コード例 #1
0
    def test_singlecolumns_partial(self):
        data = pd.DataFrame()
        # create and assign columns to df
        l1 = [chr(i) for i in range(100)]
        l2 = [i for i in range(100)]
        l3 = [i / 0.7 for i in range(100)]
        for i in range(20):
            l1[i] = ""
            l2[i] = 0
            l3[i] = 0.
        random.shuffle(l1)
        random.shuffle(l2)
        random.shuffle(l3)
        data["c1"] = l1
        data["c2"] = l2
        data["c3"] = l3

        df = self.spark.createDataFrame(data)
        df = df.withColumn("c1", replace_empty_with_null(df["c1"]))
        df = df.withColumn("c2", replace_0_with_null(df["c2"]))
        df = df.withColumn("c3", replace_0dot_with_null(df["c3"]))

        r1, r2, r3 = completeness(["c1", "c2", "c3"], df)
        self.assertEqual(r1, 80.0)
        self.assertEqual(r2, 80.0)
        self.assertEqual(r3, 80.0)
コード例 #2
0
    def test_wholetable_full(self):
        data = pd.DataFrame()
        data["c1"] = [chr(i) for i in range(100)]
        data["c2"] = [i for i in range(100)]
        data["c3"] = [i / 0.7 for i in range(100)]
        df = self.spark.createDataFrame(data)

        r = completeness(df=df)[0]
        self.assertEqual(r, 100.0)
コード例 #3
0
    def test_wholetable_empty(self):
        data = pd.DataFrame()
        data["c1"] = []
        data["c2"] = []
        schema = [StructField("c1", IntegerType(), True), StructField("c2", StringType(), True)]
        df = self.spark.createDataFrame(data, StructType(schema))

        r = completeness(df=df)[0]
        self.assertEqual(r, 100.)
コード例 #4
0
    def test_singlecolumns_empty(self):
        data = pd.DataFrame()
        data["c1"] = []
        data["c2"] = []
        schema = [StructField("c1", IntegerType(), True), StructField("c2", StringType(), True)]
        df = self.spark.createDataFrame(data, StructType(schema))

        r1, r2 = completeness(["c1", "c2"], df)
        self.assertEqual(r1, 100.)
        self.assertEqual(r2, 100.)
コード例 #5
0
    def test_singlecolumns_full(self):
        data = pd.DataFrame()
        data["c1"] = [chr(i) for i in range(100)]
        data["c2"] = [i for i in range(100)]
        data["c3"] = [i / 0.7 for i in range(100)]
        df = self.spark.createDataFrame(data)

        r1, r2, r3 = completeness(["c1", "c2", "c3"], df)
        self.assertEqual(r1, 100.0)
        self.assertEqual(r2, 100.0)
        self.assertEqual(r3, 100.0)
コード例 #6
0
    def test_wholetable_allnull(self):
        data = pd.DataFrame()
        data["c1"] = [chr(i) for i in range(100)]
        data["c2"] = [i for i in range(100)]
        data["c3"] = [i / 0.7 for i in range(100)]
        df = self.spark.createDataFrame(data)
        df = df.withColumn("c1", replace_every_string_with_null(df["c1"]))
        df = df.withColumn("c2", replace_every_int_with_null(df["c2"]))
        df = df.withColumn("c3", replace_every_float_with_null(df["c3"]))

        r = completeness(df=df)[0]
        self.assertEqual(r, 0.0)
コード例 #7
0
    def test_singlecolumns_allnull(self):
        data = pd.DataFrame()
        data["c1"] = [chr(i) for i in range(100)]
        data["c2"] = [i for i in range(100)]
        data["c3"] = [i / 0.7 for i in range(100)]
        df = self.spark.createDataFrame(data)
        df = df.withColumn("c1", replace_every_string_with_null(df["c1"]))
        df = df.withColumn("c2", replace_every_int_with_null(df["c2"]))
        df = df.withColumn("c3", replace_every_float_with_null(df["c3"]))

