def deepcopy_hal(extended=False): src_ra, src_dec = 82.628, 22.640 src_name = 'test_source' roi = HealpixConeROI(data_radius=5., model_radius=8., ra=src_ra, dec=src_dec) hawc = HAL('HAWC', maptree(), response(), roi) hawc.set_active_measurements(1, 9) data = DataList(hawc) # Define model spectrum = Log_parabola() if not extended: source = PointSource(src_name, ra=src_ra, dec=src_dec, spectral_shape=spectrum) else: shape = astromodels.Gaussian_on_sphere() source = ExtendedSource(src_name, spatial_shape=shape, spectral_shape=spectrum) model = Model(source) jl = JointLikelihood(model, data, verbose=False) hawc_copy = copy.deepcopy(hawc)
def fit_point_source(roi, maptree, response, point_source_model, liff=False): data_radius = roi.data_radius.to("deg").value if not liff: # This is a 3ML plugin hawc = HAL("HAWC", maptree, response, roi) else: from threeML import HAWCLike hawc = HAWCLike("HAWC", maptree, response, fullsky=True) ra_roi, dec_roi = roi.ra_dec_center hawc.set_ROI(ra_roi, dec_roi, data_radius) hawc.set_active_measurements(1, 9) if not liff: hawc.display() data = DataList(hawc) jl = JointLikelihood(point_source_model, data, verbose=True) point_source_model.display(complete=True) beg = time.time() jl.set_minimizer("ROOT") param_df, like_df = jl.fit() # _ = jl.get_errors() print("Fit time: %s" % (time.time() - beg)) if not liff: hawc.display_fit(display_colorbar=True).savefig("display_fit.png") return param_df, like_df
def test_fit(roi, maptree, response): pts_model = point_source_model() hawc = HAL("HAWC", maptree, response, roi) # Use from bin 1 to bin 9 hawc.set_active_measurements(1, 9) # Display information about the data loaded and the ROI hawc.display() # Get the likelihood value for the saturated model hawc.get_saturated_model_likelihood() data = DataList(hawc) jl = JointLikelihood(pts_model, data, verbose=True) param_df, like_df = jl.fit() return jl, hawc, pts_model, param_df, like_df, data
shape2.radius = 0.63 * u.degree shape2.radius.fix = True shape2.radius.max_value = 0.63 * u.degree lm = Model(source, source2, source3) bin_list = "1c 1d 1e 1f 2c 2d 2e 2f 3c 3d 3e 3f 4c 4d 4e 4f 4g 5e 5f 5g 5h 6e 6f 6g 6h 7f 7g 7h 7i 8g 8h 8i 8j 9g 9h 9i 9j 9k 9l".split() ra, dec = 307.17, 41.17 #data_radius = 6.0 model_radius = 8.0 fits_roi = HealpixMapROI(ra = ra, dec = dec, model_radius=model_radius, roifile="roi.fits") hawc = HAL("HAWC", maptree, response,fits_roi) hawc.set_active_measurements(bin_list=bin_list) #hawc.display() # Double check the free parameters print("Likelihood model:\n") print(lm) # Set up the likelihood and run the fit print("Performing likelihood fit...\n") datalist = DataList(hawc) jl = JointLikelihood(lm, datalist, verbose=True) jl.set_minimizer("ROOT") param_df, like_df = jl.fit()
def test_complete_analysis(roi, maptree, response, point_source_model): # Define the ROI # Instance the plugin hawc = HAL("HAWC", maptree, response, roi) # Use from bin 1 to bin 9 hawc.set_active_measurements(1, 9) # Display information about the data loaded and the ROI hawc.display() # Get the likelihood value for the saturated model hawc.get_saturated_model_likelihood() # Look at the data fig = hawc.display_stacked_image(smoothing_kernel_sigma=0.17) # Save to file fig.savefig("hal_src_stacked_image.png") data = DataList(hawc) jl = JointLikelihood(point_source_model, data, verbose=False) param_df, like_df = jl.fit() # Generate a simulated dataset and write it to disk sim = hawc.get_simulated_dataset("HAWCsim") sim.write("sim_resp.hd5", "sim_maptree.hd5") # See the model in counts space and the residuals fig = hawc.display_spectrum() # Save it to file fig.savefig("hal_src_residuals.png") # Look at the different energy planes (the columns are model, data, residuals) fig = hawc.display_fit(smoothing_kernel_sigma=0.3) fig.savefig("hal_src_fit_planes.png") # Compute TS src_name = point_source_model.pts.name jl.compute_TS(src_name, like_df) # Compute goodness of fit with Monte Carlo gf = GoodnessOfFit(jl) gof, param, likes = gf.by_mc(10) print( "Prob. of obtaining -log(like) >= observed by chance if null hypothesis is true: %.2f" % gof['HAWC']) # it is a good idea to inspect the results of the simulations with some plots # Histogram of likelihood values fig, sub = plt.subplots() likes.hist(ax=sub) # Overplot a vertical dashed line on the observed value plt.axvline(jl.results.get_statistic_frame().loc['HAWC', '-log(likelihood)'], color='black', linestyle='--') fig.savefig("hal_sim_all_likes.png") # Plot the value of beta for all simulations (for example) fig, sub = plt.subplots() param.loc[(slice(None), ['pts.spectrum.main.Cutoff_powerlaw.index']), 'value'].plot() fig.savefig("hal_sim_all_index.png") # Free the position of the source point_source_model.pts.position.ra.free = True point_source_model.pts.position.dec.free = True # Set boundaries (no need to go further than this) ra = point_source_model.pts.position.ra.value dec = point_source_model.pts.position.dec.value point_source_model.pts.position.ra.bounds = (ra - 0.5, ra + 0.5) point_source_model.pts.position.dec.bounds = (dec - 0.5, dec + 0.5) # Fit with position free param_df, like_df = jl.fit() # Make localization contour # pts.position.ra(8.362 + / - 0.00028) x # 10 # deg # pts.position.dec(2.214 + / - 0.00025) x # 10 a, b, cc, fig = jl.get_contours(point_source_model.pts.position.dec, 22.13, 22.1525, 10, point_source_model.pts.position.ra, 83.615, 83.635, 10) plt.plot([ra], [dec], 'x') fig.savefig("hal_src_localization.png") # Of course we can also do a Bayesian analysis the usual way # NOTE: here the position is still free, so we are going to obtain marginals about that # as well # For this quick example, let's use a uniform prior for all parameters for parameter in point_source_model.parameters.values(): if parameter.fix: continue if parameter.is_normalization: parameter.set_uninformative_prior(Log_uniform_prior) else: parameter.set_uninformative_prior(Uniform_prior) # Let's execute our bayes analysis bs = BayesianAnalysis(point_source_model, data) samples = bs.sample(30, 20, 20) fig = bs.corner_plot() fig.savefig("hal_corner_plot.png")
def test_on_point_source(ra=ra_crab, dec=dec_crab, liff=False, maptree=os.path.join(test_data_path, "maptree_1024.root"), response=os.path.join(test_data_path, "response.root"), data_radius=5.0, model_radius=10.0): if not liff: roi = HealpixConeROI(data_radius=data_radius, model_radius=model_radius, ra=ra, dec=dec) # This is a 3ML plugin hawc = HAL("HAWC", maptree, response, roi) else: from threeML import HAWCLike hawc = HAWCLike("HAWC", os.path.join(test_data_path, "maptree_1024.root"), os.path.join(test_data_path, "response.root"), fullsky=True) hawc.set_ROI(ra, dec, data_radius) hawc.set_active_measurements(1, 