コード例 #1
0
ファイル: tests.py プロジェクト: yaoc15/watermarking
def decode_test8():
    encoded = bitarray('11011100')
    actual = hamming.decode(encoded)
    expected = bitarray('0100')
    return (0, "") if actual == expected else (
        1, "decode_test8 FAILED! Expected: {0}, Actual: {1}\n".format(
            expected, actual))
コード例 #2
0
ファイル: picture.py プロジェクト: aroundnothing/optar
def decode(file_name):
    border.rotate(file_name)
    image = Image.open("temp.png")
    q = border.find("temp.png")
    ind = sp.argmin(sp.sum(q, 1), 0)
    up_left = q[ind, 0] + 2
    up_top = q[ind, 1] + 2
    d_right = q[ind+1, 0] - 3
    d_bottom = q[ind-1, 1] - 3

    box = (up_left, up_top, d_right, d_bottom)
    region = image.crop(box)
    h_sum = sp.sum(region, 0)
    m = argrelmax(sp.correlate(h_sum, h_sum, 'same'))
    s = sp.average(sp.diff(m))
    m = int(round(d_right - up_left)/s)
    if m % 3 != 0:
        m += 3 - m % 3
    n = int(round(d_bottom - up_top)/s)
    if n % 4 != 0:
        n += 4 - n % 4
    s = int(round(s))+1

    region = region.resize((s*m, s*n), PIL.Image.ANTIALIAS)
    region.save("0.png")
    pix = region.load()
    matrix = mix.off(rec.matrix(pix, s, m, n))
    str2 = hamming.decode(array_to_str(matrix))

    return hamming.bin_to_str(str2)
コード例 #3
0
ファイル: tests.py プロジェクト: yaoc15/watermarking
def decode_test5():
    encoded = bitarray('1' + ('0' * 4097))  # overall parity bit in error
    actual = hamming.decode(encoded)
    expected = bitarray('0' * 4084)
    return (0, "") if actual == expected else (
        1, "decode_test5 FAILED! Expected: {0}, Actual: {1}\n".format(
            expected, actual))
コード例 #4
0
ファイル: tests.py プロジェクト: yaoc15/watermarking
def decode_test4():
    encoded = bitarray('1111')  # no bits in error
    actual = hamming.decode(encoded)
    expected = bitarray('1')
    return (0, "") if actual == expected else (
        1, "decode_test4 FAILED! Expected: {0}, Actual: {1}\n".format(
            expected, actual))
コード例 #5
0
def zdekoduj(
    input
):  #funkcja przywraca liste do formy kompatybilnej z bilioteka, wykonuje naprawe kodem Hamminga i zwraca zdekodowana liste jako wyjscie kanalu
    cos = np.reshape(
        np.array(input), (-1, 8)
    )  #powrot do poprzedniej formy list listy kompatybilnej z biblioteka, uzywane po powrocie z kanalu
    #print(cos)
    syndrom = syndrome(cos)
    corected = correct(cos, syndrom)  #proba naprawy bledow w kodzi
    myoutput = decode(corected)  #dekodowanie kodu hamminga
    #print(myoutput)
    return myoutput  #funkcja zwraca liste zdekodowana
コード例 #6
0
def callback(rxstr):
    count = ord(rxstr[0])
    b1 = "{:08b}".format(ord(rxstr[1]))
    b2 = "{:08b}".format(ord(rxstr[2]))
    bits = map(int, b1 + b2)
    parity = sum(bits) % 2
    data, error = hamming.decode(bits[:-1])

    j.setBits(data)
    if l is None:
        print count, j, error, parity
    else:
        if parity == 0 and error == 0:
            color = 0xffffff
        elif parity > 0 and error > 0:
            color = 0xffff00
        else:
            color = 0xff0000

        l.go(count, color)
コード例 #7
0
    blurred_img = randomize(img_with_message)
else:
    blurred_img = img_with_message

print("Blurring Image")
im = Image.fromarray(blurred_img)
im.save("image_blurred.bmp")
blurred_image = mpimg.imread("image_blurred.bmp")
plt.title("Blurred Image")
plt.imshow(blurred_image)
plt.show()
# extract the message (with errors) from the message, find out what the errors
# are thanks to hamming, and generate an error syndrome (basically an array
# that says "here's where the errors are")
extracted_msg = extract(blurred_img)
decoded = decode(extracted_msg)
decoded_str = bin_to_str(decoded)

print("")
print("Decoded string:")
print(decoded_str[:msg_len])
print("")

syndrome = syndrome(extracted_msg)

