleles == 1)),
                                              hl.struct(
                                                  p_de_novo=p_de_novo,
                                                  confidence='MEDIUM')).when(
                                                      (p_de_novo > 0.05) &
                                                      (kid_ad_ratio > 0.2),
                                                      hl.struct(
                                                          p_de_novo=p_de_novo,
                                                          confidence='LOW')).
                                                  or_missing()))

        return hl.bind(solve, p_de_novo)

    def call_hemi(kid_pp, parent, parent_pp, kid_ad_ratio):
        p_data_given_dn = parent_pp[0] * kid_pp[1] * DE_NOVO_PRIOR
        p_het_in_parent = 1 - (1 - prior)**4
        p_data_given_missed_het = (parent_pp[1] +
                                   parent_pp[2]) * kid_pp[2] * p_het_in_parent
        p_de_novo = p_data_given_dn / (p_data_given_dn +
                                       p_data_given_missed_het)

        def solve(p_de_novo):
            return (hl.case().when(kid.GQ < min_gq, failure).when(
                (kid.DP /
                 (parent.DP) < min_dp_ratio) | (kid_ad_ratio < min_child_ab),
                failure).when((hl.sum(parent.AD) == 0), failure).when(
                    parent.AD[1] / hl.sum(parent.AD) > max_parent_ab,
                    failure).when(p_de_novo < min_p, failure).when(
                        ~is_snp,
                        hl.case().when(
                            (p_de_novo > 0.99) & (kid_ad_ratio > 0.3) &
                            (n_alt_alleles == 1),
                            hl.struct(
                                p_de_novo=p_de_novo, confidence='HIGH')).when(
                                    (p_de_novo > 0.5) & (kid_ad_ratio > 0.3) &
                                    (n_alt_alleles <= 5),
                                    hl.struct(p_de_novo=p_de_novo,
                                              confidence='MEDIUM')).when(
                                                  (p_de_novo > 0.05) &
                                                  (kid_ad_ratio > 0.3),
                                                  hl.struct(
                                                      p_de_novo=p_de_novo,
                                                      confidence='LOW')).
                        or_missing()).default(
                            hl.case().when(
                                ((p_de_novo > 0.99) & (kid_ad_ratio > 0.3) &
                                 (dp_ratio > 0.2)) |
                                ((p_de_novo > 0.99) & (kid_ad_ratio > 0.3) &
                                 (n_alt_alleles == 1)) |
                                ((p_de_novo > 0.5) & (kid_ad_ratio > 0.3) &
                                 (n_alt_alleles < 10) & (kid.DP > 10)),
                                hl.struct(p_de_novo=p_de_novo,
                                          confidence='HIGH')).when(
                                              (p_de_novo > 0.5) &
                                              ((kid_ad_ratio > 0.3) |
                                               (n_alt_alleles == 1)),
                                              hl.struct(p_de_novo=p_de_novo,
                                                        confidence='MEDIUM')).
                            when((p_de_novo > 0.05) & (kid_ad_ratio > 0.2),
                                 hl.struct(p_de_novo=p_de_novo,
                                           confidence='LOW')).or_missing()))

        return hl.bind(solve, p_de_novo)

    de_novo_call = (hl.case().when(~het_hom_hom | kid_ad_fail, failure).when(
        autosomal,
        hl.bind(call_auto, kid_pp, dad_pp, mom_pp, kid_ad_ratio)).when(
            hemi_x | hemi_mt,
            hl.bind(call_hemi, kid_pp, mom, mom_pp, kid_ad_ratio)).when(
                hemi_y, hl.bind(call_hemi, kid_pp, dad, dad_pp,
                                kid_ad_ratio)).or_missing())

    tm = tm.annotate_entries(__call=de_novo_call)
    tm = tm.filter_entries(hl.is_defined(tm.__call))
    entries = tm.entries()
    return (entries.select('__site_freq', 'proband', 'father', 'mother',
                           'proband_entry', 'father_entry', 'mother_entry',
                           'is_female',
                           **entries.__call).rename({'__site_freq': 'prior'}))
コード例 #35
0
ファイル: test_table.py プロジェクト: lfrancioli/hail
    def test_annotate(self):
        schema = hl.tstruct(a=hl.tint32, b=hl.tint32, c=hl.tint32, d=hl.tint32, e=hl.tstr, f=hl.tarray(hl.tint32))

