コード例 #1
0
def insert_singer():
    print('Inserting singer tuples')
    conn = get_conn()
    cursor = get_cursor(conn)

    unique = set()
    __name = None
    __singer_id = None
    __initial_hotness = None

    try:
        for i in range(hard.NUM_SINGERS):
            __singer_id = bytes2str(GETTERS.get_artist_id(h5, i))
            if __singer_id not in unique:
                unique.add(__singer_id)
                __name = bytes2str(GETTERS.get_artist_name(h5, i))
                __initial_hotness = 0
                cursor.execute(sql.INSERT_SINGER,
                        id = __singer_id, name = __name,
                        hotness = __initial_hotness)
        return 0
    except Exception as e:
        print(e, 'insert singer tuple error')
        print('name:',__name, 'singer_id:',__singer_id, 'hotness:',__initial_hotness)
        return -1
    finally:
        conn.commit()
        close_all(conn, cursor)
コード例 #2
0
def insert_favorite_singer():
    print('Inserting favorite_singer tuples')
    conn = get_conn()
    cursor = get_cursor(conn)

    __singer_id = None

    try:
        for customer in customers.values():
            rows = 3
            unique = set()
            for i in range(rows):
                index = InfoGenerator.gen_int(0, len(songs) - 1)
                __singer_id = bytes2str(GETTERS.get_artist_id(h5, index))
                if __singer_id not in unique:
                    unique.add(__singer_id)
                    cursor.execute(sql.INSERT_FAVORITE_SINGER,
                            username = customer.get_username(), singer_id = __singer_id)
        return 0
    except Exception as e:
        print(e, 'insert favorite_singer tuple error')
        print('singer_id:',__singer_id)
        return -1
    finally:
        conn.commit()
        close_all(conn, cursor)
コード例 #3
0
ファイル: POC.py プロジェクト: tianhuil/projects201409
def func_to_extract_features(filename):
    """
    This function extracts all features: per-track, per-section and per-segment
    """
#    - open the song file
    h5 = GETTERS.open_h5_file_read(filename)
#    - get per-track features and put them

    artist_id = GETTERS.get_artist_id(h5)
    song_id   = GETTERS.get_song_id(h5)

    artist_familiarity          = GETTERS.get_artist_familiarity(h5)
    artist_hotttnesss           = GETTERS.get_artist_hotttnesss(h5)
    artist_latitude             = GETTERS.get_artist_latitude(h5)
    artist_longitude            = GETTERS.get_artist_longitude(h5)
    danceability                = GETTERS.get_danceability(h5)
    energy                      = GETTERS.get_energy(h5)
    loudness                    = GETTERS.get_loudness(h5)
    song_hotttnesss             = GETTERS.get_song_hotttnesss(h5)
    tempo                       = GETTERS.get_tempo(h5)
    year                        = GETTERS.get_year(h5)

#   artist_ids.add(artist_id)

#    features_tuple = (artist_id, artist_familiarity, artist_hotttnesss, artist_latitude, artist_longitude, danceability, energy, loudness, song_hotttnesss, tempo, year)
    features_tuple = (artist_id, artist_familiarity, artist_hotttnesss, loudness, song_hotttnesss, tempo, year)
 #   print features_tuple
    
    features_tuples[song_id] = features_tuple
    
#    files_per_artist[artist_id] += 1
#    - close the file
    h5.close()
コード例 #4
0
def func_to_count_artist_id(filename):
    """
    This function does 3 simple things:
    - open the song file
    - get artist ID and put it
    - close the file
    """
    h5 = GETTERS.open_h5_file_read(filename)
    artist_id = GETTERS.get_artist_id(h5)
    files_per_artist[artist_id] += 1
    h5.close()
コード例 #5
0
def process_filelist_train(filelist=None,testsongs=None,tmpfilename=None):
    """
    Main function, process all files in the list (as long as their track_id
    is not in testsongs)
    INPUT
       filelist     - a list of song files
       testsongs    - set of track ID that we should not use
       tmpfilename  - where to save our processed features
    """
    # sanity check
    for arg in locals().values():
        assert not arg is None,'process_filelist_train, missing an argument, something still None'
    if os.path.isfile(tmpfilename):
        print 'ERROR: file',tmpfilename,'already exists.'
        return
    # dimension fixed (12-dimensional timbre vector)
    ndim = 12
    finaldim = 90
    # create outputfile
    output = tables.openFile(tmpfilename, mode='a')
    group = output.createGroup("/",'data','TMP FILE FOR ARTIST RECOGNITION')
    output.createEArray(group,'feats',tables.Float64Atom(shape=()),(0,finaldim),'',
                        expectedrows=len(filelist))
    output.createEArray(group,'artist_id',tables.StringAtom(18,shape=()),(0,),'',
                        expectedrows=len(filelist))
    # iterate over files
    cnt_f = 0
    for f in filelist:
        cnt_f += 1
        # verbose
        if cnt_f % 50000 == 0:
            print 'training... checking file #',cnt_f
        # check what file/song is this
        h5 = GETTERS.open_h5_file_read(f)
        artist_id = GETTERS.get_artist_id(h5)
        track_id = GETTERS.get_track_id(h5)
        if track_id in testsongs: # just in case, but should not be necessary
            print 'Found test track_id during training? weird.',track_id
            h5.close()
            continue
        # extract features, then close file
        processed_feats = compute_features(h5)
        h5.close()
        if processed_feats is None:
            continue
        # save features to tmp file
        output.root.data.artist_id.append( np.array( [artist_id] ) )
        output.root.data.feats.append( processed_feats )
    # we're done, close output
    output.close()
    return
コード例 #6
0
def insert_song():
    print('Inserting song tuples')
    conn = get_conn()
    cursor = get_cursor(conn)

    __id = None
    __title = None
    __avg_rate = None
    __release_date = None
    __duration = None
    __price = None
    __provider_name = None
    __genre_id = None
    __singer_id = None
    __download = None

    try:
        for i in range(hard.NUM_SONGS):
            __id = bytes2str(GETTERS.get_song_id(h5, i))
            __title = bytes2str(GETTERS.get_title(h5, i))
            __avg_rate = 0.0
            # use int() to transform the numpy.int32 to int which is supported by Oracle
            __release_date = int(GETTERS.get_year(h5, i))
            if __release_date == 0:
                __release_date = None
            __duration = int(GETTERS.get_duration(h5, i))
            __price = InfoGenerator.gen_price()
            __provider_name = InfoGenerator.get_provider_name()
            __genre_id = InfoGenerator.get_genre_id()
            __singer_id = bytes2str(GETTERS.get_artist_id(h5, i))
            __download = 0

            cursor.execute(sql.INSERT_SONG,
                    id = __id, title = __title, avg_rate = __avg_rate, release_date = __release_date,
                    duration = __duration, price = __price, provider_name = __provider_name,
                    genre_id = __genre_id, singer_id = __singer_id, download = __download)
            songs[i] = Song(__id, __title, __avg_rate, __release_date, __duration, __price,
                               __provider_name, __genre_id, __singer_id, __download)
        return 0
    except Exception as e:
        print(e)
        print('i:', i, '\nid:',__id, '\ntitle:', __title, '\navg_rate:', __avg_rate,
              '\nrelease_date:', __release_date, '\nduration', __duration, '\nprice', __price,
              'provider_name:',__provider_name, '\ngenre_id:', __genre_id, '\nsinger_id', __singer_id,
              'download:',__download)
        return -1
    finally:
        conn.commit()
        close_all(conn, cursor)
コード例 #7
0
def func_to_count_artist_id(filename):
   """
    This function does 3 simple things:
    - open the song file
    - get artist ID and put it
    - close the file
    """
   h5 = GETTERS.open_h5_file_read(filename)
   artist_id = GETTERS.get_artist_id(h5).decode('UTF-8')
   
#    print(type(artist_id), ": ", artist_id)
#    
#    artist_id.replace('b','').replace("'", "")
   
   files_per_artist[artist_id] += 1
   h5.close()
コード例 #8
0
ファイル: AutoTag.py プロジェクト: viveknar/projects
def process_song(h5_song_file):
	song = {}
	song['artist_familiarity'] = hdf5_getters.get_artist_familiarity(h5)
	song['artist_id'] = hdf5_getters.get_artist_id(h5)
	song['artist_name'] = hdf5_getters.get_artist_name(h5)
	song['artist_hotttnesss'] = hdf5_getters.get_artist_hotttnesss(h5);
	song['title'] = hdf5_getters.get_title(h5)
	terms = hdf5_getters.get_artist_terms(h5)
	terms_freq = hdf5_getters.get_artist_terms_freq(h5)
	terms_weight = hdf5_getters.get_artist_terms_weight(h5)
	terms_array = []
	# Creating a array of [term, its frequency, its weight]. Doing this for all terms associated
	# with the artist
	for i in range(len(terms)):
		terms_array.append([terms[i], terms_freq[i], terms_weight[i]])	
		
	song['artist_terms'] = terms_array
	beats_start = hdf5_getters.get_beats_start(h5)
	song['beats_start_variance'] = variance(beats_start)   #beats variance in yocto seconds(10^-24s)
	song['number_of_beats'] = len(beats_start)
	song['duration'] = hdf5_getters.get_duration(h5)
	song['loudness'] = hdf5_getters.get_loudness(h5)
	sections_start = hdf5_getters.get_sections_start(h5)
	song['sections_start_variance'] = variance(sections_start)
	song['number_of_sections'] = len(sections_start)
	
	segments_pitches = hdf5_getters.get_segments_pitches(h5)
	(a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11) = split_segments(segments_pitches)
	song['segments_pitches_variance'] = [variance(a0), variance(a1), variance(a2),
					variance(a3), variance(a4), variance(a5), variance(a6), variance(a7),
					variance(a8), variance(a9), variance(a10), variance(a11)]
	song['segments_pitches_mean'] = [mean(a0), mean(a1), mean(a2), mean(a3), mean(a4), 
					mean(a5), mean(a6), mean(a7), mean(a8), mean(a9), mean(a10), mean(a11)]
	