#print("")
#print("Syndrome:")
#print(syndrome.T[:100])
#print("")

# using the syndrome, correct the errors in the message, then decode the
コード例 #8
0
def main(noiseRatio):
    packets = open('../data/packets.txt', 'r')

    # CRC VARIABLES
    crcTransmissions = 0
    crcRetransmissions = 0
    crcUndetectedErrors = 0

    # HAMMING VARIABLES
    hammingTransmissions = 0
    hammingRetransmissions = 0
    hammingCorrections = 0
    hammingUndetectedErrors = 0

    # PACKET ANALYSIS
    for packet in packets:
        packet = packet[:len(packet)-1]        # Remove the return carriage

        # CRC
        success = False
        crcEncodedPacket = crc.encode(packet)

        while not success:                           # Continue until the packet is accurately received
            crcNoisePacket = noise.gaussian(crcEncodedPacket, noiseRatio)

            crcTransmissions += 1
            success = True
            
            if crc.decode(crcNoisePacket) == False:       # If error(s) exist
                crcRetransmissions += 1
                success = False
            elif crcEncodedPacket != crcNoisePacket:      # Error occured and CRC didn't catch it
                crcUndetectedErrors += 1

        # HAMMING
        success = False
        hammingEncodedPacket = hamming.encode(packet)

        while not success:                           # Continue until the packet is accurately received
            hammingNoisePacket = noise.gaussian(hammingEncodedPacket, noiseRatio)

            hammingTransmissions += 1
            success = True

            decodedHammingPacket = hamming.decode(hammingNoisePacket)
            if not decodedHammingPacket:                        # Hamming decode failed - too many bit flips
                hammingRetransmissions += 1
                success = False
            elif hammingNoisePacket != hammingEncodedPacket:    # If a bit(s) was flipped & the result came back as true
                hammingCorrections += 1

    # SUMMARY
    print "\n"

    print "NOISE RATIO: %s\n" % noiseRatio

    print "CRC ANALYSIS:"
    print "\tTransmissions: "+str(crcTransmissions)
    retransmissionRate = round(float(crcRetransmissions)/float(crcTransmissions)*100, 2)
    print "\tRetransmissions: "+str(crcRetransmissions)+" ~ "+str(retransmissionRate)+"%"
    print "\tUndetected Errors: "+str(crcUndetectedErrors)
    
    print "\n"

    print "HAMMING ANALYSIS"
    print "\tTransmissions: "+str(hammingTransmissions)
    retransmissionRate = round(float(hammingRetransmissions)/float(hammingTransmissions)*100, 2)

    print "\tRetransmissions: "+str(hammingRetransmissions)+" ~ "+str(retransmissionRate)+"%"
    print "\tCorrected Packets: "+str(hammingCorrections)
    print "\tUndetected Errors: "+str(hammingUndetectedErrors)

    print "\n"

    # Write data to file
    with open("../data/crcOut.txt",'a') as fout:
        fout.write("(%s,%s)"%(noiseRatio,round(float(crcRetransmissions)/float(crcTransmissions)*100, 2)))
    with open("../data/hammingOut.txt",'a') as fout:
        fout.write("(%s,%s)"%(noiseRatio,round(float(hammingRetransmissions)/float(hammingTransmissions)*100, 2)))
コード例 #9
0
ファイル: server.py プロジェクト: fuentesmarlon/lab2-redes
    data_bit = bitarray.bitarray()
    data_bit.frombytes(data)

    print(data)

