コード例 #1
0
    def test_topological_sort(self) -> None:
        """
        Test that topological sort works properly.
        """

        # tuple convention: (outgoing, incoming)
        graph = {
            "1": (["4"], []),
            "2": (["4"], []),
            "3": (["5", "6"], []),
            "4": (["7", "5"], ["1", "2"]),
            "5": (["8"], ["4", "3"]),
            "6": ([], ["3"]),
            "7": (["8"], ["4"]),
            "8": ([], ["7", "5"])
        }  # type: Dict[str, Tuple[List[str], List[str]]]

        self.assertEqual(topological_sort(graph, ["1", "2", "3"]), ["1", "2", "3", "4", "6", "7", "5", "8"])
コード例 #2
0
ファイル: utils_test.py プロジェクト: ucb-bar/hammer
    def test_topological_sort(self) -> None:
        """
        Test that topological sort works properly.
        """

        # tuple convention: (outgoing, incoming)
        graph = {
            "1": (["4"], []),
            "2": (["4"], []),
            "3": (["5", "6"], []),
            "4": (["7", "5"], ["1", "2"]),
            "5": (["8"], ["4", "3"]),
            "6": ([], ["3"]),
            "7": (["8"], ["4"]),
            "8": ([], ["7", "5"])
        }  # type: Dict[str, Tuple[List[str], List[str]]]

        self.assertEqual(topological_sort(graph, ["1", "2", "3"]), ["1", "2", "3", "4", "6", "7", "5", "8"])
コード例 #3
0
def combine_configs(configs: Iterable[dict]) -> dict:
    """
    Combine the given list of *unpacked* configs into a single config.
    Later configs in the list will override the earlier configs.

    :param configs: List of configs.
    :param handle_meta: Handle meta configs?
    :return: A loaded config dictionary.
    """
    expanded_config_reduce = reduce(update_and_expand_meta, configs,
                                    {})  # type: dict
    expanded_config = deepdict(expanded_config_reduce)  # type: dict
    expanded_config_orig = deepdict(expanded_config)  # type: dict

    # Now, we need to handle lazy* metas.
    lazy_metas = {}

    meta_dict_keys = list(expanded_config.keys())
    meta_keys = list(filter(lambda k: k.endswith("_meta"), meta_dict_keys))

    # Graph to keep track of which lazy settings depend on others.
    # key1 -> key2 means key2 depends on key1
    graph = {}  # type: Dict[str, Tuple[List[str], List[str]]]

    meta_len = len("_meta")
    for meta_key in meta_keys:
        setting = meta_key[:-meta_len]  # type: str
        lazy_meta_type = expanded_config[meta_key]  # type: str

        assert lazy_meta_type.startswith(
            "lazy"), "Should have only lazy metas left now"

        # Create lazy_metas without the lazy part.
        # e.g. what used to be a lazysubst just becomes a plain subst since everything is fully resolved now.
        meta_type = lazy_meta_type[len("lazy"):]
        lazy_metas[meta_key] = meta_type
        lazy_metas[setting] = expanded_config[
            setting]  # copy over the template too

        # Build the graph of which lazy settings depend on what.

        # Always ensure that this lazy setting's node exists even if it has no dependencies.
        if setting not in graph:
            graph[setting] = ([], [])

        for target_var in get_meta_directives()[meta_type].target_settings(
                setting, expanded_config[setting]):
            # Make sure the order in which we delete doesn't affect this
            # search, since expanded_config might have some deleted stuff.
            if target_var + "_meta" in expanded_config_orig:
                # Add a dependency for target -> this setting
                if target_var not in graph:
                    graph[target_var] = ([], [])
                graph[target_var][0].append(setting)
                graph[setting][1].append(target_var)
            else:
                # The target setting that this depends on is not a lazy setting.
                pass

        # Delete from expanded_config
        del expanded_config[meta_key]
        del expanded_config[setting]

    if len(graph) > 0:
        # Find all the starting nodes (no incoming edges).
        starting_nodes = list(
            map(lambda key_val: key_val[0],
                filter(lambda key_val: len(key_val[1][1]) == 0,
                       graph.items())))

        # Sort starting nodes for determinism.
        starting_nodes = sorted(starting_nodes)

        if len(starting_nodes) == 0:
            raise ValueError("There appears to be a loop of lazy settings")