	segments_timbre = hdf5_getters.get_segments_timbre(h5)
	(a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11) = split_segments(segments_timbre)
	song['segments_timbre_variance'] = [variance(a0), variance(a1), variance(a2),
					variance(a3), variance(a4), variance(a5), variance(a6), variance(a7),
					variance(a8), variance(a9), variance(a10), variance(a11)]
	song['segments_timbre_mean'] = [mean(a0), mean(a1), mean(a2), mean(a3), mean(a4), 
					mean(a5), mean(a6), mean(a7), mean(a8), mean(a9), mean(a10), mean(a11)]
	song['tempo'] = hdf5_getters.get_tempo(h5)
	song['_id'] = hdf5_getters.get_song_id(h5)
	song['year'] = hdf5_getters.get_year(h5)	
	return song
コード例 #9
0
ファイル: parse.py プロジェクト: tstullich/school-2015
def get_all_attributes(filename):
    """
    This function does 3 simple things:
    - open the song file
    - get all required attributes
    - write it to a csv file 
    - close the files
    """
    with open('attributes.csv', 'a') as csvfile:
        try:
            # let's apply the previous function to all files
            csvwriter = csv.writer(csvfile, delimiter='\t')
            h5 = GETTERS.open_h5_file_read(filename)
            RESULTS = []
            RESULTS.append(GETTERS.get_year(h5))
            RESULTS.append(GETTERS.get_artist_id(h5))
            RESULTS.append(GETTERS.get_artist_name(h5))
            RESULTS.append(GETTERS.get_artist_mbid(h5))
            RESULTS.append(convert_terms(GETTERS.get_artist_terms(h5)))
            RESULTS.append(GETTERS.get_artist_hotttnesss(h5))
            RESULTS.append(GETTERS.get_artist_latitude(h5))
            RESULTS.append(GETTERS.get_artist_longitude(h5))
            RESULTS.append(GETTERS.get_artist_familiarity(h5))
            RESULTS.append(GETTERS.get_danceability(h5))
            RESULTS.append(GETTERS.get_duration(h5))
            RESULTS.append(GETTERS.get_energy(h5))
            RESULTS.append(GETTERS.get_loudness(h5))
            RESULTS.append(GETTERS.get_song_hotttnesss(h5))
            RESULTS.append(GETTERS.get_song_id(h5))
            RESULTS.append(GETTERS.get_tempo(h5))
            RESULTS.append(GETTERS.get_time_signature(h5))
            RESULTS.append(GETTERS.get_title(h5))
            RESULTS.append(GETTERS.get_track_id(h5))
            RESULTS.append(GETTERS.get_release(h5))
            csvwriter.writerow(RESULTS)
            h5.close()
        except AttributeError:
            pass
コード例 #10
0
def process_filelist_test(filelist=None,model=None,tmpfilename=None,
                           npicks=None,winsize=None,finaldim=None,K=1,
                          typecompress='picks'):
    """
    Main function, process all files in the list (as long as their artist
    is in testartist)
    INPUT
       filelist     - a list of song files
       model        - h5 file containing feats and year for all train songs
       tmpfilename  - where to save our processed features
       npicks       - number of segments to pick per song
       winsize      - size of each segment we pick
       finaldim     - how many values do we keep
       K            - param of KNN (default 1)
       typecompress - feature type, 'picks', 'corrcoeff' or 'cov'
                      must be the same as in training
    """
    # sanity check
    for arg in locals().values():
        assert not arg is None,'process_filelist_test, missing an argument, something still None'
    if os.path.isfile(tmpfilename):
        print 'ERROR: file',tmpfilename,'already exists.'
        return
    if not os.path.isfile(model):
        print 'ERROR: model',model,'does not exist.'
        return
    # create kdtree
    h5model = tables.openFile(model, mode='r')
    assert h5model.root.data.feats.shape[1]==finaldim,'inconsistency in final dim'
    kd = ANN.kdtree(h5model.root.data.feats)
    # create outputfile
    output = tables.openFile(tmpfilename, mode='a')
    group = output.createGroup("/",'data','TMP FILE FOR YEAR RECOGNITION')
    output.createEArray(group,'year_real',tables.IntAtom(shape=()),(0,),'',
                        expectedrows=len(filelist))
    output.createEArray(group,'year_pred',tables.Float64Atom(shape=()),(0,),'',
                        expectedrows=len(filelist))
    # random projection
    ndim = 12 # fixed in this dataset
    if typecompress == 'picks':
        randproj = RANDPROJ.proj_point5(ndim * winsize, finaldim)
    elif typecompress == 'corrcoeff' or typecompress=='cov':
        randproj = RANDPROJ.proj_point5(ndim * ndim, finaldim)
    elif typecompress == 'avgcov':
        randproj = RANDPROJ.proj_point5(90, finaldim)
    else:
        assert False,'Unknown type of compression: '+str(typecompress)
    # go through files
    cnt_f = 0
    for f in filelist:
        cnt_f += 1
        if cnt_f % 5000 == 0:
            print 'TESTING FILE #'+str(cnt_f)
        # check file
        h5 = GETTERS.open_h5_file_read(f)
        artist_id = GETTERS.get_artist_id(h5)
        year = GETTERS.get_year(h5)
        track_id = GETTERS.get_track_id(h5)
        h5.close()
        if year <= 0: # probably useless but...
            continue
        if typecompress == 'picks':
            # we have a train artist with a song year, we're good
            bttimbre = get_bttimbre(f)
            if bttimbre is None:
                continue
            # we even have normal features, awesome!
            processed_feats = CBTF.extract_and_compress(bttimbre,npicks,winsize,finaldim,
                                                        randproj=randproj)
        elif typecompress == 'corrcoeff':
            h5 = GETTERS.open_h5_file_read(f)
            timbres = GETTERS.get_segments_timbre(h5).T
            h5.close()
            processed_feats = CBTF.corr_and_compress(timbres,finaldim,randproj=randproj)
        elif typecompress == 'cov':
            h5 = GETTERS.open_h5_file_read(f)
            timbres = GETTERS.get_segments_timbre(h5).T
            h5.close()
            processed_feats = CBTF.cov_and_compress(timbres,finaldim,randproj=randproj)
        elif typecompress == 'avgcov':
            h5 = GETTERS.open_h5_file_read(f)
            timbres = GETTERS.get_segments_timbre(h5).T
            h5.close()
            processed_feats = CBTF.avgcov_and_compress(timbres,finaldim,randproj=randproj)
        else:
            assert False,'Unknown type of compression: '+str(typecompress)
        if processed_feats is None:
            continue
        if processed_feats.shape[0] == 0:
            continue
        # do prediction
        year_pred = do_prediction(processed_feats,kd,h5model,K)
        # add pred and ground truth to output
        if not year_pred is None:
            output.root.data.year_real.append( [year] )
            output.root.data.year_pred.append( [year_pred] )
    # close output and model
    del kd
    h5model.close()
    output.close()
    # done
    return
コード例 #11
0
def hd5_single_random_file_parser():
    # Open an h5 file in read mode
    h5 = hdf5_getters.open_h5_file_read(
        '/home/skalogerakis/Documents/MillionSong/MillionSongSubset/A/M/G/TRAMGDX12903CEF79F.h5'
    )

    function_tracker = filter(
        lambda x: x.startswith('get'),
        hdf5_getters.__dict__.keys())  # Detects all the getter functions

    for f in function_tracker:  # Print everything in function tracker
        print(f)

    # First effort to check what each field contains.
    print()  # 55 available fields (exluding number of songs fields)
    print("Num of songs -- ",
          hdf5_getters.get_num_songs(h5))  # One song per file
    print("Title -- ",
          hdf5_getters.get_title(h5))  # Print the title of a specific h5 file
    print("Artist familiarity -- ", hdf5_getters.get_artist_familiarity(h5))
    print("Artist hotness -- ", hdf5_getters.get_artist_hotttnesss(h5))
    print("Artist ID -- ", hdf5_getters.get_artist_id(h5))
    print("Artist mbID -- ", hdf5_getters.get_artist_mbid(h5))
    print("Artist playmeid -- ", hdf5_getters.get_artist_playmeid(h5))
    print("Artist 7DigitalID -- ", hdf5_getters.get_artist_7digitalid(h5))
    print("Artist latitude -- ", hdf5_getters.get_artist_latitude(h5))
    print("Artist longitude -- ", hdf5_getters.get_artist_longitude(h5))
    print("Artist location -- ", hdf5_getters.get_artist_location(h5))
    print("Artist Name -- ", hdf5_getters.get_artist_name(h5))
    print("Release -- ", hdf5_getters.get_release(h5))
    print("Release 7DigitalID -- ", hdf5_getters.get_release_7digitalid(h5))
    print("Song ID -- ", hdf5_getters.get_song_id(h5))
    print("Song Hotness -- ", hdf5_getters.get_song_hotttnesss(h5))
    print("Track 7Digital -- ", hdf5_getters.get_track_7digitalid(h5))
    print("Similar artists -- ", hdf5_getters.get_similar_artists(h5))
    print("Artist terms -- ", hdf5_getters.get_artist_terms(h5))
    print("Artist terms freq -- ", hdf5_getters.get_artist_terms_freq(h5))
    print("Artist terms weight -- ", hdf5_getters.get_artist_terms_weight(h5))
    print("Analysis sample rate -- ",
          hdf5_getters.get_analysis_sample_rate(h5))
    print("Audio md5 -- ", hdf5_getters.get_audio_md5(h5))
    print("Danceability -- ", hdf5_getters.get_danceability(h5))
    print("Duration -- ", hdf5_getters.get_duration(h5))
    print("End of Fade -- ", hdf5_getters.get_end_of_fade_in(h5))
    print("Energy -- ", hdf5_getters.get_energy(h5))
    print("Key -- ", hdf5_getters.get_key(h5))
    print("Key Confidence -- ", hdf5_getters.get_key_confidence(h5))
    print("Loudness -- ", hdf5_getters.get_loudness(h5))
    print("Mode -- ", hdf5_getters.get_mode(h5))
    print("Mode Confidence -- ", hdf5_getters.get_mode_confidence(h5))
    print("Start of fade out -- ", hdf5_getters.get_start_of_fade_out(h5))
    print("Tempo -- ", hdf5_getters.get_tempo(h5))
    print("Time signature -- ", hdf5_getters.get_time_signature(h5))
    print("Time signature confidence -- ",
          hdf5_getters.get_time_signature_confidence(h5))
    print("Track ID -- ", hdf5_getters.get_track_id(h5))
    print("Segments Start -- ", hdf5_getters.get_segments_start(h5))
    print("Segments Confidence -- ", hdf5_getters.get_segments_confidence(h5))
    print("Segments Pitches -- ", hdf5_getters.get_segments_pitches(h5))
    print("Segments Timbre -- ", hdf5_getters.get_segments_timbre(h5))
    print("Segments Loudness max -- ",
          hdf5_getters.get_segments_loudness_max(h5))
    print("Segments Loudness max time-- ",
          hdf5_getters.get_segments_loudness_max_time(h5))
    print("Segments Loudness start -- ",
          hdf5_getters.get_segments_loudness_start(h5))
    print("Sections start -- ", hdf5_getters.get_sections_start(h5))
    print("Sections Confidence -- ", hdf5_getters.get_sections_confidence(h5))
    print("Beats start -- ", hdf5_getters.get_beats_start(h5))
    print("Beats confidence -- ", hdf5_getters.get_beats_confidence(h5))
    print("Bars start -- ", hdf5_getters.get_bars_start(h5))
    print("Bars confidence -- ", hdf5_getters.get_bars_confidence(h5))
    print("Tatums start -- ", hdf5_getters.get_tatums_start(h5))
    print("Tatums confidence -- ", hdf5_getters.get_tatums_confidence(h5))
    print("Artist mbtags -- ", hdf5_getters.get_artist_mbtags(h5))
    print("Artist mbtags count -- ", hdf5_getters.get_artist_mbtags_count(h5))
    print("Year -- ", hdf5_getters.get_year(h5))

    fields = ['Title', 'Artist ID']

    with open('Tester2.csv', 'w', newline='') as csvfile:
        csv_writer = csv.writer(csvfile, delimiter=';')