    # Error detection algorithm TODO

    # Error corection algorithm
    if hamming_bool:

        # Error check
        data_b_str = data_bit.to01()
        data_b_str = errorcheck(data_b_str)

        # Decoding
        data_b_str = decode(data_b_str)

        if data_b_str == 'M':

            print('Multiple errors detected')

        else:
            data_bit.clear()
            data_bit.extend(data_b_str)

            to_transform = bitarray.bitarray()
            to_transform.extend(data_b_str)

            # To normal string
            #data_str = to_transform.tobytes().decode('utf-8')
コード例 #10
0
    for i in range(10):
        lst = generate_bits(1000000)
        coded_lst = code_triple(lst)
        output = gilbert(coded_lst, *parameter_list)
        decoded_lst = decode_triple(output)

        #ber_list.append(ber_triple(lst, decoded_lst))
        sum1 += ber_triple(lst, decoded_lst)
        #plt.plot(ber_list, [3], label='Kodowanie potrojeniowe', marker='o')

        # ========================================================================

        ber_list = []
        hamming_encoded = hamming.encode(lst)
        output_hamming = gilbert(hamming_encoded, *parameter_list)
        hamming_decoded = hamming.decode(output_hamming)
        #ber_list.append(ber_triple(lst, hamming_decoded))
        sum2 += ber_triple(lst, hamming_decoded)
        #plt.plot(ber_list, [2], label='Kodowanie Hamminga(8, 4)', marker='o')

        # ========================================================================

        packet_size = 1007
        t = 10
        redundancy = 1120 / 1007

        ber_list = []
        chunks = [
            lst[x:x + packet_size] for x in range(0, len(lst), packet_size)
        ]
        bch_decoded_all2 = []
コード例 #11
0
ファイル: test.py プロジェクト: yaoc15/watermarking
from hamming import encode,decode
from bitarray import bitarray
data = bitarray('1111')
data_with_parity = encode(data)
print(data_with_parity)
data_with_parity[3] = not data_with_parity
data_with_parity[4] = not data_with_parity
print(decode(data_with_parity))
コード例 #12
0
if __name__ == "__main__":
    row = [
        'original_msg',
        'result_msg',
        'repaired',
        'correct'
    ]
    rows = []
    for i in range(0, 999):
        m = 'dsadAAAAAAAAAAAAAaaaaaaaaaaaaaaaaaaaaaaaaaaaBBBBBBBBBBBBBBBBBBBb'
        # Add error
        result_msg, original_msg, real_msg = hamming_message(m)

        if to_string(real_msg) == to_string(result_msg):
            correct = True
        else:
            correct = False
        # Make row
        rows.append([
            to_string(original_msg),
            to_string(result_msg),
            False if decode(result_msg) != original_msg else True,
            correct
        ])

    with open('hamming.csv', 'w') as writeFile:
        writer = csv.writer(writeFile)
        writer.writerows(rows)

    writeFile.close()
コード例 #13
0
        numTrans = 0
        numRT = 0
        badReads = 0
        corrections = 0

        # Hamming - Gaussian
        with open('../data/packets.txt', 'r') as fin:
            for packet in fin:
                packet = packet.strip()
                hammingEncodedPacket = hamming.encode(packet)
                success = False
                while not success:
                    hammingNoisePacket = noise.gaussian(hammingEncodedPacket, noiseRatio)
                    numTrans += 1
                    hammingDecodedPacket = hamming.decode(hammingNoisePacket)
                    if hammingEncodedPacket == hammingNoisePacket:  # No interference
                        success = True
                    elif hammingDecodedPacket == packet:  # Correction was good
                        success = True
                        corrections += 1
                    elif hammingDecodedPacket == False:  # Could not correct
                        numRT += 1
                    else:  # Bad correction
                        badReads += 1
                        success = True

        rowData["Hamming RT G"] = round(float(numRT) / numTrans, 4)

        gaussianRow["Hamming T"] = numTrans
        gaussianRow["Hamming RT"] = numRT
コード例 #14
0
def hamming_recieve(data):
    print("MENSAJE: ", to_string(decode(data)))
コード例 #15
0
# To change the probability of error change this value
prob_err=float(1/12)