        rows = [{'a': 4, 'b': 1, 'c': 3, 'd': 5, 'e': "hello", 'f': [1, 2, 3]},
                {'a': 0, 'b': 5, 'c': 13, 'd': -1, 'e': "cat", 'f': []},
                {'a': 4, 'b': 2, 'c': 20, 'd': 3, 'e': "dog", 'f': [5, 6, 7]}]

        kt = hl.Table.parallelize(rows, schema)

        self.assertTrue(kt.annotate()._same(kt))

        result1 = convert_struct_to_dict(kt.annotate(foo=kt.a + 1,
                                                     foo2=kt.a).take(1)[0])

        self.assertDictEqual(result1, {'a': 4,
                                       'b': 1,
                                       'c': 3,
                                       'd': 5,
                                       'e': "hello",
                                       'f': [1, 2, 3],
                                       'foo': 5,
                                       'foo2': 4})

        result3 = convert_struct_to_dict(kt.annotate(
            x1=kt.f.map(lambda x: x * 2),
            x2=kt.f.map(lambda x: [x, x + 1]).flatmap(lambda x: x),
            x3=hl.min(kt.f),
            x4=hl.max(kt.f),
            x5=hl.sum(kt.f),
            x6=hl.product(kt.f),
            x7=kt.f.length(),
            x8=kt.f.filter(lambda x: x == 3),
            x9=kt.f[1:],
            x10=kt.f[:],
            x11=kt.f[1:2],
            x12=kt.f.map(lambda x: [x, x + 1]),
            x13=kt.f.map(lambda x: [[x, x + 1], [x + 2]]).flatmap(lambda x: x),
            x14=hl.cond(kt.a < kt.b, kt.c, hl.null(hl.tint32)),
            x15={1, 2, 3}
        ).take(1)[0])

        self.assertDictEqual(result3, {'a': 4,
                                       'b': 1,
                                       'c': 3,
                                       'd': 5,
                                       'e': "hello",
                                       'f': [1, 2, 3],
                                       'x1': [2, 4, 6], 'x2': [1, 2, 2, 3, 3, 4],
                                       'x3': 1, 'x4': 3, 'x5': 6, 'x6': 6, 'x7': 3, 'x8': [3],
                                       'x9': [2, 3], 'x10': [1, 2, 3], 'x11': [2],
                                       'x12': [[1, 2], [2, 3], [3, 4]],
                                       'x13': [[1, 2], [3], [2, 3], [4], [3, 4], [5]],
                                       'x14': None, 'x15': set([1, 2, 3])})
        kt.annotate(
            x1=kt.a + 5,
            x2=5 + kt.a,
            x3=kt.a + kt.b,
            x4=kt.a - 5,
            x5=5 - kt.a,
            x6=kt.a - kt.b,
            x7=kt.a * 5,
            x8=5 * kt.a,
            x9=kt.a * kt.b,
            x10=kt.a / 5,
            x11=5 / kt.a,
            x12=kt.a / kt.b,
            x13=-kt.a,
            x14=+kt.a,
            x15=kt.a == kt.b,
            x16=kt.a == 5,
            x17=5 == kt.a,
            x18=kt.a != kt.b,
            x19=kt.a != 5,
            x20=5 != kt.a,
            x21=kt.a > kt.b,
            x22=kt.a > 5,
            x23=5 > kt.a,
            x24=kt.a >= kt.b,
            x25=kt.a >= 5,
            x26=5 >= kt.a,
            x27=kt.a < kt.b,
            x28=kt.a < 5,
            x29=5 < kt.a,
            x30=kt.a <= kt.b,
            x31=kt.a <= 5,
            x32=5 <= kt.a,
            x33=(kt.a == 0) & (kt.b == 5),
            x34=(kt.a == 0) | (kt.b == 5),
            x35=False,
            x36=True
        )
コード例 #36
0
ファイル: sparse_mt.py プロジェクト: enriquea/gnomad_hail
def compute_coverage_stats(
    mt: hl.MatrixTable,
    reference_ht: hl.Table,
    coverage_over_x_bins: List[int] = [1, 5, 10, 15, 20, 25, 30, 50, 100],
) -> hl.Table:
    """
    Computes the following coverage statistics for every base of the `reference_ht` provided:
        - mean
        - median
        - total DP
        - fraction of samples with coverage above X, for each x in `coverage_over_x_bins`

    The `reference_ht` is a table that contains row for each locus coverage should be computed on.
    It needs to be keyed with the same keys as `mt`, typically either `locus` or `locus, alleles`.
    The `reference_ht` can e.g. be created using `get_reference_ht`

    :param mt: Input sparse MT
    :param reference_ht: Input reference HT
    :param coverage_over_x_bins: List of boundaries for computing samples over X
    :return: Table with per-base coverage stats
    """

    n_samples = mt.count_cols()
    print(f"Computing coverage stats on {n_samples} samples.")