        # writing the fields
        csv_writer.writerow(fields)

        # writing the data rows
        csv_writer.writerow(
            [hdf5_getters.get_title(h5),
             hdf5_getters.get_artist_id(h5)])

    h5.close()  # close h5 when completed in the end
コード例 #12
0
ファイル: 1main.py プロジェクト: w22116972/2016spring_project
print("number of songs = ",length)

count = 0;
for i in range(0,length):
	tmp = [];
	if hdf5_getters.get_year(h5,songidx=i) == 0 :
		continue;
	#if math.isnan(hdf5_getters.get_artist_latitude(h5,songidx=i)) and hdf5_getters.get_artist_location(h5,songidx=i) =='':
	#	continue;
	count+=1;
	tmp.append(str(hdf5_getters.get_track_id(h5,songidx=i)).replace("b'","").replace("'",""));	
	tmp.append(hdf5_getters.get_year(h5,songidx=i)); #0
	tmp.append(hdf5_getters.get_song_hotttnesss(h5,songidx=i)); #1
	tmp.append(str(hdf5_getters.get_title(h5,songidx=i)).replace("b'","").replace("'",""));	#2
	tmp.append(str(hdf5_getters.get_artist_id(h5,songidx=i)).replace("b'","").replace("'","")); #3	
	tmp.append(hdf5_getters.get_artist_latitude(h5,songidx=i)); #4
	tmp.append(hdf5_getters.get_artist_longitude(h5,songidx=i)); #5
	tmp.append(str(hdf5_getters.get_artist_location(h5,songidx=i)).replace("b'","").replace("'","")); #6
	tmp.append(str(hdf5_getters.get_artist_name(h5,songidx=i)).replace("b'","").replace("'","")); #7
	tmp.append(str(hdf5_getters.get_song_id(h5,songidx=i)).replace("b'","").replace("'",""));	
	data.append(tmp)
	print(count)

h5.close()
data = sorted(data, key = operator.itemgetter(1))

#print hdf5_getters.get_artist_location(h5,songidx=8540))
print("writing...")

f = open('files/TrackIdAndInformation.csv','w+')
コード例 #13
0
def main():
    outputFile1 = open('SongCSV.csv', 'w')
    csvRowString = ""

    #################################################
    #if you want to prompt the user for the order of attributes in the csv,
    #leave the prompt boolean set to True
    #else, set 'prompt' to False and set the order of attributes in the 'else'
    #clause
    prompt = False
    #################################################
    if prompt == True:
        while prompt:

            prompt = False

            csvAttributeString = raw_input("\n\nIn what order would you like the colums of the CSV file?\n" +
                "Please delineate with commas. The options are: " +
                "AlbumName, AlbumID, ArtistID, ArtistLatitude, ArtistLocation, ArtistLongitude,"+
                " ArtistName, Danceability, Duration, KeySignature, KeySignatureConfidence, Tempo," +
                " SongID, TimeSignature, TimeSignatureConfidence, Title, and Year.\n\n" +
                "For example, you may write \"Title, Tempo, Duration\"...\n\n" +
                "...or exit by typing 'exit'.\n\n")

            csvAttributeList = re.split('\W+', csvAttributeString)
            for i, v in enumerate(csvAttributeList):
                csvAttributeList[i] = csvAttributeList[i].lower()

            for attribute in csvAttributeList:
                # print "Here is the attribute: " + attribute + " \n"


                if attribute == 'AlbumID'.lower():
                    csvRowString += 'AlbumID'
                elif attribute == 'AlbumName'.lower():
                    csvRowString += 'AlbumName'
                elif attribute == 'ArtistID'.lower():
                    csvRowString += 'ArtistID'
                elif attribute == 'ArtistLatitude'.lower():
                    csvRowString += 'ArtistLatitude'
                elif attribute == 'ArtistLocation'.lower():
                    csvRowString += 'ArtistLocation'
                elif attribute == 'ArtistLongitude'.lower():
                    csvRowString += 'ArtistLongitude'
                elif attribute == 'ArtistName'.lower():
                    csvRowString += 'ArtistName'
                elif attribute == 'Danceability'.lower():
                    csvRowString += 'Danceability'
                elif attribute == 'Duration'.lower():
                    csvRowString += 'Duration'
                elif attribute == 'KeySignature'.lower():
                    csvRowString += 'KeySignature'
                elif attribute == 'KeySignatureConfidence'.lower():
                    csvRowString += 'KeySignatureConfidence'
                elif attribute == 'SongID'.lower():
                    csvRowString += "SongID"
                elif attribute == 'Tempo'.lower():
                    csvRowString += 'Tempo'
                elif attribute == 'TimeSignature'.lower():
                    csvRowString += 'TimeSignature'
                elif attribute == 'TimeSignatureConfidence'.lower():
                    csvRowString += 'TimeSignatureConfidence'
                elif attribute == 'Title'.lower():
                    csvRowString += 'Title'
                elif attribute == 'Year'.lower():
                    csvRowString += 'Year'
                elif attribute == 'Exit'.lower():
                    sys.exit()
                else:
                    prompt = True
                    print "=============="
                    print "I believe there has been an error with the input."
                    print "=============="
                    break

                csvRowString += ","

            lastIndex = len(csvRowString)
            csvRowString = csvRowString[0:lastIndex-1]
            csvRowString += "\n"
            outputFile1.write(csvRowString);
            csvRowString = ""
    #else, if you want to hard code the order of the csv file and not prompt
    #the user, 
    else:
        #################################################
        #change the order of the csv file here
        #Default is to list all available attributes (in alphabetical order)
        csvRowString = ("SongID,AlbumID,AlbumName,ArtistID,ArtistLatitude,ArtistLocation,"+
            "ArtistLongitude,ArtistName,Danceability,Duration,KeySignature,"+
            "KeySignatureConfidence,Tempo,TimeSignature,TimeSignatureConfidence,"+
            "Title,Year")
        #################################################

        csvAttributeList = re.split('\W+', csvRowString)
        for i, v in enumerate(csvAttributeList):
            csvAttributeList[i] = csvAttributeList[i].lower()
        outputFile1.write("SongNumber,");
        outputFile1.write(csvRowString + "\n");
        csvRowString = ""  

    #################################################


    #Set the basedir here, the root directory from which the search
    #for files stored in a (hierarchical data structure) will originate
    basedir = "." # "." As the default means the current directory
    ext = ".H5" #Set the extension here. H5 is the extension for HDF5 files.
    #################################################

    #FOR LOOP
    for root, dirs, files in os.walk(basedir):        
        files = glob.glob(os.path.join(root,'*'+ext))
        for f in files:
            print f

            songH5File = hdf5_getters.open_h5_file_read(f)
            song = Song(str(hdf5_getters.get_song_id(songH5File)))

            testDanceability = hdf5_getters.get_danceability(songH5File)
            # print type(testDanceability)
            # print ("Here is the danceability: ") + str(testDanceability)

            song.artistID = str(hdf5_getters.get_artist_id(songH5File))
            song.albumID = str(hdf5_getters.get_release_7digitalid(songH5File))
            song.albumName = str(hdf5_getters.get_release(songH5File))
            song.artistLatitude = str(hdf5_getters.get_artist_latitude(songH5File))
            song.artistLocation = str(hdf5_getters.get_artist_location(songH5File))
            song.artistLongitude = str(hdf5_getters.get_artist_longitude(songH5File))
            song.artistName = str(hdf5_getters.get_artist_name(songH5File))
            song.danceability = str(hdf5_getters.get_danceability(songH5File))
            song.duration = str(hdf5_getters.get_duration(songH5File))
            # song.setGenreList()
            song.keySignature = str(hdf5_getters.get_key(songH5File))
            song.keySignatureConfidence = str(hdf5_getters.get_key_confidence(songH5File))
            # song.lyrics = None
            # song.popularity = None
            song.tempo = str(hdf5_getters.get_tempo(songH5File))
            song.timeSignature = str(hdf5_getters.get_time_signature(songH5File))
            song.timeSignatureConfidence = str(hdf5_getters.get_time_signature_confidence(songH5File))
            song.title = str(hdf5_getters.get_title(songH5File))
            song.year = str(hdf5_getters.get_year(songH5File))

            #print song count
            csvRowString += str(song.songCount) + ","

            for attribute in csvAttributeList:
                # print "Here is the attribute: " + attribute + " \n"

                if attribute == 'AlbumID'.lower():
                    csvRowString += song.albumID
                elif attribute == 'AlbumName'.lower():
                    albumName = song.albumName
                    albumName = albumName.replace(',',"")
                    csvRowString += "\"" + albumName + "\""
                elif attribute == 'ArtistID'.lower():
                    csvRowString += "\"" + song.artistID + "\""
                elif attribute == 'ArtistLatitude'.lower():
                    latitude = song.artistLatitude
                    if latitude == 'nan':
                        latitude = ''
                    csvRowString += latitude
                elif attribute == 'ArtistLocation'.lower():
                    location = song.artistLocation
                    location = location.replace(',','')
                    csvRowString += "\"" + location + "\""
                elif attribute == 'ArtistLongitude'.lower():
                    longitude = song.artistLongitude
                    if longitude == 'nan':
                        longitude = ''
                    csvRowString += longitude                
                elif attribute == 'ArtistName'.lower():
                    csvRowString += "\"" + song.artistName + "\""                
                elif attribute == 'Danceability'.lower():
                    csvRowString += song.danceability
                elif attribute == 'Duration'.lower():
                    csvRowString += song.duration
                elif attribute == 'KeySignature'.lower():
                    csvRowString += song.keySignature
                elif attribute == 'KeySignatureConfidence'.lower():
                    # print "key sig conf: " + song.timeSignatureConfidence                                 
                    csvRowString += song.keySignatureConfidence
                elif attribute == 'SongID'.lower():
                    csvRowString += "\"" + song.id + "\""
                elif attribute == 'Tempo'.lower():
                    # print "Tempo: " + song.tempo
                    csvRowString += song.tempo
                elif attribute == 'TimeSignature'.lower():
                    csvRowString += song.timeSignature
                elif attribute == 'TimeSignatureConfidence'.lower():
                    # print "time sig conf: " + song.timeSignatureConfidence                                   
                    csvRowString += song.timeSignatureConfidence
                elif attribute == 'Title'.lower():
                    csvRowString += "\"" + song.title + "\""
                elif attribute == 'Year'.lower():
                    csvRowString += song.year
                else:
                    csvRowString += "Erm. This didn't work. Error. :( :(\n"

                csvRowString += ","

            #Remove the final comma from each row in the csv
            lastIndex = len(csvRowString)
            csvRowString = csvRowString[0:lastIndex-1]
            csvRowString += "\n"
            outputFile1.write(csvRowString)
            csvRowString = ""

            songH5File.close()

    outputFile1.close()
コード例 #14
0
def main():
    outputFile1 = open('SongCSV.csv', 'w')
    csvRowString = ""