9) if not liff: hawc.display() spectrum = Log_parabola() source = PointSource("pts", ra=ra, dec=dec, spectral_shape=spectrum) # NOTE: if you use units, you have to set up the values for the parameters # AFTER you create the source, because during creation the function Log_parabola # gets its units source.position.ra.bounds = (ra - 0.5, ra + 0.5) source.position.dec.bounds = (dec - 0.5, dec + 0.5) if ra == ra_crab: spectrum.piv = 10 * u.TeV # Pivot energy as in the paper of the Crab else: spectrum.piv = 1 * u.TeV # Pivot energy spectrum.piv.fix = True spectrum.K = 1e-14 / (u.TeV * u.cm**2 * u.s) # norm (in 1/(keV cm2 s)) spectrum.K.bounds = (1e-25, 1e-19) # without units energies are in keV spectrum.beta = 0 # log parabolic beta spectrum.beta.bounds = (-4., 2.) spectrum.alpha = -2.5 # log parabolic alpha (index) spectrum.alpha.bounds = (-4., 2.) model = Model(source) data = DataList(hawc) jl = JointLikelihood(model, data, verbose=False) beg = time.time() param_df, like_df = jl.fit() print("Fit time: %s" % (time.time() - beg)) return param_df, like_df
def test_complete_analysis(maptree=os.path.join(test_data_path, "maptree_1024.root"), response=os.path.join(test_data_path, "response.root")): # Define the ROI ra_mkn421, dec_mkn421 = 166.113808, 38.208833 data_radius = 3.0 model_radius = 8.0 roi = HealpixConeROI(data_radius=data_radius, model_radius=model_radius, ra=ra_mkn421, dec=dec_mkn421) # Instance the plugin hawc = HAL("HAWC", maptree, response, roi) # Use from bin 1 to bin 9 hawc.set_active_measurements(1, 9) # Display information about the data loaded and the ROI hawc.display() # Look at the data fig = hawc.display_stacked_image(smoothing_kernel_sigma=0.17) # Save to file fig.savefig("hal_mkn421_stacked_image.png") # Define model as usual spectrum = Log_parabola() source = PointSource("mkn421", ra=ra_mkn421, dec=dec_mkn421, spectral_shape=spectrum) spectrum.piv = 1 * u.TeV spectrum.piv.fix = True spectrum.K = 1e-14 / (u.TeV * u.cm**2 * u.s) # norm (in 1/(keV cm2 s)) spectrum.K.bounds = (1e-25, 1e-19) # without units energies are in keV spectrum.beta = 0 # log parabolic beta spectrum.beta.bounds = (-4., 2.) spectrum.alpha = -2.5 # log parabolic alpha (index) spectrum.alpha.bounds = (-4., 2.) model = Model(source) data = DataList(hawc) jl = JointLikelihood(model, data, verbose=False) jl.set_minimizer("ROOT") param_df, like_df = jl.fit() # See the model in counts space and the residuals fig = hawc.display_spectrum() # Save it to file fig.savefig("hal_mkn421_residuals.png") # Look at the different energy planes (the columns are model, data, residuals) fig = hawc.display_fit(smoothing_kernel_sigma=0.3) fig.savefig("hal_mkn421_fit_planes.png") # Compute TS jl.compute_TS("mkn421", like_df) # Compute goodness of fit with Monte Carlo gf = GoodnessOfFit(jl) gof, param, likes = gf.by_mc(100) print( "Prob. of obtaining -log(like) >= observed by chance if null hypothesis is true: %.2f" % gof['HAWC']) # it is a good idea to inspect the results of the simulations with some plots # Histogram of likelihood values fig, sub = plt.subplots() likes.hist(ax=sub) # Overplot a vertical dashed line on the observed value