    # Create an outer join with the reference Table
    mt = mt.select_entries("END", "DP").select_cols().select_rows()
    col_key_fields = list(mt.col_key)
    t = mt._localize_entries("__entries", "__cols")
    t = t.join(reference_ht.key_by(*mt.row_key).select(_in_ref=True), how="outer")
    t = t.annotate(
        __entries=hl.or_else(
            t.__entries,
            hl.range(n_samples).map(lambda x: hl.null(t.__entries.dtype.element_type)),
        )
    )
    mt = t._unlocalize_entries("__entries", "__cols", col_key_fields)

    # Densify
    mt = hl.experimental.densify(mt)

    # Filter rows where the reference is missing
    mt = mt.filter_rows(mt._in_ref)

    # Unfilter entries so that entries with no ref block overlap aren't null
    mt = mt.unfilter_entries()

    # Compute coverage stats
    coverage_over_x_bins = sorted(coverage_over_x_bins)
    max_coverage_bin = coverage_over_x_bins[-1]
    hl_coverage_over_x_bins = hl.array(coverage_over_x_bins)

    # This expression creates a counter DP -> number of samples for DP between 0 and max_coverage_bin
    coverage_counter_expr = hl.agg.counter(
        hl.min(max_coverage_bin, hl.or_else(mt.DP, 0))
    )

    # This expression aggregates the DP counter in reverse order of the coverage_over_x_bins
    # and computes the cumulative sum over them.
    #  It needs to be in reverse order because we want the sum over samples covered by > X.
    count_array_expr = hl.cumulative_sum(
        hl.array(
            [
                hl.int32(coverage_counter_expr.get(max_coverage_bin, 0))
            ]  # The coverage was already floored to the max_coverage_bin, so no more aggregation is needed for the max bin
        ).extend(  # For each of the other bins, coverage needs to be summed between the boundaries
            hl.range(hl.len(hl_coverage_over_x_bins) - 1, 0, step=-1).map(
                lambda i: hl.sum(
                    hl.range(
                        hl_coverage_over_x_bins[i - 1], hl_coverage_over_x_bins[i]
                    ).map(lambda j: hl.int32(coverage_counter_expr.get(j, 0)))
                )
            )
        )
    )
    mean_expr = hl.agg.mean(hl.or_else(mt.DP, 0))

    # Annotate rows now
    return mt.select_rows(
        mean=hl.cond(hl.is_nan(mean_expr), 0, mean_expr),
        median_approx=hl.or_else(hl.agg.approx_median(hl.or_else(mt.DP, 0)), 0),
        total_DP=hl.agg.sum(mt.DP),
        **{
            f"over_{x}": count_array_expr[i] / n_samples
            for i, x in zip(
                range(
                    len(coverage_over_x_bins) - 1, -1, -1
                ),  # Reverse the bin index as count_array_expr has the reverse order
                coverage_over_x_bins,
            )
        },
    ).rows()
コード例 #37
0
ファイル: qc.py プロジェクト: jigold/hail
def variant_qc(mt, name='variant_qc') -> MatrixTable:
    """Compute common variant statistics (quality control metrics).

    .. include:: ../_templates/req_tvariant.rst

    Examples
    --------

    >>> dataset_result = hl.variant_qc(dataset)

    Notes
    -----
    This method computes variant statistics from the genotype data, returning
    a new struct field `name` with the following metrics based on the fields
    present in the entry schema.

    If `mt` contains an entry field `DP` of type :py:data:`.tint32`, then the
    field `dp_stats` is computed. If `mt` contains an entry field `GQ` of type
    :py:data:`.tint32`, then the field `gq_stats` is computed. Both `dp_stats`
    and `gq_stats` are structs with with four fields:

    - `mean` (``float64``) -- Mean value.
    - `stdev` (``float64``) -- Standard deviation (zero degrees of freedom).
    - `min` (``int32``) -- Minimum value.
    - `max` (``int32``) -- Maximum value.

