コード例 #1
0
ファイル: bench_hmm.py プロジェクト: tcsvn/pyadlml
def main():
    ctrl = Controller()
    ctrl.load_dataset_from_file(DATASET_FILE_PATH)
    if MODE == MODE_TRAIN:
        from scripts.test_model import BHSMMTestModel
        from hassbrain_algorithm.models.hmm.bhmm_hp import BernoulliHMM_HandcraftedPriors
        from hassbrain_algorithm.models.tads import TADS

        if MODEL_CLASS == BHMM:
            hmm_model = BHMMTestModel(ctrl)
        elif MODEL_CLASS == BHSMM:
            hmm_model = BHSMMTestModel(ctrl)
            hmm_model.set_training_steps(50)
        elif MODEL_CLASS == BHMMPC:
            hmm_model = BernoulliHMM_HandcraftedPriors(ctrl)
        elif MODEL_CLASS == MCTADS:
            hmm_model = TADS(ctrl)
        else:
            raise ValueError

        ctrl.register_model(hmm_model, MODEL_NAME)

        # load domain knowledge
        if MODEL_CLASS == BHMMPC:
            path = '/home/cmeier/code/data/hassbrain/datasets/hass_chris_final/data/domain_knowledge.json'
            act_data, loc_data = load_domain_knowledge(path)
            ctrl.register_location_info(MODEL_NAME, loc_data)
            ctrl.register_activity_info(MODEL_NAME, act_data)

    # load model
    elif MODE == MODE_BENCH:
        ctrl.load_model(MODEL_FILE_PATH, MODEL_NAME)
    else:
        raise ValueError


    ctrl.register_benchmark(MODEL_NAME)
    ctrl.init_model_on_dataset(MODEL_NAME)
    if MODE == MODE_TRAIN:
        ctrl.register_loss_file_path(MD_LOSS_FILE_PATH, MODEL_NAME)
        ctrl.train_model(MODEL_NAME)
        ctrl.save_model(MODEL_FILE_PATH, MODEL_NAME)

    # bench the model
    reports = ctrl.bench_models()

    # save metrics
    ctrl.save_df_metrics_to_file(MODEL_NAME, MD_METRICS_FILE_PATH)
    ctrl.save_df_confusion(MODEL_NAME, MD_CONF_MAT_FILE_PATH)
    ctrl.save_df_act_dur_dists(MODEL_NAME, MD_ACT_DUR_DISTS_DF_FILE_PATH,
                               DATA_ACT_DUR_DISTS_DF_FILE_PATH)
    ctrl.save_df_class_accs(MODEL_NAME, MD_CLASS_ACTS_FILE_PATH)

    # plots
    if MODE == MODE_TRAIN and MODEL_CLASS != MCTADS:
        ctrl.save_plot_trainloss(MODEL_NAME, MD_LOSS_IMG_FILE_PATH)

    ctrl.save_plot_inferred_states(MODEL_NAME, MD_INFST_IMG_FILE_PATH)

    ctrl.save_plot_act_dur_dists([MODEL_NAME], MD_ACT_DUR_DISTS_IMG_FILE_PATH)
コード例 #2
0
ファイル: bench_pchmm.py プロジェクト: tcsvn/pyadlml
def main():
    ctrl = Controller()
    ctrl.load_dataset_from_file(DATASET_FILE_PATH)

    #hmm_model = BHMMTestModel(ctrl)
    #hmm_model = BHSMMTestModel(ctrl)
    from hassbrain_algorithm.models.hmm.bhmm_hp import BernoulliHMM_HandcraftedPriors
    hmm_model = BernoulliHMM_HandcraftedPriors(ctrl)

    ctrl.register_model(hmm_model, MODEL_NAME)

    # load domain knowledge
    path = '/home/cmeier/code/data/hassbrain/datasets/hass_chris_final/data/domain_knowledge.json'
    act_data, loc_data = load_domain_knowledge(path)
    ctrl.register_location_info(MODEL_NAME, loc_data)
    ctrl.register_activity_info(MODEL_NAME, act_data)

    # load model
    #ctrl.load_model(MODEL_FILE_PATH, MODEL_NAME)
    from scripts.test_model import BHSMMTestModel

    ctrl.register_benchmark(MODEL_NAME)

    ctrl.init_model_on_dataset(MODEL_NAME)
    ctrl.register_loss_file_path(MD_LOSS_FILE_PATH, MODEL_NAME)
    ctrl.train_model(MODEL_NAME)

    # bench the model
    reports = ctrl.bench_models()

    # save metrics
    ctrl.save_df_metrics_to_file(MODEL_NAME, MD_METRICS_FILE_PATH)
    ctrl.save_df_confusion(MODEL_NAME, MD_CONF_MAT_FILE_PATH)
    ctrl.save_df_act_dur_dists(MODEL_NAME, MD_ACT_DUR_DISTS_DF_FILE_PATH,
                               DATA_ACT_DUR_DISTS_DF_FILE_PATH)

    # plots
    ctrl.save_plot_trainloss(MD_LOSS_IMG_FILE_PATH, MODEL_NAME)
    ctrl.plot_and_save_inferred_states(MD_INFST_IMG_FILE_PATH, MODEL_NAME)
    ctrl.save_plot_act_dur_dists(MODEL_NAME, MD_ACT_DUR_DISTS_IMG_FILE_PATH,
                                 DATA_ACT_DUR_DISTS_IMG_FILE_PATH)