    #################################################
    #if you want to prompt the user for the order of attributes in the csv,
    #leave the prompt boolean set to True
    #else, set 'prompt' to False and set the order of attributes in the 'else'
    #clause
    prompt = False
    #################################################
    if prompt == True:
        while prompt:

            prompt = False

            csvAttributeString = raw_input(
                "\n\nIn what order would you like the colums of the CSV file?\n"
                + "Please delineate with commas. The options are: " +
                "AlbumName, AlbumID, ArtistID, ArtistLocation," +
                " ArtistName, Hotness, Duration, GenreList, KeySignature, KeySignatureConfidence, Tempo,"
                + " Loudness" +
                " TimeSignature, TimeSignatureConfidence, Title, and Year.\n\n"
                +
                "For example, you may write \"Title, Tempo, Duration\"...\n\n"
                + "...or exit by typing 'exit'.\n\n")

            csvAttributeList = re.split('\W+', csvAttributeString)
            for i, v in enumerate(csvAttributeList):
                csvAttributeList[i] = csvAttributeList[i].lower()

            for attribute in csvAttributeList:
                # print "Here is the attribute: " + attribute + " \n"

                if attribute == 'AlbumID'.lower():
                    csvRowString += 'AlbumID'
                elif attribute == 'AlbumName'.lower():
                    csvRowString += 'AlbumName'
                elif attribute == 'ArtistID'.lower():
                    csvRowString += 'ArtistID'
                elif attribute == 'ArtistLocation'.lower():
                    csvRowString += 'ArtistLocation'
                elif attribute == 'ArtistName'.lower():
                    csvRowString += 'ArtistName'
                elif attribute == 'Hotness'.lower():
                    csvRowString += 'Hotness'
                elif attribute == 'Duration'.lower():
                    csvRowString += 'Duration'
                elif attribute == 'KeySignature'.lower():
                    csvRowString += 'KeySignature'
                elif attribute == 'KeySignatureConfidence'.lower():
                    csvRowString += 'KeySignatureConfidence'
                elif attribute == 'SongID'.lower():
                    csvRowString += "SongID"
                elif attribute == 'Tempo'.lower():
                    csvRowString += 'Tempo'
                elif attribute == 'TimeSignature'.lower():
                    csvRowString += 'TimeSignature'
                elif attribute == 'TimeSignatureConfidence'.lower():
                    csvRowString += 'TimeSignatureConfidence'
                elif attribute == 'Title'.lower():
                    csvRowString += 'Title'
                elif attribute == 'Year'.lower():
                    csvRowString += 'Year'
                elif attribute == 'Loudness'.lower():
                    csvRowString += 'Loudness'
                elif attribute == 'Exit'.lower():
                    sys.exit()
                else:
                    prompt = True
                    print("==============")
                    print("I believe there has been an error with the input.")
                    print("==============")
                    break

                csvRowString += ","

            lastIndex = len(csvRowString)
            csvRowString = csvRowString[0:lastIndex - 1]
            csvRowString += "\n"
            outputFile1.write(csvRowString)
            csvRowString = ""
    #else, if you want to hard code the order of the csv file and not prompt
    #the user,
    else:
        #################################################
        #change the order of the csv file here
        #Default is to list all available attributes (in alphabetical order)
        csvRowString = (
            "SongID,AlbumID,AlbumName,ArtistID,ArtistLocation," +
            "ArtistName,Hotness,Duration,KeySignature," +
            "KeySignatureConfidence,Tempo,TimeSignature,TimeSignatureConfidence,"
            + "Title,Year,Loudness")
        #################################################

        csvAttributeList = re.split('\W+', csvRowString)
        for i, v in enumerate(csvAttributeList):
            csvAttributeList[i] = csvAttributeList[i].lower()
        outputFile1.write("SongNumber,")
        outputFile1.write(csvRowString + "\n")
        csvRowString = ""

    #################################################

    #Set the basedir here, the root directory from which the search
    #for files stored in a (hierarchical data structure) will originate
    basedir = "."  # "." As the default means the current directory
    ext = ".h5"  #Set the extension here. H5 is the extension for HDF5 files.
    #################################################

    #FOR LOOP
    for root, dirs, files in os.walk(basedir):
        files = glob.glob(os.path.join(root, '*' + ext))
        for f in files:
            print(f)

            songH5File = hdf5_getters.open_h5_file_read(f)
            song = Song(str(hdf5_getters.get_song_id(songH5File)))

            testDanceability = hdf5_getters.get_danceability(songH5File)
            # print type(testDanceability)
            # print ("Here is the danceability: ") + str(testDanceability)

            song.albumID = str(hdf5_getters.get_release_7digitalid(songH5File))
            song.albumName = str(hdf5_getters.get_release(songH5File))
            song.artistID = str(hdf5_getters.get_artist_id(songH5File))
            song.artistLocation = str(
                hdf5_getters.get_artist_location(songH5File))
            song.artistName = str(hdf5_getters.get_artist_name(songH5File))
            song.hotness = str(hdf5_getters.get_artist_hotttnesss(songH5File))
            song.duration = str(hdf5_getters.get_duration(songH5File))
            # song.setGenreList()
            song.keySignature = str(hdf5_getters.get_key(songH5File))
            song.keySignatureConfidence = str(
                hdf5_getters.get_key_confidence(songH5File))
            # song.lyrics = None
            # song.popularity = None
            song.tempo = str(hdf5_getters.get_tempo(songH5File))
            song.timeSignature = str(
                hdf5_getters.get_time_signature(songH5File))
            song.timeSignatureConfidence = str(
                hdf5_getters.get_time_signature_confidence(songH5File))
            song.title = str(hdf5_getters.get_title(songH5File))
            song.year = str(hdf5_getters.get_year(songH5File))
            song.loudness = str(hdf5_getters.get_loudness(songH5File))

            #print song count
            csvRowString += str(song.songCount) + ","

            for attribute in csvAttributeList:
                # print "Here is the attribute: " + attribute + " \n"

                if attribute == 'SongID'.lower():
                    csvRowString += "\"" + song.id + "\""
                elif attribute == 'AlbumID'.lower():
                    csvRowString += song.albumID
                elif attribute == 'AlbumName'.lower():
                    albumName = song.albumName
                    albumName = albumName.replace(',', "")
                    csvRowString += "\"" + albumName + "\""
                elif attribute == 'ArtistID'.lower():
                    csvRowString += "\"" + song.artistID + "\""
                elif attribute == 'ArtistLocation'.lower():
                    location = song.artistLocation
                    location = location.replace(',', '')
                    csvRowString += "\"" + location + "\""
                elif attribute == 'ArtistName'.lower():
                    csvRowString += "\"" + song.artistName + "\""
                elif attribute == 'Hotness'.lower():
                    csvRowString += song.hotness
                elif attribute == 'Duration'.lower():
                    csvRowString += song.duration
                elif attribute == 'KeySignature'.lower():
                    csvRowString += song.keySignature
                elif attribute == 'KeySignatureConfidence'.lower():
                    # print "key sig conf: " + song.timeSignatureConfidence
                    csvRowString += song.keySignatureConfidence
                elif attribute == 'Tempo'.lower():
                    # print "Tempo: " + song.tempo
                    csvRowString += song.tempo
                elif attribute == 'TimeSignature'.lower():
                    csvRowString += song.timeSignature
                elif attribute == 'TimeSignatureConfidence'.lower():
                    # print "time sig conf: " + song.timeSignatureConfidence
                    csvRowString += song.timeSignatureConfidence
                elif attribute == 'Title'.lower():
                    csvRowString += "\"" + song.title + "\""
                elif attribute == 'Year'.lower():
                    csvRowString += song.year
                elif attribute == 'Loudness'.lower():
                    csvRowString += "\"" + song.loudness + "\""
                else:
                    csvRowString += "Erm. This didn't work. Error. :( :(\n"

                csvRowString += ","

            #Remove the final comma from each row in the csv
            lastIndex = len(csvRowString)
            csvRowString = csvRowString[0:lastIndex - 1]
            csvRowString += "\n"
            outputFile1.write(csvRowString)
            csvRowString = ""

            songH5File.close()

    outputFile1.close()
コード例 #15
0
def main():
    outputFile1 = open('SongCSV.csv', 'w')
    csvRowString = ""

    #################################################
    #if you want to prompt the user for the order of attributes in the csv,
    #leave the prompt boolean set to True
    #else, set 'prompt' to False and set the order of attributes in the 'else'
    #clause
    prompt = False
    #################################################
    if prompt == True:
        while prompt:

            prompt = False

            csvAttributeString = raw_input(
                "\n\nIn what order would you like the colums of the CSV file?\n"
                + "Please delineate with commas. The options are: " +
                "AlbumName, AlbumID, ArtistID, ArtistLatitude, ArtistLocation, ArtistLongitude,"
                +
                " ArtistName, Danceability, Duration, KeySignature, KeySignatureConfidence, Tempo,"
                +
                " SongID, TimeSignature, TimeSignatureConfidence, Title, Year and Hotttnesss.\n\n"
                +
                "For example, you may write \"Title, Tempo, Duration\"...\n\n"
                + "...or exit by typing 'exit'.\n\n")

            csvAttributeList = re.split('\W+', csvAttributeString)
            for i, v in enumerate(csvAttributeList):
                csvAttributeList[i] = csvAttributeList[i].lower()

            for attribute in csvAttributeList:
                # print "Here is the attribute: " + attribute + " \n"

                if attribute == 'AlbumID'.lower():
                    csvRowString += 'AlbumID'
                elif attribute == 'AlbumName'.lower():
                    csvRowString += 'AlbumName'
                elif attribute == 'ArtistID'.lower():
                    csvRowString += 'ArtistID'
                elif attribute == 'ArtistLatitude'.lower():
                    csvRowString += 'ArtistLatitude'
                elif attribute == 'ArtistLocation'.lower():
                    csvRowString += 'ArtistLocation'
                elif attribute == 'ArtistLongitude'.lower():
                    csvRowString += 'ArtistLongitude'
                elif attribute == 'ArtistName'.lower():
                    csvRowString += 'ArtistName'
                elif attribute == 'Danceability'.lower():
                    csvRowString += 'Danceability'
                elif attribute == 'Duration'.lower():
                    csvRowString += 'Duration'
                elif attribute == 'KeySignature'.lower():
                    csvRowString += 'KeySignature'
                elif attribute == 'KeySignatureConfidence'.lower():
                    csvRowString += 'KeySignatureConfidence'
                elif attribute == 'SongID'.lower():
                    csvRowString += "SongID"
                elif attribute == 'Tempo'.lower():
                    csvRowString += 'Tempo'
                elif attribute == 'TimeSignature'.lower():
                    csvRowString += 'TimeSignature'
                elif attribute == 'TimeSignatureConfidence'.lower():
                    csvRowString += 'TimeSignatureConfidence'
                elif attribute == 'Title'.lower():
                    csvRowString += 'Title'
                elif attribute == 'Year'.lower():
                    csvRowString += 'Year'
                elif attribute == 'SongHotttnesss'.lower():
                    csvRowString += 'SongHotttnesss'
                elif attribute == 'Exit'.lower():
                    sys.exit()
                else:
                    prompt = True
                    print("==============")
                    print("I believe there has been an error with the input.")
                    print("==============")
                    break

                csvRowString += ","

            lastIndex = len(csvRowString)
            csvRowString = csvRowString[0:lastIndex - 1]
            csvRowString += "\n"
            outputFile1.write(csvRowString)
            csvRowString = ""
    #else, if you want to hard code the order of the csv file and not prompt
    #the user,
    else:
        #################################################
        #change the order of the csv file here
        #Default is to list all available attributes (in alphabetical order)
        csvRowString = (
            "SongID,AlbumID,AlbumName,ArtistFamiliarity,ArtistHotttnesss,ArtistID,"
            + "ArtistLatitude,ArtistLocation," +
            "ArtistLongitude,ArtistName,BarsConfidence,BarsStart,BeatsConfidence,"
            +
            "BeatsStart,Danceability,Duration,EndOfFadeIn,Energy,KeySignature,"
            +
            "KeySignatureConfidence,Loudness,Mode,ModeConfidence,SectionsConfidence,"
            + "SectionsStart,SegmentsConfidence,SegmentsLoudnessMax," +
            "SegmentsLoudnessMaxTime,SegmentsLoudnessMaxStart,SegmentsPitches,"
            + "SegmentsStart,SegmentsTimbre,SongHotttnesss,TatumsConfidence," +
            "TatumsStart,Tempo,TimeSignature," +
            "TimeSignatureConfidence,Title,Year")
        '''
        csvRowString = ("SongID,AlbumID,AlbumName,ArtistFamiliarity,"+
            "ArtistHotttnesss,ArtistID,"+
            "ArtistLatitude,ArtistLocation,"+
            "ArtistLongitude,ArtistName,"+
            "BarsConfidence,BarsStart,"+
            "Danceability,Duration,EndOfFadeIn,Energy,KeySignature,"+
            "KeySignatureConfidence,Loudness,Mode,ModeConfidence,"+
            "SegmentsPitches,"+
            "SegmentsTimbre,SongHotttnesss,"+
            "Tempo,TimeSignature,"+
            "TimeSignatureConfidence,Title,Year")
        '''
        #################################################

        csvAttributeList = re.split('\W+', csvRowString)
        for i, v in enumerate(csvAttributeList):
            csvAttributeList[i] = csvAttributeList[i].lower()
        outputFile1.write("SongNumber,")
        outputFile1.write(csvRowString + "\n")
        csvRowString = ""