    If the dataset does not contain an entry field `GT` of type
    :py:data:`.tcall`, then an error is raised. The following fields are always
    computed from `GT`:

    - `AF` (``array<float64>``) -- Calculated allele frequency, one element
      per allele, including the reference. Sums to one. Equivalent to
      `AC` / `AN`.
    - `AC` (``array<int32>``) -- Calculated allele count, one element per
      allele, including the reference. Sums to `AN`.
    - `AN` (``int32``) -- Total number of called alleles.
    - `homozygote_count` (``array<int32>``) -- Number of homozygotes per
      allele. One element per allele, including the reference.
    - `call_rate` (``float64``) -- Fraction of calls neither missing nor filtered.
       Equivalent to `n_called` / :meth:`.count_cols`.
    - `n_called` (``int64``) -- Number of samples with a defined `GT`.
    - `n_not_called` (``int64``) -- Number of samples with a missing `GT`.
    - `n_filtered` (``int64``) -- Number of filtered entries.
    - `n_het` (``int64``) -- Number of heterozygous samples.
    - `n_non_ref` (``int64``) -- Number of samples with at least one called
      non-reference allele.
    - `het_freq_hwe` (``float64``) -- Expected frequency of heterozygous
      samples under Hardy-Weinberg equilibrium. See
      :func:`.functions.hardy_weinberg_test` for details.
    - `p_value_hwe` (``float64``) -- p-value from test of Hardy-Weinberg equilibrium.
      See :func:`.functions.hardy_weinberg_test` for details.

    Warning
    -------
    `het_freq_hwe` and `p_value_hwe` are calculated as in
    :func:`.functions.hardy_weinberg_test`, with non-diploid calls
    (``ploidy != 2``) ignored in the counts. As this test is only
    statistically rigorous in the biallelic setting, :func:`.variant_qc`
    sets both fields to missing for multiallelic variants. Consider using
    :func:`~hail.methods.split_multi` to split multi-allelic variants beforehand.

    Parameters
    ----------
    mt : :class:`.MatrixTable`
        Dataset.
    name : :obj:`str`
        Name for resulting field.

    Returns
    -------
    :class:`.MatrixTable`
    """
    require_row_key_variant(mt, 'variant_qc')

    bound_exprs = {}
    gq_dp_exprs = {}

    def has_field_of_type(name, dtype):
        return name in mt.entry and mt[name].dtype == dtype

    if has_field_of_type('DP', hl.tint32):
        gq_dp_exprs['dp_stats'] = hl.agg.stats(mt.DP).select('mean', 'stdev', 'min', 'max')

    if has_field_of_type('GQ', hl.tint32):
        gq_dp_exprs['gq_stats'] = hl.agg.stats(mt.GQ).select('mean', 'stdev', 'min', 'max')

    if not has_field_of_type('GT',  hl.tcall):
        raise ValueError(f"'variant_qc': expect an entry field 'GT' of type 'call'")

    bound_exprs['n_called'] = hl.agg.count_where(hl.is_defined(mt['GT']))
    bound_exprs['n_not_called'] = hl.agg.count_where(hl.is_missing(mt['GT']))
    bound_exprs['n_filtered'] = mt.count_cols(_localize=False) - hl.agg.count()
    bound_exprs['call_stats'] = hl.agg.call_stats(mt.GT, mt.alleles)

    result = hl.rbind(hl.struct(**bound_exprs),
                      lambda e1: hl.rbind(
                          hl.case().when(hl.len(mt.alleles) == 2,
                                         hl.hardy_weinberg_test(e1.call_stats.homozygote_count[0],
                                                                e1.call_stats.AC[1] - 2 *
                                                                e1.call_stats.homozygote_count[1],
                                                                e1.call_stats.homozygote_count[1])
                                         ).or_missing(),
                          lambda hwe: hl.struct(**{
                              **gq_dp_exprs,
                              **e1.call_stats,
                              'call_rate': hl.float(e1.n_called) / (e1.n_called + e1.n_not_called + e1.n_filtered),
                              'n_called': e1.n_called,
                              'n_not_called': e1.n_not_called,
                              'n_filtered': e1.n_filtered,
                              'n_het': e1.n_called - hl.sum(e1.call_stats.homozygote_count),
                              'n_non_ref': e1.n_called - e1.call_stats.homozygote_count[0],
                              'het_freq_hwe': hwe.het_freq_hwe,
                              'p_value_hwe': hwe.p_value})))

    return mt.annotate_rows(**{name: result})