        r1, r2, r3 = completeness(["c1", "c2", "c3"], df)
        self.assertEqual(r1, 0.0)
        self.assertEqual(r2, 0.0)
        self.assertEqual(r3, 0.0)
コード例 #8
0
#!/usr/bin/python3
from pyspark.sql import SparkSession

from haychecker.dhc.metrics import completeness

spark = SparkSession.builder.appName("completeness_example").getOrCreate()

df = spark.read.format("csv").option("header", "true").load("examples/resources/employees.csv")

df.show()

r1, r2 = completeness(["region", "reportsTo"], df)

print("Completeness region: {}, completeness reportsTo: {}".format(r1, r2))

task1 = completeness(["region", "reportsTo"])
task2 = completeness(["city"])
task3 = task1.add(task2)

result = task3.run(df)

r1, r2 = result[0]["scores"]
r3 = result[1]["scores"][0]

print("Completeness region: {}, completeness reportsTo: {}, completeness city: {}".format(r1, r2, r3))
コード例 #9
0
    def test_groping_multile_columns(self):
        data = pd.DataFrame()
        c1 = [0, 0, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5]
        c2 = ["a", "a", "b", "b", "c", "c", "d", "d", "d", "d", "a", "a", "a"]
        c3 = [0.0, 0.0, 0.1, 0.1, 2.2, 2.2, 2.2, 3.1, 3.2, 3.3, 40, 40, 50]
        c4 = [
            10.0, 20.0, 10.0, 20.0, 10.0, 20.0, 10.0, 20.0, 10.0, 20.0, 10.0,
            20.0, 10.0
        ]
        c5 = ["09:10:10" for _ in range(10)]
        c5.extend(["00:11:10" for _ in range(3)])
        data["c1"] = c1
        data["c2"] = c2
        data["c3"] = c3
        data["c4"] = c4
        data["c5"] = c5
        df = self.spark.createDataFrame(data)
        task = Task()

        task.add(completeness())
        task.add(completeness([0, 1, 2]))
        task.add(deduplication([0, 1]))
        task.add(deduplication())
        task.add(timeliness(["c5"], value="10:10:10", timeFormat="ss:mm:HH"))
        task.add(completeness())
        condition1 = {"column": "c3", "operator": "lt", "value": 50}
        condition2 = {"column": "c3", "operator": "gt", "value": 1.0}
        conditions = [condition1, condition2]
        task.add(rule(conditions))
        condition1 = {"column": "c5", "operator": "eq", "value": "00:11:10"}
        conditions = [condition1]
        task.add(rule(conditions))

        condition1 = {"column": "c3", "operator": "lt", "value": 50}
        condition2 = {"column": "c3", "operator": "gt", "value": 1.0}
        conditions = [condition1, condition2]
        having1 = {
            "column": "*",
            "operator": "gt",
            "value": 1,
            "aggregator": "count"
        }
        having2 = {
            "column": "c4",
            "operator": "eq",
            "value": 50 / 3,
            "aggregator": "avg"
        }
        havings = [having1, having2]
        task.add(grouprule([0, "c2"], havings, conditions))

        result = task.run(df)

        # c1
        r = result[0]["scores"][0]
        self.assertEqual(r, 100.)

        # c2
        r1, r2, r3 = result[1]["scores"]
        self.assertEqual(r1, 100.)
        self.assertEqual(r2, 100.)
        self.assertEqual(r3, 100.)

        # d1
        r1, r2 = result[2]["scores"]
        self.assertEqual(r1, (6 / 13) * 100)
        self.assertEqual(r2, (4 / 13) * 100)

        # d2
        r = result[3]["scores"][0]
        self.assertEqual(r, 100.)

        # t
        r = result[4]["scores"][0]
        self.assertEqual(r, (10 / 13) * 100)

        # c3
        r = result[5]["scores"][0]
        self.assertEqual(r, 100.)

        # r1
        r = result[6]["scores"][0]
        self.assertEqual(r, (8 / 13) * 100)

        # r2
        r = result[7]["scores"][0]
        self.assertEqual(r, (3 / 13) * 100)

        # gr1
        r = result[8]["scores"][0]
        self.assertEqual(r, 25.0)