    #################################################

    #Set the basedir here, the root directory from which the search
    #for files stored in a (hierarchical data structure) will originate
    #basedir = "./I/"
    basedir = "./MillionSongSubset/data/"  # "." As the default means the current directory
    #basedir = "/Users/dafirebanks/Downloads/MillionSongSubset/data/" # "." As the default means the current directory
    ext = "*.h5"  #Set the extension here. H5 is the extension for HDF5 files.
    #################################################

    #FOR LOOP
    for root, dirs, files in os.walk(basedir):
        files = glob.glob(os.path.join(root, ext))
        for f in files:
            print(f)
            songH5File = hdf5_getters.open_h5_file_read(f)
            song = Song(str(hdf5_getters.get_song_id(songH5File)))

            #testDanceability = hdf5_getters.get_danceability(songH5File)
            # print type(testDanceability)
            # print ("Here is the danceability: ") + str(testDanceability)

            song.artistFamiliarity = str(
                hdf5_getters.get_artist_familiarity(songH5File))
            song.artistHotttnesss = str(
                hdf5_getters.get_artist_hotttnesss(songH5File))
            song.artistID = str(hdf5_getters.get_artist_id(songH5File))
            song.albumID = str(hdf5_getters.get_release_7digitalid(songH5File))
            song.albumName = str(hdf5_getters.get_release(songH5File))
            song.artistLatitude = str(
                hdf5_getters.get_artist_latitude(songH5File))
            song.artistLocation = str(
                hdf5_getters.get_artist_location(songH5File))
            song.artistLongitude = str(
                hdf5_getters.get_artist_longitude(songH5File))
            song.artistName = str(hdf5_getters.get_artist_name(songH5File))
            song.barsConfidence = str(
                hdf5_getters.get_bars_confidence(songH5File)).replace(
                    ",", "").replace("\n", "")
            song.barsStart = str(
                hdf5_getters.get_bars_start(songH5File)).replace(",",
                                                                 "").replace(
                                                                     "\n", "")
            song.beatsConfidence = str(
                hdf5_getters.get_beats_confidence(songH5File)).replace(
                    ",", "").replace("\n", "")
            song.beatsStart = str(
                hdf5_getters.get_beats_start(songH5File)).replace(",",
                                                                  "").replace(
                                                                      "\n", "")
            song.danceability = str(hdf5_getters.get_danceability(songH5File))
            song.duration = str(hdf5_getters.get_duration(songH5File))
            song.endOfFadeIn = str(hdf5_getters.get_end_of_fade_in(songH5File))
            song.energy = str(hdf5_getters.get_energy(songH5File))
            # song.setGenreList()
            song.hotttnesss = str(hdf5_getters.get_song_hotttnesss(songH5File))
            song.keySignature = str(hdf5_getters.get_key(songH5File))
            song.keySignatureConfidence = str(
                hdf5_getters.get_key_confidence(songH5File))
            song.loudness = str(hdf5_getters.get_loudness(songH5File))
            song.mode = str(hdf5_getters.get_mode(songH5File))
            song.modeConfidence = str(
                hdf5_getters.get_mode_confidence(songH5File))
            # song.lyrics = None
            # song.popularity = None
            song.sectionsConfidence = str(
                hdf5_getters.get_sections_confidence(songH5File)).replace(
                    ",", "").replace("\n", "")
            song.sectionsStart = str(
                hdf5_getters.get_segments_start(songH5File)).replace(
                    ",", "").replace("\n", "")
            song.segmentsConfidence = str(
                hdf5_getters.get_segments_confidence(songH5File)).replace(
                    ",", "").replace("\n", "")
            song.segmentsLoudnessMax = str(
                hdf5_getters.get_segments_loudness_max(songH5File)).replace(
                    ",", "").replace("\n", "")
            song.segmentsLoudnessMaxTime = str(
                hdf5_getters.get_segments_loudness_max_time(
                    songH5File)).replace(",", "").replace("\n", "")
            song.segmentsLoudnessMaxStart = str(
                hdf5_getters.get_segments_loudness_start(songH5File)).replace(
                    ",", "").replace("\n", "")
            song.segmentsPitches = str(
                hdf5_getters.get_segments_pitches(songH5File)).replace(
                    ",", "").replace("\n", "")
            song.segmentsStart = str(
                hdf5_getters.get_segments_start(songH5File)).replace(
                    ",", "").replace("\n", "")
            song.segmentsTimbre = str(
                hdf5_getters.get_segments_timbre(songH5File)).replace(
                    ",", "").replace("\n", "")
            song.startOfFadeOut = str(
                hdf5_getters.get_start_of_fade_out(songH5File))
            song.tatumsConfidence = str(
                hdf5_getters.get_tatums_confidence(songH5File)).replace(
                    ",", "").replace("\n", "")
            song.tatumsStart = str(
                hdf5_getters.get_tatums_start(songH5File)).replace(
                    ",", "").replace("\n", "")
            song.tempo = str(hdf5_getters.get_tempo(songH5File))
            song.timeSignature = str(
                hdf5_getters.get_time_signature(songH5File))
            song.timeSignatureConfidence = str(
                hdf5_getters.get_time_signature_confidence(songH5File))
            song.title = str(hdf5_getters.get_title(songH5File))
            song.year = str(hdf5_getters.get_year(songH5File))

            #print song count
            csvRowString += str(song.songCount) + ","
            for attribute in csvAttributeList:
                # print "Here is the attribute: " + attribute + " \n"

                if attribute == 'AlbumID'.lower():
                    csvRowString += song.albumID
                elif attribute == 'AlbumName'.lower():
                    albumName = song.albumName
                    albumName = albumName.replace(',', "")
                    csvRowString += "\"" + albumName + "\""
                elif attribute == 'ArtistFamiliarity'.lower():
                    csvRowString += song.artistFamiliarity
                elif attribute == 'ArtistHotttnesss'.lower():
                    csvRowString += song.artistHotttnesss
                elif attribute == 'ArtistID'.lower():
                    csvRowString += "\"" + song.artistID + "\""
                elif attribute == 'ArtistLatitude'.lower():
                    latitude = song.artistLatitude
                    if latitude == 'nan':
                        latitude = ''
                    csvRowString += latitude
                elif attribute == 'ArtistLocation'.lower():
                    location = song.artistLocation
                    location = location.replace(',', '')
                    csvRowString += "\"" + location + "\""
                elif attribute == 'ArtistLongitude'.lower():
                    longitude = song.artistLongitude
                    if longitude == 'nan':
                        longitude = ''
                    csvRowString += longitude
                elif attribute == 'ArtistName'.lower():
                    csvRowString += "\"" + song.artistName + "\""
                elif attribute == 'BarsConfidence'.lower():
                    csvRowString += song.barsConfidence
                elif attribute == 'BarsStart'.lower():
                    csvRowString += song.barsStart
                elif attribute == 'BeatsConfidence'.lower():
                    csvRowString += song.beatsConfidence
                elif attribute == 'BeatsStart'.lower():
                    csvRowString += song.beatsStart
                elif attribute == 'Danceability'.lower():
                    csvRowString += song.danceability
                elif attribute == 'Duration'.lower():
                    csvRowString += song.duration
                elif attribute == 'EndOfFadeIn'.lower():
                    csvRowString += song.endOfFadeIn
                elif attribute == 'Energy'.lower():
                    csvRowString += song.energy
                elif attribute == 'KeySignature'.lower():
                    csvRowString += song.keySignature
                elif attribute == 'KeySignatureConfidence'.lower():
                    # print "key sig conf: " + song.timeSignatureConfidence
                    csvRowString += song.keySignatureConfidence
                elif attribute == 'Loudness'.lower():
                    csvRowString += song.loudness
                elif attribute == 'Mode'.lower():
                    csvRowString += song.mode
                elif attribute == 'ModeConfidence'.lower():
                    csvRowString += song.modeConfidence
                elif attribute == 'SectionsConfidence'.lower():
                    csvRowString += song.sectionsConfidence
                elif attribute == 'SectionsStart'.lower():
                    csvRowString += song.sectionsStart
                elif attribute == 'SegmentsConfidence'.lower():
                    csvRowString += song.segmentsConfidence
                elif attribute == 'SegmentsLoudnessMax'.lower():
                    csvRowString += song.segmentsLoudnessMax
                elif attribute == 'SegmentsLoudnessMaxTime'.lower():
                    csvRowString += song.segmentsLoudnessMaxTime
                elif attribute == 'SegmentsLoudnessMaxStart'.lower():
                    csvRowString += song.segmentsLoudnessMaxStart
                elif attribute == 'SegmentsPitches'.lower():
                    csvRowString += song.segmentsPitches
                elif attribute == 'SegmentsStart'.lower():
                    csvRowString += song.segmentsStart
                elif attribute == 'SegmentsTimbre'.lower():
                    csvRowString += song.segmentsTimbre
                elif attribute == 'SongHotttnesss'.lower():
                    csvRowString += song.hotttnesss
                elif attribute == 'SongID'.lower():
                    csvRowString += "\"" + song.id + "\""
                elif attribute == 'StartOfFadeOut'.lower():
                    csvRowString += song.startOfFadeOut
                elif attribute == 'TatumsConfidence'.lower():
                    csvRowString += song.tatumsConfidence
                elif attribute == 'TatumsStart'.lower():
                    csvRowString += song.tatumsStart
                elif attribute == 'Tempo'.lower():
                    # print "Tempo: " + song.tempo
                    csvRowString += song.tempo
                elif attribute == 'TimeSignature'.lower():
                    csvRowString += song.timeSignature
                elif attribute == 'TimeSignatureConfidence'.lower():
                    # print "time sig conf: " + song.timeSignatureConfidence
                    csvRowString += song.timeSignatureConfidence
                elif attribute == 'Title'.lower():
                    csvRowString += "\"" + song.title + "\""
                elif attribute == 'Year'.lower():
                    csvRowString += song.year
                else:
                    csvRowString += "Erm. This didn't work. Error. :( :(\n"

                csvRowString += ","
            #Remove the final comma from each row in the csv
            lastIndex = len(csvRowString)
            csvRowString = csvRowString[0:lastIndex - 1]
            csvRowString += "\n"
            outputFile1.write(csvRowString)
            csvRowString = ""

            songH5File.close()

