def test_tc_test(): happy_tc = HappyTextClassification( model_type="DISTILBERT", model_name="distilbert-base-uncased-finetuned-sst-2-english") result = happy_tc.test("../data/tc/test.csv") answer = [ TextClassificationResult(label='POSITIVE', score=0.9998401999473572), TextClassificationResult(label='NEGATIVE', score=0.9772131443023682), TextClassificationResult(label='NEGATIVE', score=0.9966067671775818), TextClassificationResult(label='POSITIVE', score=0.9792295098304749) ] assert result == answer
def test_tc_with_dataclass(): happy_tc = HappyTextClassification() train_args = TCTrainArgs(learning_rate=0.01, num_train_epochs=1) happy_tc.train("../data/tc/train-eval.csv", args=train_args) eval_args = TCEvalArgs() result_eval = happy_tc.eval("../data/tc/train-eval.csv", args=eval_args) test_args = TCTestArgs() result_test = happy_tc.test("../data/tc/test.csv", args=test_args)
def test_tc_with_dic(): happy_tc = HappyTextClassification() train_args = {'learning_rate': 0.01, "num_train_epochs": 1} happy_tc.train("../data/tc/train-eval.csv", args=train_args) eval_args = {} result_eval = happy_tc.eval("../data/tc/train-eval.csv", args=eval_args) test_args = {} result_test = happy_tc.test("../data/tc/test.csv", args=test_args)
def example_2_4(): happy_tc = HappyTextClassification( model_type="DISTILBERT", model_name="distilbert-base-uncased-finetuned-sst-2-english", num_labels=2) # Don't forget to set num_labels! result = happy_tc.test("../../data/tc/test.csv") print(type(result)) # <class 'list'> print( result ) # [TextClassificationResult(label='LABEL_1', score=0.9998401999473572), TextClassificationResult(label='LABEL_0', score=0.9772131443023682)... print( type(result[0]) ) # <class 'happytransformer.happy_text_classification.TextClassificationResult'> print( result[0] ) # TextClassificationResult(label='LABEL_1', score=0.9998401999473572) print(result[0].label) # LABEL_1