        # List of settings to expand first according to topological sort.
        settings_ordered = topological_sort(graph,
                                            starting_nodes)  # type: List[str]

        def combine_meta(config_dict: dict, meta_setting: str) -> dict:
            # Merge in the metas in the given order.
            return update_and_expand_meta(
                config_dict, {
                    meta_setting: lazy_metas[meta_setting],
                    meta_setting + "_meta": lazy_metas[meta_setting + "_meta"]
                })

        final_dict = reduce(combine_meta, settings_ordered,
                            expanded_config)  # type: dict
    else:
        final_dict = deepdict(expanded_config)

    # Remove any temporary keys.
    for key in HammerDatabase.internal_keys():
        if key in final_dict:
            del final_dict[key]

    return final_dict
コード例 #4
0
ファイル: config_src.py プロジェクト: palmer-dabbelt/plsi
def combine_configs(configs: Iterable[dict]) -> dict:
    """
    Combine the given list of *unpacked* configs into a single config.
    Later configs in the list will override the earlier configs.

    :param configs: List of configs.
    :param handle_meta: Handle meta configs?
    :return: A loaded config dictionary.
    """
    expanded_config_reduce = reduce(update_and_expand_meta, configs, {})  # type: dict
    expanded_config = deepdict(expanded_config_reduce)  # type: dict
    expanded_config_orig = deepdict(expanded_config)  # type: dict

    # Now, we need to handle lazy* metas.
    lazy_metas = {}

    meta_dict_keys = list(expanded_config.keys())
    meta_keys = list(filter(lambda k: k.endswith("_meta"), meta_dict_keys))

    # Graph to keep track of which lazy settings depend on others.
    # key1 -> key2 means key2 depends on key1
    graph = {}  # type: Dict[str, Tuple[List[str], List[str]]]

    meta_len = len("_meta")
    for meta_key in meta_keys:
        setting = meta_key[:-meta_len]  # type: str
        lazy_meta_type = expanded_config[meta_key]  # type: str

        assert lazy_meta_type.startswith("lazy"), "Should have only lazy metas left now"

        # Create lazy_metas without the lazy part.
        # e.g. what used to be a lazysubst just becomes a plain subst since everything is fully resolved now.
        meta_type = lazy_meta_type[len("lazy"):]
        lazy_metas[meta_key] = meta_type
        lazy_metas[setting] = expanded_config[setting]  # copy over the template too

        # Build the graph of which lazy settings depend on what.

        # Always ensure that this lazy setting's node exists even if it has no dependencies.
        if setting not in graph:
            graph[setting] = ([], [])

        for target_var in get_meta_directives()[meta_type].target_settings(setting, expanded_config[setting]):
            # Make sure the order in which we delete doesn't affect this
            # search, since expanded_config might have some deleted stuff.
            if target_var + "_meta" in expanded_config_orig:
                # Add a dependency for target -> this setting
                if target_var not in graph:
                    graph[target_var] = ([], [])
                graph[target_var][0].append(setting)
                graph[setting][1].append(target_var)
            else:
                # The target setting that this depends on is not a lazy setting.
                pass

        # Delete from expanded_config
        del expanded_config[meta_key]
        del expanded_config[setting]

    if len(graph) > 0:
        # Find all the starting nodes (no incoming edges).
        starting_nodes = list(
            map(lambda key_val: key_val[0], filter(lambda key_val: len(key_val[1][1]) == 0, graph.items())))

        # Sort starting nodes for determinism.
        starting_nodes = sorted(starting_nodes)

        if len(starting_nodes) == 0:
            raise ValueError("There appears to be a loop of lazy settings")

        # List of settings to expand first according to topological sort.
        settings_ordered = topological_sort(graph, starting_nodes)  # type: List[str]

        def combine_meta(config_dict: dict, meta_setting: str) -> dict:
            # Merge in the metas in the given order.
            return update_and_expand_meta(config_dict, {
                meta_setting: lazy_metas[meta_setting],
                meta_setting + "_meta": lazy_metas[meta_setting + "_meta"]
            })

        final_dict = reduce(combine_meta, settings_ordered, expanded_config)  # type: dict
    else:
        final_dict = deepdict(expanded_config)

    # Remove any temporary keys.
    for key in HammerDatabase.internal_keys():
        if key in final_dict:
            del final_dict[key]

    return final_dict