    outputFile1.close()
コード例 #16
0
ファイル: getData.py プロジェクト: devanshalok/db_data
def getInfo(files):
    data = []
    build_str = ''
    with open(sys.argv[1], 'r') as f:
        contents = f.read()
        c = contents.split()
    f.close()
    print("creating csv with following fields:" + contents)
    for i in c:
        build_str = build_str + i + ','
    build_str = build_str[:-1]
    build_str = build_str + '\n'
    for fil in files:
        curFile = getters.open_h5_file_read(fil)
        d2 = {}
        get_table = {'track_id': getters.get_track_id(curFile), 'segments_pitches': getters.get_segments_pitches(curFile), 'time_signature_confidence': getters.get_time_signature_confidence(curFile), 'song_hotttnesss': getters.get_song_hotttnesss(curFile), 'artist_longitude': getters.get_artist_longitude(curFile), 'tatums_confidence': getters.get_tatums_confidence(curFile), 'num_songs': getters.get_num_songs(curFile), 'duration': getters.get_duration(curFile), 'start_of_fade_out': getters.get_start_of_fade_out(curFile), 'artist_name': getters.get_artist_name(curFile), 'similar_artists': getters.get_similar_artists(curFile), 'artist_mbtags': getters.get_artist_mbtags(curFile), 'artist_terms_freq': getters.get_artist_terms_freq(curFile), 'release': getters.get_release(curFile), 'song_id': getters.get_song_id(curFile), 'track_7digitalid': getters.get_track_7digitalid(curFile), 'title': getters.get_title(curFile), 'artist_latitude': getters.get_artist_latitude(curFile), 'energy': getters.get_energy(curFile), 'key': getters.get_key(curFile), 'release_7digitalid': getters.get_release_7digitalid(curFile), 'artist_mbid': getters.get_artist_mbid(curFile), 'segments_confidence': getters.get_segments_confidence(curFile), 'artist_hotttnesss': getters.get_artist_hotttnesss(curFile), 'time_signature': getters.get_time_signature(curFile), 'segments_loudness_max_time': getters.get_segments_loudness_max_time(curFile), 'mode': getters.get_mode(curFile), 'segments_loudness_start': getters.get_segments_loudness_start(curFile), 'tempo': getters.get_tempo(curFile), 'key_confidence': getters.get_key_confidence(curFile), 'analysis_sample_rate': getters.get_analysis_sample_rate(curFile), 'bars_confidence': getters.get_bars_confidence(curFile), 'artist_playmeid': getters.get_artist_playmeid(curFile), 'artist_terms_weight': getters.get_artist_terms_weight(curFile), 'segments_start': getters.get_segments_start(curFile), 'artist_location': getters.get_artist_location(curFile), 'loudness': getters.get_loudness(curFile), 'year': getters.get_year(curFile), 'artist_7digitalid': getters.get_artist_7digitalid(curFile), 'audio_md5': getters.get_audio_md5(curFile), 'segments_timbre': getters.get_segments_timbre(curFile), 'mode_confidence': getters.get_mode_confidence(curFile), 'end_of_fade_in': getters.get_end_of_fade_in(curFile), 'danceability': getters.get_danceability(curFile), 'artist_familiarity': getters.get_artist_familiarity(curFile), 'artist_mbtags_count': getters.get_artist_mbtags_count(curFile), 'tatums_start': getters.get_tatums_start(curFile), 'artist_id': getters.get_artist_id(curFile), 'segments_loudness_max': getters.get_segments_loudness_max(curFile), 'bars_start': getters.get_bars_start(curFile), 'beats_start': getters.get_beats_start(curFile), 'artist_terms': getters.get_artist_terms(curFile), 'sections_start': getters.get_sections_start(curFile), 'beats_confidence': getters.get_beats_confidence(curFile), 'sections_confidence': getters.get_sections_confidence(curFile)}
        tid = fil.split('/')[-1].split('.')[0]
        # print(c)
        for i in c:
            if i in get_table: 
               d2[i] = get_table[i]
               d2[i] = str(d2[i]).replace('\n','')  
               build_str = build_str + d2[i] + ','
            else:
                print('error: unspecified field')
                exit(0)
        build_str = build_str[:-1]
        # print(build_str[:-1])
        build_str = build_str + '\n'
        curFile.close()
    build_str = build_str.replace('b','').replace("'",'').replace('"','')  
    return (build_str)
コード例 #17
0
def main():
    basedir = "D:/Master K"
    ext = ".H5"  # Set the extension here. H5 is the extension for HDF5 files.
    songs = []
    for root, dirs, files in os.walk(basedir):
        files = glob.glob(os.path.join(root, '*' + ext))
        #songs = {}
        #keys = list()
        #values = list()
        for f in files:
            print(f)
            songH5File = hdf5_getters.open_h5_file_read(f)
            song = Song(str(hdf5_getters.get_song_id(songH5File)))
            item = {"song_id": song.id.replace('b', '')}
            song.artistID = str(hdf5_getters.get_artist_id(songH5File))
            song.artistID = song.artistID.replace('b', '', 1)
            item["song_artistID"] = song.artistID
            song.albumID = str(hdf5_getters.get_release_7digitalid(songH5File))
            song.albumID = song.albumID.replace('b', '', 1)
            item["song_albumID"] = song.albumID
            song.albumName = str(hdf5_getters.get_release(songH5File))
            song.albumName = song.albumName.replace('b', '', 1)
            item["song_albumName"] = song.albumName
            song.artistLatitude = str(
                hdf5_getters.get_artist_latitude(songH5File))
            song.artistLatitude = song.artistLatitude.replace('b', '', 1)
            item["song_artistLatitude"] = song.artistLatitude
            song.artistLocation = str(
                hdf5_getters.get_artist_location(songH5File))
            song.artistLocation = song.artistLocation.replace('b', '', 1)
            item["song_artistLocation"] = song.artistLocation
            song.artistLongitude = str(
                hdf5_getters.get_artist_longitude(songH5File))
            song.artistLongitude = song.artistLongitude.replace('b', '', 1)
            item["song_artistLongitude"] = song.artistLongitude
            song.artistName = str(hdf5_getters.get_artist_name(songH5File))
            song.artistName = song.artistName.replace('b', '', 1)
            item["song_artistName"] = song.artistName
            song.danceability = str(hdf5_getters.get_danceability(songH5File))
            song.danceability = song.danceability.replace('b', '', 1)
            item["song_danceability"] = song.danceability
            song.duration = str(hdf5_getters.get_duration(songH5File))
            song.duration = song.duration.replace('b', '', 1)
            item["song_duration"] = song.duration
            song.keySignature = str(hdf5_getters.get_key(songH5File))
            song.keySignature = song.keySignature.replace('b', '', 1)
            item["song_keySignature"] = song.keySignature
            song.keySignatureConfidence = str(
                hdf5_getters.get_key_confidence(songH5File))
            song.keySignatureConfidence = song.keySignatureConfidence.replace(
                'b', '', 1)
            item["song_keySignatureConfidence"] = song.keySignatureConfidence
            song.tempo = str(hdf5_getters.get_tempo(songH5File))
            song.tempo = song.tempo.replace('b', '', 1)
            item["song_tempo"] = song.tempo
            song.timeSignature = str(
                hdf5_getters.get_time_signature(songH5File))
            song.timeSignature = song.timeSignature.replace('b', '', 1)
            item["song_timeSignature"] = song.timeSignature
            song.timeSignatureConfidence = str(
                hdf5_getters.get_time_signature_confidence(songH5File))
            song.timeSignatureConfidence = song.timeSignatureConfidence.replace(
                'b', '', 1)
            item["song_timeSignatureConfidence"] = song.timeSignatureConfidence
            song.title = str(hdf5_getters.get_title(songH5File))
            song.title = song.title.replace('b', '', 1)
            item["song_title"] = song.title
            song.year = str(hdf5_getters.get_year(songH5File))
            song.year = song.year.replace('b', '', 1)
            item["song_year"] = song.year
            #song.mfcc = str(hdf5_getters.get_segments_timbre(songH5File))
            #item["song_mfcc"] = song.mfcc
            item["song_mfcc"] = list(
                hdf5_getters.get_segments_timbre(songH5File))
            song.hotness = str(hdf5_getters.get_artist_hotttnesss(songH5File))
            item["song_hotness"] = song.hotness
            songs.append(item)
            songH5File.close()
            #song_dict= dict(zip(keys, values))
    with open("D:\data_file_k.json", "w") as write_file:
        json.dump(songs, write_file, cls=NumpyEncoder)
コード例 #18
0
def main():
    basedir = "./../songMetaInfo.txt"

    ext = ".h5"

    if len(sys.argv) > 1:
        basedir = sys.argv[1]

    outputfile = 'SongFileMetaData.csv'

    if len(sys.argv) > 2:
        outputfile = sys.argv[2]

    csvWriter = open(outputfile, 'w')

    csvWriter.write(
        "title,songId,artistId,artistfamilarity,artistHotness,songHotness," +
        "songEnfOfFadeIn,startFadeout,energy,loudness,albumID,albumName,artistName,danceability,duration,keySignatureConfidence,tempo,timeSignature,timeSignatureConfidence,year\n"
    )

    with open(basedir) as file:
        for line in file.readlines():
            f = line.strip()
            #newf = f + "text"
            print f
            #print f
            try:
                songH5File = hdf5_getters.open_h5_file_read(f)
                csvStr = ""
                #0
                title = str(hdf5_getters.get_title(songH5File))
                csvStr += title + ","
                #1
                songId = str(hdf5_getters.get_song_id(songH5File))
                csvStr += songId + ","
                #2
                artistId = str(hdf5_getters.get_artist_id(songH5File))
                csvStr += artistId + ","
                #3
                artistfamilarity = str(
                    hdf5_getters.get_artist_familiarity(songH5File))
                csvStr += artistfamilarity + ","
                #4
                artistHotness = str(
                    hdf5_getters.get_artist_hotttnesss(songH5File))
                csvStr += artistHotness + ","
                #5
                songHotness = str(hdf5_getters.get_song_hotttnesss(songH5File))
                csvStr += songHotness + ","
                #6
                songEnfOfFadeIn = str(
                    hdf5_getters.get_end_of_fade_in(songH5File))
                csvStr += songEnfOfFadeIn + ","
                #7
                startFadeOut = str(
                    hdf5_getters.get_start_of_fade_out(songH5File))
                csvStr += startFadeOut + ","
                #8
                energy = str(hdf5_getters.get_energy(songH5File))
                csvStr += energy + ","
                #9
                loudness = str(hdf5_getters.get_loudness(songH5File))
                csvStr += loudness + ","
                #10
                albumID = str(hdf5_getters.get_release_7digitalid(songH5File))
                csvStr += albumID + ","
                #11
                albumName = str(hdf5_getters.get_release(songH5File))
                csvStr += albumName + ","
                #12
                artistName = str(hdf5_getters.get_artist_name(songH5File))
                csvStr += artistName + ","
                #13
                danceability = str(hdf5_getters.get_danceability(songH5File))
                csvStr += danceability + ","
                #14
                duration = str(hdf5_getters.get_duration(songH5File))
                csvStr += duration + ","
                #15
                keySignatureConfidence = str(
                    hdf5_getters.get_key_confidence(songH5File))
                csvStr += keySignatureConfidence + ","
                #16
                tempo = str(hdf5_getters.get_tempo(songH5File))
                csvStr += tempo + ","
                ## 17
                timeSignature = str(
                    hdf5_getters.get_time_signature(songH5File))
                csvStr += timeSignature + ","
                #18
                timeSignatureConfidence = str(
                    hdf5_getters.get_time_signature_confidence(songH5File))
                csvStr += timeSignatureConfidence + ","
                #19
                year = str(hdf5_getters.get_year(songH5File))
                csvStr += year + ","
                #print song count
                csvStr += "\n"
                csvWriter.write(csvStr)
                #print csvStr

                songH5File.close()
            except:
                print "Error in processing file"

        csvWriter.close()
コード例 #19
0
def fill_attributes(song,songH5File):
 
