コード例 #1
0
def generate_nonlocaljump_gamma_and_Lterms(num_qubits, Gamma, mu):
    #gammas_to_append = 1
    gammas = []
    L_terms = []
    if num_qubits == 1:
        raise (
            RuntimeError('Cannot generate non-local jump terms with 1 qubit'))
    else:
        gammas.append(1)
        cof = np.sqrt(Gamma * (1 - mu))
        L_terms.append(
            hcp.generate_arbitary_hamiltonian(
                num_qubits,
                [0.25 * cof, 0.25j * cof, -0.25j * cof, 0.25 * cof], [
                    '1' + '0' * (num_qubits - 2) + '1', '2' + '0' *
                    (num_qubits - 2) + '1', '1' + '0' *
                    (num_qubits - 2) + '2', '2' + '0' * (num_qubits - 2) + '2'
                ]))
        gammas.append(1)
        cof = np.sqrt(Gamma * (1 + mu))
        L_terms.append(
            hcp.generate_arbitary_hamiltonian(
                num_qubits,
                [0.25 * cof, -0.25j * cof, 0.25j * cof, 0.25 * cof], [
                    '1' + '0' * (num_qubits - 2) + '1', '2' + '0' *
                    (num_qubits - 2) + '1', '1' + '0' *
                    (num_qubits - 2) + '2', '2' + '0' * (num_qubits - 2) + '2'
                ]))
    return (gammas, L_terms)
コード例 #2
0
def generate_fuji_boy_gamma_and_Lterms(num_qubits):
    gammas_to_append = 1
    gammas = []
    L_terms = []
    if num_qubits == 1:
        gammas.append(gammas_to_append)
        L_terms.append(hcp.generate_arbitary_hamiltonian(1, [0.5,0.5j],["1","2"]))
    else:
        for i in range(num_qubits):
            gammas.append(gammas_to_append)
            L_terms.append(hcp.generate_arbitary_hamiltonian(num_qubits,[1],['0'*i+'3'+'0'*(num_qubits-1-i)]))
            gammas.append(gammas_to_append)
            L_terms.append(hcp.generate_arbitary_hamiltonian(num_qubits,[0.5,-0.5j],['0'*i+'1'+'0'*(num_qubits-1-i),'0'*i+'2'+'0'*(num_qubits-1-i)]))
    return (gammas, L_terms)
コード例 #3
0
def generate_fuji_boy_hamiltonian(num_qubits, g):
    epsilon = 0.5
    if num_qubits == 1:
        hamiltonian = hcp.generate_arbitary_hamiltonian(num_qubits,[epsilon,g],['3','1'])
    else:
        hamiltonian = hcp.transverse_ising_model_1d(num_qubits, -0.5, g)
    return hamiltonian
コード例 #4
0
def generate_total_magnetisation_matform(num_qubits):
    def make_sigma_z_string(i):
        pauli_string_deconstructed = ["0"]*num_qubits
        pauli_string_deconstructed[i] = "3"
        pauli_string_str = "".join(pauli_string_deconstructed)
        return pauli_string_str
    p_strings = [make_sigma_z_string(i) for i in range(num_qubits)]
    betas = [1 for i in range(num_qubits)]
    M = hcp.generate_arbitary_hamiltonian(num_qubits, betas, p_strings)
    return M.to_matrixform()
コード例 #5
0
def generate_bulk_dephasing(num_qubits):
    gammas = []
    L_terms = []
    if num_qubits == 1:
        raise(RuntimeError("One qubit case not considered"))
    else:
        for i in range(num_qubits):
            pauli_string_deconstructed = ["0"]*num_qubits
            pauli_string_deconstructed[i] = "3"
            pauli_string_str = "".join(pauli_string_deconstructed)
            L_i = hcp.generate_arbitary_hamiltonian(num_qubits, [1], [pauli_string_str])
            # print(L_i.to_matrixform())
            gammas.append(1)
            L_terms.append(L_i)
    return (gammas, L_terms)
コード例 #6
0
    delta = 0.1
    #gammas = [0.1]
    gammas = []
    epsilon = 0.5
    #hamiltonian = hcp.generate_arbitary_hamiltonian(num_qubits,[delta,epsilon],['3','1'])
    #L_terms = [hcp.generate_arbitary_hamiltonian(num_qubits,[1,-1j],['1','2'])]
    hcoeffs = []
    hstrings = []

    for i in range(num_qubits - 1):
        hcoeffs.append(0.5)
        hstrings.append('0' * i + '33' + '0' * (num_qubits - 2 - i))
    for i in range(num_qubits):
        hcoeffs.append(0.5)
        hstrings.append('0' * i + '1' + '0' * (num_qubits - 1 - i))
    hamiltonian = hcp.generate_arbitary_hamiltonian(num_qubits, hcoeffs,
                                                    hstrings)