# With the input we will add 0's the end to ensure we have groups of 4.
a = list(input("Enter a bit string: "))
a = [int(j) for j in a]
a = split(a, 4)

print(f"Original Message:           {[j for sub in a for j in sub]}")

# Encode the messages
encoded_msg = []
for j in range(len(a)):
    encoded_msg += hamming.encode(a[j])

# Simulate error
err_msg = sim_error(encoded_msg, p_err=prob_err)

print(f"Encoded Message:            {encoded_msg}\n")
print(f"Encoded Message with error: {err_msg}")
print(f"The Error:                  {[j ^ k for j, k in zip(encoded_msg, err_msg)]}\n")

# Decode
err_msg_chuncked = split(err_msg, 7)
decoded_msg = []
for j in range(len(err_msg_chuncked)):
    decoded_msg += hamming.decode(err_msg_chuncked[j])

print(f"Decoded Message:            {decoded_msg}")
print(f"Decoded Correctly: {decoded_msg == [j for sub in a for j in sub]}")
コード例 #16
0
ファイル: detect.py プロジェクト: tombrereton/UoBRobotics
def detect_markers(img, marker_ids=None):
    width, height, _ = img.shape

    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    edges = cv2.Canny(gray, 10, 100)
    _, contours, _ = cv2.findContours(edges.copy(), cv2.RETR_TREE,
                                      cv2.CHAIN_APPROX_NONE)

    # We only keep the big enough contours
    #min_area = width * height * .01
    min_area = width * height * .0001
    contours = [c for c in contours if cv2.contourArea(c) > min_area]

    warped_size = 9 * 10
    canonical_marker_coords = array(
        ((0, 0), (warped_size - 1, 0), (warped_size - 1, warped_size - 1),
         (0, warped_size - 1)),
        dtype='float32')

    markers = []

    for c in contours:
        approx_curve = cv2.approxPolyDP(c, len(c) * 0.01, True)
        if not (len(approx_curve) == 4 and cv2.isContourConvex(approx_curve)):
            continue

        sorted_curve = array(cv2.convexHull(approx_curve, clockwise=False),
                             dtype='float32')
        persp_transf = cv2.getPerspectiveTransform(sorted_curve,
                                                   canonical_marker_coords)

        warped_img = cv2.warpPerspective(img, persp_transf,
                                         (warped_size, warped_size))
        warped_gray = cv2.cvtColor(warped_img, cv2.COLOR_BGR2GRAY)
        _, warped_bin = cv2.threshold(warped_gray, 50, 255, cv2.THRESH_BINARY)

        print(marker_size)
        print(warped_size)

        warped_marker = int(warped_size / marker_size)

        print(warped_marker)
        marker = warped_bin.reshape(
            [marker_size, warped_marker, marker_size, warped_marker])
        marker = marker.mean(axis=3).mean(axis=1)
        marker[marker < 127] = 0
        marker[marker >= 127] = 1

        # Eliminate the entirely black or entirely white markers
        # for robustness purposes
        sub_marker = marker[1:-1, 1:-1]
        sub_size = marker_size - 2
        if (all(sub_marker == zeros((sub_size, sub_size)))
                or all(sub_marker == ones((sub_size, sub_size)))):
            continue

        for _ in range(4):
            try:
                code = decode(sub_marker).flatten()[::-1]
                id = (2**find(code == 1)).sum()
                markers.append(
                    HammingMarker(id=id,
                                  contours=approx_curve,
                                  img_size=(width, height)))
            except ValueError:  # The hamming code is incorrect
                pass

            sub_marker = rot90(sub_marker)

    # Remove duplicates
    markers = {m.id: m for m in markers}.values()

    return markers