    #----------------------------non array attributes-------------------------------
    song.analysisSampleRate = str(hdf5_getters.get_analysis_sample_rate(songH5File))
    song.artistDigitalID = str(hdf5_getters.get_artist_7digitalid(songH5File))
    song.artistFamiliarity = str(hdf5_getters.get_artist_familiarity(songH5File))
    song.artistHotness = str(hdf5_getters.get_artist_hottness(songH5File))
    song.artistID = str(hdf5_getters.get_artist_id(songH5File))
    song.artistLatitude = str(hdf5_getters.get_artist_latitude(songH5File))
    song.artistLocation = str(hdf5_getters.get_artist_location(songH5File))
    song.artistLongitude = str(hdf5_getters.get_artist_longitude(songH5File))
    song.artistmbID = str(hdf5_getters.get_artist_mbid(songH5File))
    song.artistName = str(hdf5_getters.get_artist_name(songH5File))     
    song.artistPlayMeID = str(hdf5_getters.get_artist_playmeid(songH5File))
    song.audioMD5 = str(hdf5_getters.get_audio_md5(songH5File))
    song.danceability = str(hdf5_getters.get_danceability(songH5File))
    song.duration = str(hdf5_getters.get_duration(songH5File))
    song.endOfFadeIn = str(hdf5_getters.get_end_of_fade_in(songH5File))
    song.energy = str(hdf5_getters.get_energy(songH5File))
    song.key = str(hdf5_getters.get_key(songH5File))
    song.keyConfidence = str(hdf5_getters.get_key_confidence(songH5File))
    song.segementsConfidence = str(hdf5_getters.get_segments_confidence(songH5File))
    song.segementsConfidence = str(hdf5_getters.get_sections_confidence(songH5File))
    song.loudness = str(hdf5_getters.get_loudness(songH5File))
    song.mode = str(hdf5_getters.get_mode(songH5File))
    song.modeConfidence = str(hdf5_getters.get_mode_confidence(songH5File))
    song.release = str(hdf5_getters.get_release(songH5File))
    song.releaseDigitalID = str(hdf5_getters.get_release_7digitalid(songH5File))
    song.songHotttnesss = str(hdf5_getters.get_song_hotttnesss(songH5File))
    song.startOfFadeOut = str(hdf5_getters.get_start_of_fade_out(songH5File))
    song.tempo = str(hdf5_getters.get_tempo(songH5File))
    song.timeSignature = str(hdf5_getters.get_time_signature(songH5File))
    song.timeSignatureConfidence = str(hdf5_getters.get_time_signature_confidence(songH5File))
    song.title =  str(hdf5_getters.get_title(songH5File))
    song.trackID = str(hdf5_getters.get_track_id(songH5File))
    song.trackDigitalID = str(hdf5_getters.get_track_7digitalid(songH5File))
    song.year = str(hdf5_getters.get_year(songH5File))

    #-------------------------------array attributes--------------------------------------
    #array float
    song.beatsStart_mean,song.beatsStart_var = convert_array_to_meanvar(hdf5_getters.get_beats_start(songH5File))
    #array float
    song.artistTermsFreq_mean, song.artistTermsFreq_var = convert_array_to_meanvar(hdf5_getters.get_artist_terms_freq(songH5File))
    #array float
    song.artistTermsWeight_mean, song.artistTermsWeight_var = convert_array_to_meanvar(hdf5_getters.get_artist_terms_weight(songH5File))
    #array int
    song.artistmbTagsCount_mean,song.artistmbTagsCount_var = convert_array_to_meanvar(hdf5_getters.get_artist_mbtags_count(songH5File))
    #array float
    song.barsConfidence_mean,song.barsConfidence_var = convert_array_to_meanvar(hdf5_getters.get_bars_confidence(songH5File))
    #array float
    song.barsStart_mean,song.barsStart_var = convert_array_to_meanvar(hdf5_getters.get_bars_start(songH5File))
    #array float
    song.beatsConfidence_mean,song.beatsConfidence_var = convert_array_to_meanvar(hdf5_getters.get_beats_confidence(songH5File))
    #array float
    song.sectionsConfidence_mean , song.sectionsConfidence_var =  convert_array_to_meanvar(hdf5_getters.get_sections_confidence(songH5File))
    #array float
    song.sectionsStart_mean , song.sectionsStart_var =  convert_array_to_meanvar(hdf5_getters.get_sections_start(songH5File))
    #array float
    song.segmentsConfidence_mean, song.segmentsConfidence_var = convert_array_to_meanvar(hdf5_getters.get_segments_confidence(songH5File))
    #array float
    song.segmentsLoudness_mean, song.segmentsLoudness_var = convert_array_to_meanvar(hdf5_getters.get_segments_loudness_max(songH5File))
    #array float
    song.segmentsLoudnessMaxTime_mean,song.segmentsLoudnessMaxTime_var  = convert_array_to_meanvar(hdf5_getters.get_segments_loudness_max_time(songH5File))
     #array float
    song.segmentsLoudnessMaxStart_mean , song.segmentsLoudnessMaxStart_var = convert_array_to_meanvar(hdf5_getters.get_segments_loudness_start(songH5File))
    #array float
    song.segmentsStart_mean,song.segmentsStart_var  = convert_array_to_meanvar(hdf5_getters.get_segments_start(songH5File))
    #array float
    song.tatumsConfidence_mean,song.tatumsConfidence_var  = convert_array_to_meanvar(hdf5_getters.get_tatums_confidence(songH5File))
    #array float
    song.tatumsStart_mean, song.tatumsStart_var = convert_array_to_meanvar(hdf5_getters.get_tatums_start(songH5File))
    #array2d float
    song.segmentsTimbre_mean,song.segmentsTimbre_var  = covert_2darray_to_meanvar(hdf5_getters.get_segments_timbre(songH5File))
    #array2d float
    song.segmentsPitches_mean,song.segmentsPitches_var = covert_2darray_to_meanvar(hdf5_getters.get_segments_pitches(songH5File))

    #------------------------array string attributes------------------------
    song.similarArtists = convert_array_to_string(hdf5_getters.get_similar_artists(songH5File)) #array string
    song.artistTerms = convert_array_to_string(hdf5_getters.get_artist_terms(songH5File))       #array string
    song.artistmbTags = convert_array_to_string(hdf5_getters.get_artist_mbtags(songH5File))     #array string
    
    return song
コード例 #20
0
def process_filelist_test(filelist=None,model=None,tmpfilename=None,K=1):
    """
    Main function, process all files in the list (as long as their track_id
    is not in testsongs)
    INPUT
       filelist     - a list of song files
       model        - h5 file containing feats and artist_id for all train songs
       tmpfilename  - where to save our processed features
       K            - K-nn parameter (default=1)
    """
    # sanity check
    for arg in locals().values():
        assert not arg is None,'process_filelist_train, missing an argument, something still None'
    if os.path.isfile(tmpfilename):
        print 'ERROR: file',tmpfilename,'already exists.'
        return
    if not os.path.isfile(model):
        print 'ERROR: model',model,'does not exist.'
        return
    # dimension fixed (12-dimensional timbre vector)
    ndim = 12
    finaldim = 90
    # create kdtree
    h5model = tables.openFile(model, mode='r')
    assert h5model.root.data.feats.shape[1]==finaldim,'inconsistency in final dim'
    kd = ANN.kdtree(h5model.root.data.feats)
    # create outputfile
    output = tables.openFile(tmpfilename, mode='a')
    group = output.createGroup("/",'data','TMP FILE FOR ARTIST RECOGNITION')
    output.createEArray(group,'artist_id_real',tables.StringAtom(18,shape=()),(0,),'',
                        expectedrows=len(filelist))
    output.createEArray(group,'artist_id_pred',tables.StringAtom(18,shape=()),(0,),'',
                        expectedrows=len(filelist))
    # iterate over files
    cnt_f = 0
    for f in filelist:
        cnt_f += 1
        # verbose
        if cnt_f % 50000 == 0:
            print 'training... checking file #',cnt_f
        # check what file/song is this
        h5 = GETTERS.open_h5_file_read(f)
        artist_id = GETTERS.get_artist_id(h5)
        track_id = GETTERS.get_track_id(h5)
        if track_id in testsongs: # just in case, but should not be necessary
            print 'Found test track_id during training? weird.',track_id
            h5.close()
            continue
        # extract features, then close file
        processed_feats = compute_features(h5)
        h5.close()
        if processed_feats is None:
            continue
        # do prediction
        artist_id_pred = do_prediction(processed_feats,kd,h5model,K)
        # save features to tmp file
        output.root.data.artist_id_real.append( np.array( [artist_id] ) )
        output.root.data.artist_id_pred.append( np.array( [artist_id_pred] ) )
    # we're done, close output
    output.close()
    return
コード例 #21
0
max_sequence_len = 1000
max_epochs = 1500