plt.axvline(jl.results.get_statistic_frame().loc['HAWC', '-log(likelihood)'], color='black', linestyle='--') fig.savefig("hal_sim_all_likes.png") # Plot the value of beta for all simulations (for example) fig, sub = plt.subplots() param.loc[(slice(None), ['mkn421.spectrum.main.Log_parabola.beta']), 'value'].plot() fig.savefig("hal_sim_all_beta.png") # Free the position of the source source.position.ra.free = True source.position.dec.free = True # Set boundaries (no need to go further than this) source.position.ra.bounds = (ra_mkn421 - 0.5, ra_mkn421 + 0.5) source.position.dec.bounds = (dec_mkn421 - 0.5, dec_mkn421 + 0.5) # Fit with position free param_df, like_df = jl.fit() # Make localization contour a, b, cc, fig = jl.get_contours( model.mkn421.position.dec, 38.15, 38.22, 10, model.mkn421.position.ra, 166.08, 166.18, 10, ) plt.plot([ra_mkn421], [dec_mkn421], 'x') fig.savefig("hal_mkn421_localization.png") # Of course we can also do a Bayesian analysis the usual way # NOTE: here the position is still free, so we are going to obtain marginals about that # as well # For this quick example, let's use a uniform prior for all parameters for parameter in model.parameters.values(): if parameter.fix: continue if parameter.is_normalization: parameter.set_uninformative_prior(Log_uniform_prior) else: parameter.set_uninformative_prior(Uniform_prior) # Let's execute our bayes analysis bs = BayesianAnalysis(model, data) samples = bs.sample(30, 100, 100) fig = bs.corner_plot() fig.savefig("hal_corner_plot.png")
class LimitCalculator: def __init__(self, maptree, response, models, verbose=False): self.maptree = maptree self.response = response self.verbose = verbose self.models = models self.fluxUnit = (1. / (u.TeV * u.cm**2 * u.s)) # - construct HAL self.roi = HealpixConeROI(data_radius=13., model_radius=25., ra=187.5745, dec=10.1974) self.hawc = HAL("VirgoCluster", maptree, response, self.roi) self.hawc.set_active_measurements(1, 9) self.hawc.display() self.datalist = DataList(self.hawc) # - construct joint likelihood self.jl_M87 = JointLikelihood(self.models[0], self.datalist, verbose=True) self.jl_M49 = JointLikelihood(self.models[1], self.datalist, verbose=True) self.jl_linked = JointLikelihood(self.models[2], self.datalist, verbose=False) self.jl_notlinked = JointLikelihood(self.models[3], self.datalist, verbose=True) # - set the minimizer self.jl_M87.set_minimizer("minuit") self.jl_M49.set_minimizer("minuit") self.jl_linked.set_minimizer("minuit") self.jl_notlinked.set_minimizer("minuit") def set_range(self, minimum, maximum): self.min = minimum self.max = maximum def get_M87_likelihood(self): return self.jl_M87 def get_M49_likelihood(self): return self.jl_M49 def get_linked_likelihood(self): return self.jl_linked def calculate_limit(self, ll): num_steps = 100 bar = progressbar.ProgressBar(maxval=num_steps, widgets=[ ' [', progressbar.Timer(), '] ', progressbar.Bar(), ' (', progressbar.ETA(), ') ', ]) TS = [] result = ll.fit() bar.start() bar.update(0) best_fit = ll.likelihood_model.M87.spectrum.main.RangedPowerlaw.K.value vals = np.logspace( np.log10( ll.likelihood_model.M87.spectrum.main.RangedPowerlaw.K.value) - .25, np.log10( ll.likelihood_model.M87.spectrum.main.RangedPowerlaw.K.value) + 3.0, num_steps) for ival, val in enumerate(vals): ll.likelihood_model.M87.spectrum.main.RangedPowerlaw.K.value = val curr_LL = ll.data_list.values()[0].inner_fit() #print(val, curr_LL) TS.append(curr_LL) bar.update(ival) TS = np.array(TS) TS = -TS TS -= np.min(TS) plt.semilogx(vals, TS) plt.savefig("example_step1.pdf") plt.show() interpolator = interp1d(TS, vals) return (ll.likelihood_model.M87.spectrum.main.RangedPowerlaw.K, interpolator(1.35))