    L_terms = []
    for i in range(num_qubits):
        gammas.append(0.1)
        L_terms.append(
            hcp.generate_arbitary_hamiltonian(
                num_qubits, [1], ['0' * i + '3' + '0' * (num_qubits - 1 - i)]))
        gammas.append(0.1)
        L_terms.append(
            hcp.generate_arbitary_hamiltonian(num_qubits, [0.5, -0.5j], [
                '0' * i + '1' + '0' * (num_qubits - 1 - i),
                '0' * i + '2' + '0' * (num_qubits - 1 - i)
            ]))
    #L_terms = [hcp.generate_arbitary_hamiltonian(num_qubits,[1],['30'])]
    #L_terms.append(hcp.generate_arbitary_hamiltonian(num_qubits,[0.5,-0.5j],['10','20']))
コード例 #7
0
uptowhatK = 1
num_qubits = 2
optimizer = 'eig'#'eigh' , 'eig'
eigh_inv_cond = 10**(-6)
eig_inv_cond = 10**(-6)
degeneracy_tol = 5

#Generate initial state
initial_state = acp.Initialstate(num_qubits, "efficient_SU2", 267, 2)

L = np.array([[-0.1,-0.25j,0.25j,0],[-0.25j,-0.05-0.1j,0,0.25j],[0.25j,0,-0.05+0.1j,-0.25j],[0.1,0.25j,-0.25j,0]])

#Converting L^dag L into Hamiltonian
LdagL = np.array([[0.145,0.025+0.0375j,0.025-0.0375j,-0.125],[0.025-0.0375j,0.1375,-0.125,-0.025-0.0125j],[0.025+0.0375j,-0.125,0.1375,-0.025+0.0125j],[-0.125,-0.025+0.0125j,-0.025-0.0125j,0.125]])
pauli_decomp = pcp.paulinomial_decomposition(L) 
hamiltonian = hcp.generate_arbitary_hamiltonian(num_qubits, list(pauli_decomp.values()), list(pauli_decomp.keys()))

#print('Beta values are ' + str(hamiltonian.return_betas()))

ansatz = acp.initial_ansatz(num_qubits)

#Run IQAE
for k in range(1, uptowhatK + 1):
    print(k)
    #Generate Ansatz for this round
    ansatz = acp.gen_next_ansatz(ansatz, hamiltonian, num_qubits)

    E_mat_uneval = mcp.unevaluatedmatrix(num_qubits, ansatz, hamiltonian, "E")
    D_mat_uneval = mcp.unevaluatedmatrix(num_qubits, ansatz, hamiltonian, "D")

    #Here is where we should be able to specify how to evaluate the matrices. However only the exact method (classical matrix multiplication) has been implemented so far
コード例 #8
0
LdagL = np.array([[0.145, 0.025 + 0.0375j, 0.025 - 0.0375j, -0.125],
                  [0.025 - 0.0375j, 0.1375, -0.125, -0.025 - 0.0125j],
                  [0.025 + 0.0375j, -0.125, 0.1375, -0.025 + 0.0125j],
                  [-0.125, -0.025 + 0.0125j, -0.025 - 0.0125j, 0.125]])
pauli_decomp = pcp.paulinomial_decomposition(LdagL)
#print(list(pauli_decomp.values()))

if optimizer == 'feasibility_sdp':
    delta = 0.1
    #gammas = [0.1]
    gammas = [0.1, 0.1, 0.1, 0.1]
    epsilon = 0.5
    #hamiltonian = hcp.generate_arbitary_hamiltonian(num_qubits,[delta,epsilon],['3','1'])
    #L_terms = [hcp.generate_arbitary_hamiltonian(num_qubits,[1,-1j],['1','2'])]
    hamiltonian = hcp.generate_arbitary_hamiltonian(num_qubits,
                                                    [0.5, 0.5, 0.5],
                                                    ['33', '01', '10'])
    L_terms = [hcp.generate_arbitary_hamiltonian(num_qubits, [1], ['30'])]
    L_terms.append(
        hcp.generate_arbitary_hamiltonian(num_qubits, [0.5, -0.5j],
                                          ['10', '20']))
    L_terms.append(hcp.generate_arbitary_hamiltonian(num_qubits, [1], ['03']))
    L_terms.append(
        hcp.generate_arbitary_hamiltonian(num_qubits, [0.5, -0.5j],
                                          ['01', '02']))
else:
    hamiltonian = hcp.generate_arbitary_hamiltonian(
        num_qubits, list(pauli_decomp.values()), list(pauli_decomp.keys()))

#print('Beta values are ' + str(hamiltonian.return_betas()))