def setUp(self): self.params = { "debug": True, "probability_func": new_probability_func(seed=None), "exponential_func": new_exponential_func(seed=None), "gamma_func": new_gamma_func(seed=None), "random_number_func": new_random_number_func(seed=None) } vesting_participants = [ TokenBatch(1000, 1000, vesting_options=VestingOptions(10, 30)) for _ in range(2) ] nonvesting_participants = [ TokenBatch(0, 1000, vesting_options=VestingOptions(10, 30)) for _ in range(2) ] self.network = bootstrap_network( vesting_participants + nonvesting_participants, 1, 3000, 4e6, 0.2, self.params["probability_func"], self.params["random_number_func"], self.params["gamma_func"], self.params["exponential_func"]) self.commons = Commons(1000, 1000) self.network, _ = add_proposal(self.network, Proposal(100, 1), self.params["random_number_func"]) self.default_state = { "network": self.network, "commons": self.commons, "funding_pool": 1000, "token_supply": 1000 }
def setUp(self): self.params = { "debug": False, "days_to_80p_of_max_voting_weight": 10, "probability_func": new_probability_func(seed=None), "exponential_func": new_exponential_func(seed=None), "gamma_func": new_gamma_func(seed=None), "random_number_func": new_random_number_func(seed=None) } self.network = bootstrap_network([ TokenBatch(1000, 0, vesting_options=VestingOptions(10, 30)) for _ in range(4) ], 1, 3000, 4e6, 0.2, self.params["probability_func"], self.params["random_number_func"], self.params["gamma_func"], self.params["exponential_func"]) self.network, _ = add_proposal(self.network, Proposal(100, 1), self.params["random_number_func"]) """ For proper testing, we need to make sure the Proposals are CANDIDATE and ensure Proposal-Participant affinities are not some random value """ self.network.nodes[4]["item"].status = ProposalStatus.CANDIDATE self.network.nodes[5]["item"].status = ProposalStatus.CANDIDATE support_edges = get_edges_by_type(self.network, "support") for u, v in support_edges: self.network[u][v]["support"] = self.network[u][v][ "support"]._replace(affinity=0.9)
def setUp(self): self.commons = Commons(10000, 1000) self.sentiment = 0.5 self.network = bootstrap_network([ TokenBatch(1000, 0, vesting_options=VestingOptions(10, 30)) for _ in range(4) ], 1, 3000, 4e6, 0.2) self.params = {"debug": False}
def setUp(self): self.network = bootstrap_network( [TokenBatch(1000, VestingOptions(10, 30)) for _ in range(4)], 1, 3000, 4e6) self.network, _ = add_proposal(self.network, Proposal(100, 1)) self.network.nodes[4]["item"].status = ProposalStatus.ACTIVE self.network.nodes[5]["item"].status = ProposalStatus.ACTIVE
def setUp(self): self.network = bootstrap_network([ TokenBatch(1000, 0, vesting_options=VestingOptions(10, 30)) for _ in range(4) ], 1, 3000, 4e6, 0.2) self.network, _ = add_proposal(self.network, Proposal(100, 1)) self.network.nodes[4]["item"].status = ProposalStatus.CANDIDATE self.network.nodes[5]["item"].status = ProposalStatus.CANDIDATE self.params = { "max_proposal_request": 0.2, "alpha_days_to_80p_of_max_voting_weight": 10 }
def test_bootstrap_network(self): """ Tests that the network was created and that the subcomponents work too. """ token_batches = [TokenBatch(1000, VestingOptions(10, 30)) for _ in range(4)] network = bootstrap_network(token_batches, 1, 3000, 4e6, 0.2) edges = list(network.edges(data="type")) _, _, edge_types = list(zip(*edges)) self.assertEqual(edge_types.count('support'), 4) self.assertEqual(len(get_participants(network)), 4) self.assertEqual(len(get_proposals(network)), 1)