def test_healpixRoi(geminga_maptree, geminga_response): #test to make sure writing a model with HealpixMapROI works fine ra, dec = 101.7, 16. data_radius = 9. model_radius = 24. m = np.zeros(hp.nside2npix(NSIDE)) vec = Sky2Vec(ra, dec) m[hp.query_disc(NSIDE, vec, (data_radius * u.degree).to(u.radian).value, inclusive=False)] = 1 #hp.fitsfunc.write_map("roitemp.fits" , m, nest=False, coord="C", partial=False, overwrite=True ) map_roi = HealpixMapROI(data_radius=data_radius, ra=ra, dec=dec, model_radius=model_radius, roimap=m) #fits_roi = HealpixMapROI(data_radius=data_radius, ra=ra, dec=dec, model_radius=model_radius, roifile="roitemp.fits") hawc = HAL("HAWC", geminga_maptree, geminga_response, map_roi) hawc.set_active_measurements(1, 9) ''' Define model: Two sources, 1 point, 1 extended Same declination, but offset in RA Different spectral idnex, but both power laws ''' pt_shift = 3.0 ext_shift = 2.0 # First soource spectrum1 = Powerlaw() source1 = PointSource("point", ra=ra + pt_shift, dec=dec, spectral_shape=spectrum1) spectrum1.K = 1e-12 / (u.TeV * u.cm**2 * u.s) spectrum1.piv = 1 * u.TeV spectrum1.index = -2.3 spectrum1.piv.fix = True spectrum1.K.fix = True spectrum1.index.fix = True # Second source shape = Gaussian_on_sphere(lon0=ra - ext_shift, lat0=dec, sigma=0.3) spectrum2 = Powerlaw() source2 = ExtendedSource("extended", spatial_shape=shape, spectral_shape=spectrum2) spectrum2.K = 1e-12 / (u.TeV * u.cm**2 * u.s) spectrum2.piv = 1 * u.TeV spectrum2.index = -2.0 spectrum2.piv.fix = True spectrum2.K.fix = True spectrum2.index.fix = True shape.lon0.fix = True shape.lat0.fix = True shape.sigma.fix = True model = Model(source1, source2) hawc.set_model(model) # Write the model map model_map_tree = hawc.write_model_map("test.hd5", test_return_map=True) # Read the model back hawc_model = map_tree_factory('test.hd5', map_roi) # Check written model and read model are the same check_map_trees(hawc_model, model_map_tree) os.remove("test.hd5")
class LimitCalculator: def __init__(self, maptree, response, model, verbose=False, process="annihilation", energy_bins=True): self.maptree = maptree self.response = response self.model = model self.verbose = verbose self.DM_process = process # - construct the log likelihood self.roi = HealpixConeROI(data_radius=13., model_radius=25., ra=187.5745, dec=10.1974) self.hawc = HAL("VirgoCluster", maptree, response, self.roi) # these are the bins from the Energy Estimator, Spectrum Fitting Memo if energy_bins: self.hawc.set_active_measurements(bin_list=[ "1c", "1d", "1e", "2c", "2d", "2e", "2f", "3c", "3d", "3e", "3f", "4c", "4d", "4e", "4f", "4g", "5d", "5e", "5f", "5g", "5h", "6e", "6f", "6g", "6h", "7f", "7g", "7h", "7i", "8f", "8g", "8h", "8i", "8j", "9g", "9h", "9i", "9j", "9k", "9l" ]) else: self.hawc.set_active_measurements(1, 9) self.hawc.display() self.datalist = DataList(self.hawc) self.jl = JointLikelihood(self.model, self.datalist, verbose=True) """ def set_ROI(self, ra, dec, radius): self.llh.set_ROI(ra, dec, radius, True) if self.verbose: print("ROI is set to ({:.2f}, {:.2f}) with r={:.2f}".format(ra, dec, radius)) def set_masked_ROI(self, maskFilename): self.llh.set_template_ROI(maskFilename, 0.5, True) if self.verbose: print("ROI is adjusted according to {filename}".format(filename=maskFilename)) def set_range(self, minimum, maximum): self.min = minimum self.max = maximum def calculate_limit(self, rel_err=1.e-3, do_flip=True): best_fit, TS_max = self.find_max_TS_3ml_style() #best_fit, TS_max = self.find_max_TS() self.model.M49.spectrum.main.DMAnnihilationFlux.sigmav.bounds = (-1e-24, 1e-15) if best_fit < 0 and do_flip: print("the best fit is negative. taking care of it now") best_fit = 0 self.model.M49.spectrum.main.DMAnnihilationFlux.sigmav.value = best_fit TS_max = self.llh.calc_TS() lo = best_fit lo_TS = TS_max del_lo_TS = 2.71 - (TS_max-lo_TS) hi = lo*20. if hi == 0: hi = 1e-15 self.model.M49.spectrum.main.DMAnnihilationFlux.sigmav.value = hi hi_TS = self.llh.calc_TS() del_hi_TS = 2.71 - (TS_max-hi_TS) while True: mid = (lo+hi)/2. self.model.M49.spectrum.main.DMAnnihilationFlux.sigmav.value = mid mid_TS = self.llh.calc_TS() del_mid_TS = 2.71 - (TS_max-mid_TS) if np.fabs(del_mid_TS) < rel_err: norm_95cl = mid TS_95cl = mid_TS print("difference: {}".format(TS_95cl)) print("limit: {}".format(norm_95cl)) break else: if del_mid_TS*del_hi_TS > 0: hi = mid else: lo = mid print("current value: {}".format(mid)) print("current TS: {}".format(mid_TS)) print("current diff: {}".format(del_mid_TS)) """ def calculate_limit(self, ll): num_steps = 100 bar = progressbar.ProgressBar(maxval=num_steps, widgets=[ ' [', progressbar.Timer(), '] ', progressbar.Bar(), ' (', progressbar.ETA(), ') ', ]) TS = [] result = ll.fit() bar.start() bar.update(0) if self.DM_process == "annihilation": best_fit = ll.likelihood_model.M49.spectrum.main.DMAnnihilationFlux.sigmav.value else: best_fit = ll.likelihood_model.M49.spectrum.main.DMDecayFlux.tau.value vals = np.logspace( np.log10(best_fit) - 1.0, np.log10(best_fit) + 1.0, num_steps) for ival, val in enumerate(vals): if self.DM_process == "annihilation": ll.likelihood_model.M49.spectrum.main.DMAnnihilationFlux.sigmav.value = val else: ll.likelihood_model.M49.spectrum.main.DMDecayFlux.tau.value = val curr_LL = ll.data_list.values()[0].inner_fit() TS.append(curr_LL) bar.update(ival) TS = np.array(TS) TS = -TS TS -= np.min(TS) plt.semilogx(vals, TS) plt.savefig("example_step1.pdf") plt.show() if self.DM_process == "annihilation": selected_indices = vals > best_fit else: selected_indices = vals < best_fit interpolator = interp1d(TS[selected_indices], vals[selected_indices]) return (best_fit, interpolator(1.35))
def test_model_residual_maps(geminga_maptree, geminga_response, geminga_roi): #data_radius = 5.0 #model_radius = 7.0 output = dirname(geminga_maptree) ra_src, dec_src = 101.7, 16.0 maptree, response, roi = geminga_maptree, geminga_response, geminga_roi hawc = HAL("HAWC", maptree, response, roi) # Use from bin 1 to bin 9 hawc.set_active_measurements(1, 9) # Display information about the data loaded and the ROI hawc.display() ''' Define model: Two sources, 1 point, 1 extended Same declination, but offset in RA Different spectral index, but both power laws ''' pt_shift = 3.0 ext_shift = 2.0 # First source spectrum1 = Powerlaw() source1 = PointSource("point", ra=ra_src + pt_shift, dec=dec_src, spectral_shape=spectrum1) spectrum1.K = 1e-12 / (u.TeV * u.cm**2 * u.s) spectrum1.piv = 1 * u.TeV spectrum1.index = -2.3 spectrum1.piv.fix = True spectrum1.K.fix = True spectrum1.index.fix = True # Second source shape = Gaussian_on_sphere(lon0=ra_src - ext_shift, lat0=dec_src, sigma=0.3) spectrum2 = Powerlaw() source2 = ExtendedSource("extended", spatial_shape=shape, spectral_shape=spectrum2) spectrum2.K = 1e-12 / (u.TeV * u.cm**2 * u.s) spectrum2.piv = 1 * u.TeV spectrum2.index = -2.0 shape.lon0.fix = True shape.lat0.fix = True shape.sigma.fix = True spectrum2.piv.fix = True spectrum2.K.fix = True spectrum2.index.fix = True # Define model with both sources model = Model(source1, source2) # Define the data we are using data = DataList(hawc) # Define the JointLikelihood object (glue the data to the model) jl = JointLikelihood(model, data, verbose=False) # This has the effect of loading the model cache fig = hawc.display_spectrum() # the test file names model_file_name = "{0}/test_model.hdf5".format(output) residual_file_name = "{0}/test_residual.hdf5".format(output) # Write the map trees for testing model_map_tree = hawc.write_model_map(model_file_name, poisson_fluctuate=True, test_return_map=True) residual_map_tree = hawc.write_residual_map(residual_file_name, test_return_map=True) # Read the maps back in hawc_model = map_tree_factory(model_file_name, roi) hawc_residual = map_tree_factory(residual_file_name, roi) check_map_trees(hawc_model, model_map_tree) check_map_trees(hawc_residual, residual_map_tree)
def main(): ra, dec = 83.630, 22.020 #2HWC catalog position of Crab Nebula maptree = '../data/HAWC_9bin_507days_crab_data.hd5' response = '../data/HAWC_9bin_507days_crab_response.hd5' veritasdata = '../data/threemlVEGAS20hr2p45_run54809_run57993.root' latdirectory = '../data/lat_crab_data' # will put downloaded Fermi data there data_radius = 3.0 model_radius = 8.0 #set up HAWC dataset roi = HealpixConeROI(data_radius=data_radius, model_radius=model_radius, ra=ra, dec=dec) hawc = HAL("HAWC", maptree, response, roi) hawc.set_active_measurements( 1, 9) # Perform the fist only within the last nine bins hawc_data = { "name": "HAWC", "data": [hawc], "Emin": 1e3 * u.GeV, "Emax": 37e3 * u.GeV, "E0": 7 * u.TeV } #VERTIAS plugin with np.errstate(divide='ignore', invalid='ignore'): # This VERITASLike spits a lot of numpy errors. Silent them, I hope that's OK... # Udara told me that's normal. veritas = VERITASLike('veritas', veritasdata) veritas_data = { "name": "VERITAS", "data": [veritas], "Emin": 160 * u.GeV, "Emax": 30e3 * u.GeV, "E0": 1.0 * u.TeV } # Fermi via Fermipy tstart = '2017-01-01 00:00:00' tstop = '2017-03-01 00:00:00' evfile, scfile = threeML.download_LAT_data( ra, dec, 10.0, tstart, tstop, time_type='Gregorian', destination_directory=latdirectory) config = threeML.FermipyLike.get_basic_config(evfile=evfile, scfile=scfile, ra=ra, dec=dec) config['selection']['emax'] = 300000.0 #MeV = 300 GeV config['selection']['emin'] = 100.0 #MeV = 0.1 GeV config['gtlike'] = {'edisp': False} fermi_lat = threeML.FermipyLike("LAT", config) lat_data = { "name": "Fermi_LAT", "data": [fermi_lat], "Emin": 0.1 * u.GeV, "Emax": 300 * u.GeV, "E0": 10 * u.GeV } # Made up "Fermi-LAT" flux points # Not used for now, these are just an example for how to set