def setUp(self): self.network = bootstrap_network([ TokenBatch(1000, 1000, vesting_options=VestingOptions(10, 30)) for _ in range(4) ], 1, 3000, 4e6, 0.2) self.commons = Commons(1000, 1000) self.network, _ = add_proposal(self.network, Proposal(100, 1)) self.params = {"debug": True} self.default_state = { "network": self.network, "commons": self.commons, "funding_pool": 1000, "token_supply": 1000 }
def setUp(self): self.params = { "debug": True, "probability_func": new_probability_func(seed=None), "exponential_func": new_exponential_func(seed=None), "gamma_func": new_gamma_func(seed=None), "random_number_func": new_random_number_func(seed=None) } self.network = bootstrap_network([ TokenBatch(1000, 0, vesting_options=VestingOptions(10, 30)) for _ in range(4) ], 1, 3000, 4e6, 0.2, self.params["probability_func"], self.params["random_number_func"], self.params["gamma_func"], self.params["exponential_func"])
def setUp(self): self.network = bootstrap_network([ TokenBatch(1000, 0, vesting_options=VestingOptions(10, 30)) for _ in range(4) ], 1, 3000, 4e6, 0.2) self.network, _ = add_proposal(self.network, Proposal(100, 1)) self.params = {"debug": False, "days_to_80p_of_max_voting_weight": 10} """ For proper testing, we need to make sure the Proposals are CANDIDATE and ensure Proposal-Participant affinities are not some random value """ self.network.nodes[4]["item"].status = ProposalStatus.CANDIDATE self.network.nodes[5]["item"].status = ProposalStatus.CANDIDATE support_edges = get_edges_by_type(self.network, "support") for u, v in support_edges: self.network[u][v]["affinity"] = 0.9
def setUp(self): self.params = { "probability_func": new_probability_func(seed=None), "exponential_func": new_exponential_func(seed=None), "gamma_func": new_gamma_func(seed=None), "random_number_func": new_random_number_func(seed=None) } self.network = bootstrap_network([ TokenBatch(1000, 0, vesting_options=VestingOptions(10, 30)) for _ in range(4) ], 1, 3000, 4e6, 0.2, self.params["probability_func"], self.params["random_number_func"], self.params["gamma_func"], self.params["exponential_func"]) self.network, _ = add_proposal(self.network, Proposal(100, 1), self.params["random_number_func"]) self.network.nodes[4]["item"].status = ProposalStatus.ACTIVE self.network.nodes[5]["item"].status = ProposalStatus.ACTIVE
def setUp(self): self.params = { "max_proposal_request": 0.2, "alpha_days_to_80p_of_max_voting_weight": 10, "probability_func": new_probability_func(seed=None), "exponential_func": new_exponential_func(seed=None), "gamma_func": new_gamma_func(seed=None), "random_number_func": new_random_number_func(seed=None) } self.commons = Commons(1000, 1000) self.network = bootstrap_network([ TokenBatch(1000, 0, vesting_options=VestingOptions(10, 30)) for _ in range(4) ], 1, 3000, 4e6, 0.2, self.params["probability_func"], self.params["random_number_func"], self.params["gamma_func"], self.params["exponential_func"]) self.network, _ = add_proposal(self.network, Proposal(100, 1), self.params["random_number_func"]) self.network.nodes[4]["item"].status = ProposalStatus.CANDIDATE self.network.nodes[5]["item"].status = ProposalStatus.CANDIDATE
def setUp(self): self.network = bootstrap_network([ TokenBatch(1000, 0, vesting_options=VestingOptions(10, 30)) for _ in range(4) ], 1, 3000, 4e6, 0.2) self.params = {"max_proposal_request": 0.2}
def setUp(self): self.network = bootstrap_network( [TokenBatch(1000, VestingOptions(10, 30)) for _ in range(4)], 1, 3000, 4e6)
def setUp(self): self.commons = Commons(10000, 1000) self.sentiment = 0.5 self.network = bootstrap_network( [TokenBatch(1000, VestingOptions(10, 30)) for _ in range(4)], 1, 3000, 4e6)