up XYLike data # XYLike points are amsumed in base units of 3ML: keV, and keV s-1 cm-2 (bug: even if you provide something else...). x = [1.38e6, 2.57e6, 4.46e6, 7.76e6, 18.19e6, 58.88e6] # keV y = [5.92e-14, 1.81e-14, 6.39e-15, 1.62e-15, 2.41e-16, 1.87e-17] # keV s-1 cm-2 yerr = [1.77e-15, 5.45e-16, 8.93e-17, 4.86e-17, 5.24e-18, 7.28e-19] # keV s-1 cm-2 # Just save a copy for later use (plot points). Will redefine similar objects with other "source_name" xy_test = threeML.XYLike("xy_test", x, y, yerr, poisson_data=False, quiet=False, source_name='XY_Test') joint_data = { "name": "Fermi_VERITAS_HAWC", "data": [fermi_lat, veritas, hawc], "Emin": 0.1 * u.GeV, "Emax": 37e3 * u.GeV, "E0": 1 * u.TeV } datasets = [veritas_data, hawc_data, lat_data, joint_data] fig, ax = plt.subplots() #Loop through datasets and do the fit. for dataset in datasets: data = threeML.DataList(*dataset["data"]) spectrum = threeML.Log_parabola() source = threeML.PointSource(dataset["name"], ra=ra, dec=dec, spectral_shape=spectrum) model = threeML.Model(source) spectrum.alpha.bounds = (-4.0, -1.0) spectrum.value = -2.653 spectrum.piv.value = dataset["E0"] spectrum.K.value = 3.15e-22 #if not giving units, will be interpreted as (keV cm^2 s)^-1 spectrum.K.bounds = (1e-50, 1e10) spectrum.beta.value = 0.15 spectrum.beta.bounds = (-1.0, 1.0) model.display() jl = threeML.JointLikelihood(model, data, verbose=True) jl.set_minimizer("ROOT") with np.errstate(divide='ignore', invalid='ignore'): # This VERITASLike spits a lot of numpy errors. Silent them, I hope that's OK... # Udara told me that's normal. best_fit_parameters, likelihood_values = jl.fit() err = jl.get_errors() jl.results.write_to("likelihoodresults_{0}.fits".format( dataset["name"]), overwrite=True) #plot spectra color = next(ax._get_lines.prop_cycler)['color'] try: # Using a fixed version of model_plot.py threeML.plot_spectra( jl.results, ene_min=dataset["Emin"], ene_max=dataset["Emax"], energy_unit='GeV', flux_unit='erg/(s cm2)', subplot=ax, fit_colors=color, contour_colors=color, ) except: # Using a bugged version of model_plot.py print( 'Warning: fallback without colors... Use a fixed version of model_plot.py! (3ML PR #304)' ) threeML.plot_point_source_spectra( jl.results, ene_min=dataset["Emin"], ene_max=dataset["Emax"], energy_unit='GeV', flux_unit='erg/(s cm2)', subplot=ax, ) #workaround to get rit of gammapy temporary file find_and_delete("ccube.fits", ".") plt.xlim(5e-2, 50e3) plt.xlabel("Energy [GeV]") plt.ylabel(r"$E^2$ dN/dE [erg/$cm^2$/s]") plt.savefig("joint_spectrum.png")
data_radius = 3.0 model_radius = 8.0 roi = HealpixConeROI(data_radius=data_radius, model_radius=model_radius, ra=ra_crab, dec=dec_crab) # Instance the plugin maptree = "../data/HAWC_9bin_507days_crab_data.hd5" response = "../data/HAWC_9bin_507days_crab_response.hd5" hawc = HAL("HAWC", maptree, response, roi, flat_sky_pixels_size=0.1) # Use from bin 1 to bin 9 hawc.set_active_measurements(1, 9) # Display information about the data loaded and the ROI hawc.display() # Look at the data fig = hawc.display_stacked_image(smoothing_kernel_sigma=0.17) # Save to file fig.savefig("public_crab_logParabola_stacked_image.png") # Define model spectrum = Log_parabola() source = PointSource("crab", ra=ra_crab, dec=dec_crab, spectral_shape=spectrum) spectrum.piv = 7 * u.TeV