print ("Reading text data for regression and building representations...")
coordinates_artist = dict( )
for row in open("MillionSongSubset/AdditionalFiles/subset_artist_location.txt").readlines():
  row = row.split("<SEP>")
  coordinates_artist[row[0]] = ( float( row[1] ) , float( row[2] ) )
data1 = [ ]
data2 = [ ]
data3 = [ ]
for root, dirnames, filenames in os.walk('MillionSongSubset/data'):
  for datafile in fnmatch.filter(filenames, '*.h5'):
    datafile = os.path.join( root, datafile )
    datafile = hdf5_getters.open_h5_file_read( datafile )
    artist = hdf5_getters.get_artist_id(datafile)
    if coordinates_artist.has_key( artist ) :
      timbre = hdf5_getters.get_segments_timbre(datafile)
      pitch = hdf5_getters.get_segments_pitches(datafile)
      data1.append( ( np.average( timbre , axis=0 ), ( coordinates_artist[ artist ][0], coordinates_artist[ artist ][1] ) ) )
      data2.append( ( np.hstack( ( np.average( timbre , axis=0 ) , np.average( pitch , axis=0 ) ) ) , ( coordinates_artist[ artist ][0], coordinates_artist[ artist ][1] ) ) )
      combined = [ np.hstack( ( timbre[i] , pitch[i] ) ) for i in range( timbre.shape[0] ) ]
      data3.append( ( combined , ( coordinates_artist[ artist ][0], coordinates_artist[ artist ][1] ) ) ) 
    datafile.close( )
np.random.seed(0)
np.random.shuffle( data1 )
train_size1 = int(len(data1) * percent)
train_matrix1 = np.array( [ features for ( features, label ) in data1[0:train_size1] ] )
test_matrix1 = np.array( [ features for ( features, label ) in data1[train_size1:-1] ] )
train_labels1 = [ label for ( features , label ) in data1[0:train_size1] ]
test_labels1 = [ label for ( features , label ) in data1[train_size1:-1] ]
コード例 #22
0
def data_to_flat_file(basedir,ext='.h5') :
    """This function extract the information from the tables and creates the flat file."""	
    count = 0;	#song counter
    list_to_write= []
    row_to_write = ""
    writer = csv.writer(open("metadata.csv", "wb"))
    for root, dirs, files in os.walk(basedir):
	files = glob.glob(os.path.join(root,'*'+ext))
        for f in files:
	    print f	#the name of the file
            h5 = hdf5_getters.open_h5_file_read(f)
	    title = hdf5_getters.get_title(h5) 
	    title= title.replace('"','') 
	    comma=title.find(',')	#eliminating commas in the title
	    if	comma != -1:
		    print title
		    time.sleep(1)
	    album = hdf5_getters.get_release(h5)
	    album= album.replace('"','')	#eliminating commas in the album	
	    comma=album.find(',')
	    if	comma != -1:
		    print album
		    time.sleep(1)
	    artist_name = hdf5_getters.get_artist_name(h5)
	    comma=artist_name.find(',')
	    if	comma != -1:
		    print artist_name
		    time.sleep(1)
	    artist_name= artist_name.replace('"','')	#eliminating double quotes
	    duration = hdf5_getters.get_duration(h5)
	    samp_rt = hdf5_getters.get_analysis_sample_rate(h5)
	    artist_7digitalid = hdf5_getters.get_artist_7digitalid(h5)
	    artist_fam = hdf5_getters.get_artist_familiarity(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(artist_fam) == True:
	            artist_fam=-1
	    artist_hotness= hdf5_getters.get_artist_hotttnesss(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(artist_hotness) == True:
	            artist_hotness=-1
	    artist_id = hdf5_getters.get_artist_id(h5)
	    artist_lat = hdf5_getters.get_artist_latitude(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(artist_lat) == True:
	            artist_lat=-1
	    artist_loc = hdf5_getters.get_artist_location(h5)
		#checks artist_loc to see if it is a hyperlink if it is set as empty string
	    artist_loc = artist_loc.replace(",", "\,");
	    if artist_loc.startswith("<a"):
                artist_loc = ""
	    if len(artist_loc) > 100:
                artist_loc = ""
	    artist_lon = hdf5_getters.get_artist_longitude(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(artist_lon) == True:
	            artist_lon=-1
	    artist_mbid = hdf5_getters.get_artist_mbid(h5)
	    artist_pmid = hdf5_getters.get_artist_playmeid(h5)
	    audio_md5 = hdf5_getters.get_audio_md5(h5)
	    danceability = hdf5_getters.get_danceability(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(danceability) == True:
	            danceability=-1
	    end_fade_in =hdf5_getters.get_end_of_fade_in(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(end_fade_in) == True:
	            end_fade_in=-1
	    energy = hdf5_getters.get_energy(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(energy) == True:
	            energy=-1
            song_key = hdf5_getters.get_key(h5)
	    key_c = hdf5_getters.get_key_confidence(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(key_c) == True:
	            key_c=-1
	    loudness = hdf5_getters.get_loudness(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(loudness) == True:
	            loudness=-1
	    mode = hdf5_getters.get_mode(h5)
	    mode_conf = hdf5_getters.get_mode_confidence(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(mode_conf) == True:
	            mode_conf=-1
	    release_7digitalid = hdf5_getters.get_release_7digitalid(h5)
	    song_hot = hdf5_getters.get_song_hotttnesss(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(song_hot) == True:
	            song_hot=-1
	    song_id = hdf5_getters.get_song_id(h5)
	    start_fade_out = hdf5_getters.get_start_of_fade_out(h5)
	    tempo = hdf5_getters.get_tempo(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(tempo) == True:
	            tempo=-1
	    time_sig = hdf5_getters.get_time_signature(h5)
	    time_sig_c = hdf5_getters.get_time_signature_confidence(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(time_sig_c) == True:
	            time_sig_c=-1
	    track_id = hdf5_getters.get_track_id(h5)
	    track_7digitalid = hdf5_getters.get_track_7digitalid(h5)
	    year = hdf5_getters.get_year(h5)
	    bars_c = hdf5_getters.get_bars_confidence(h5)
	    bars_c_avg= get_avg(bars_c)
	    bars_c_max= get_max(bars_c)
	    bars_c_min = get_min(bars_c)
	    bars_c_stddev= get_stddev(bars_c)
	    bars_c_count = get_count(bars_c)
	    bars_c_sum = get_sum(bars_c)
	    bars_start = hdf5_getters.get_bars_start(h5)
	    bars_start_avg = get_avg(bars_start)
	    bars_start_max= get_max(bars_start)
	    bars_start_min = get_min(bars_start)
	    bars_start_stddev= get_stddev(bars_start)
	    bars_start_count = get_count(bars_start)
	    bars_start_sum = get_sum(bars_start)
            beats_c = hdf5_getters.get_beats_confidence(h5)
            beats_c_avg= get_avg(beats_c)
	    beats_c_max= get_max(beats_c)
	    beats_c_min = get_min(beats_c)
	    beats_c_stddev= get_stddev(beats_c)
	    beats_c_count = get_count(beats_c)
	    beats_c_sum = get_sum(beats_c)
            beats_start = hdf5_getters.get_beats_start(h5)
 	    beats_start_avg = get_avg(beats_start)
	    beats_start_max= get_max(beats_start)
	    beats_start_min = get_min(beats_start)
	    beats_start_stddev= get_stddev(beats_start)
	    beats_start_count = get_count(beats_start)
	    beats_start_sum = get_sum(beats_start)
	    sec_c = hdf5_getters.get_sections_confidence(h5)
            sec_c_avg= get_avg(sec_c)
	    sec_c_max= get_max(sec_c)
	    sec_c_min = get_min(sec_c)
	    sec_c_stddev= get_stddev(sec_c)
	    sec_c_count = get_count(sec_c)
	    sec_c_sum = get_sum(sec_c)
	    sec_start = hdf5_getters.get_sections_start(h5)
            sec_start_avg = get_avg(sec_start)
	    sec_start_max= get_max(sec_start)
	    sec_start_min = get_min(sec_start)
	    sec_start_stddev= get_stddev(sec_start)
	    sec_start_count = get_count(sec_start)
	    sec_start_sum = get_sum(sec_start)
	    seg_c = hdf5_getters.get_segments_confidence(h5)
	    seg_c_avg= get_avg(seg_c)
	    seg_c_max= get_max(seg_c)
	    seg_c_min = get_min(seg_c)
	    seg_c_stddev= get_stddev(seg_c)
	    seg_c_count = get_count(seg_c)
	    seg_c_sum = get_sum(seg_c)
            seg_loud_max = hdf5_getters.get_segments_loudness_max(h5)
            seg_loud_max_avg= get_avg(seg_loud_max)
	    seg_loud_max_max= get_max(seg_loud_max)
	    seg_loud_max_min = get_min(seg_loud_max)
	    seg_loud_max_stddev= get_stddev(seg_loud_max)
	    seg_loud_max_count = get_count(seg_loud_max)
	    seg_loud_max_sum = get_sum(seg_loud_max)
	    seg_loud_max_time = hdf5_getters.get_segments_loudness_max_time(h5)
	    seg_loud_max_time_avg= get_avg(seg_loud_max_time)
	    seg_loud_max_time_max= get_max(seg_loud_max_time)
	    seg_loud_max_time_min = get_min(seg_loud_max_time)
	    seg_loud_max_time_stddev= get_stddev(seg_loud_max_time)
	    seg_loud_max_time_count = get_count(seg_loud_max_time)
	    seg_loud_max_time_sum = get_sum(seg_loud_max_time)
	    seg_loud_start = hdf5_getters.get_segments_loudness_start(h5)
	    seg_loud_start_avg= get_avg(seg_loud_start)
	    seg_loud_start_max= get_max(seg_loud_start)
	    seg_loud_start_min = get_min(seg_loud_start)
	    seg_loud_start_stddev= get_stddev(seg_loud_start)
	    seg_loud_start_count = get_count(seg_loud_start)
	    seg_loud_start_sum = get_sum(seg_loud_start)					      
	    seg_pitch = hdf5_getters.get_segments_pitches(h5)
	    pitch_size = len(seg_pitch)
	    seg_start = hdf5_getters.get_segments_start(h5)
	    seg_start_avg= get_avg(seg_start)
	    seg_start_max= get_max(seg_start)
	    seg_start_min = get_min(seg_start)
	    seg_start_stddev= get_stddev(seg_start)
	    seg_start_count = get_count(seg_start)
	    seg_start_sum = get_sum(seg_start)
	    seg_timbre = hdf5_getters.get_segments_timbre(h5)
	    tatms_c = hdf5_getters.get_tatums_confidence(h5)
	    tatms_c_avg= get_avg(tatms_c)
	    tatms_c_max= get_max(tatms_c)
	    tatms_c_min = get_min(tatms_c)
	    tatms_c_stddev= get_stddev(tatms_c)
	    tatms_c_count = get_count(tatms_c)
	    tatms_c_sum = get_sum(tatms_c)
	    tatms_start = hdf5_getters.get_tatums_start(h5)
	    tatms_start_avg= get_avg(tatms_start)
	    tatms_start_max= get_max(tatms_start)
	    tatms_start_min = get_min(tatms_start)
	    tatms_start_stddev= get_stddev(tatms_start)
	    tatms_start_count = get_count(tatms_start)
	    tatms_start_sum = get_sum(tatms_start)
	
	    #Getting the genres
	    genre_set = 0    #flag to see if the genre has been set or not
	    art_trm = hdf5_getters.get_artist_terms(h5)
	    trm_freq = hdf5_getters.get_artist_terms_freq(h5)
	    trn_wght = hdf5_getters.get_artist_terms_weight(h5)
	    a_mb_tags = hdf5_getters.get_artist_mbtags(h5)
	    genre_indexes=get_genre_indexes(trm_freq) #index of the highest freq
	    final_genre=[]
	    genres_so_far=[]
	    for i in range(len(genre_indexes)):
		    genre_tmp=get_genre(art_trm,genre_indexes[i])   #genre that corresponds to the highest freq
		    genres_so_far=genre_dict.get_genre_in_dict(genre_tmp) #getting the genre from the dictionary
		    if len(genres_so_far) != 0:
			    for i in genres_so_far:
				final_genre.append(i)
				genre_set=1				#genre was found in dictionary
				  
		
	    
	    if genre_set == 1:
		    col_num=[]
		   
		    for genre in final_genre:
			    column=int(genre)				#getting the column number of the genre
			    col_num.append(column)

		    genre_array=genre_columns(col_num)	         #genre array
 	    else:
		    genre_array=genre_columns(-1)		#the genre was not found in the dictionary

	    transpose_pitch= seg_pitch.transpose() #this is to tranpose the matrix,so we can have 12 rows
	    #arrays containing the aggregate values of the 12 rows
	    seg_pitch_avg=[]
	    seg_pitch_max=[]
	    seg_pitch_min=[]
            seg_pitch_stddev=[]
            seg_pitch_count=[]
	    seg_pitch_sum=[]
            i=0
	    #Getting the aggregate values in the pitches array
	    for row in transpose_pitch:
		   seg_pitch_avg.append(get_avg(row))
		   seg_pitch_max.append(get_max(row))
	           seg_pitch_min.append(get_min(row))
		   seg_pitch_stddev.append(get_stddev(row))
		   seg_pitch_count.append(get_count(row))
                   seg_pitch_sum.append(get_sum(row))
		   i=i+1

	    #extracting information from the timbre array 
            transpose_timbre = seg_pitch.transpose() #tranposing matrix, to have 12 rows
	    #arrays containing the aggregate values of the 12 rows
	    seg_timbre_avg=[]
	    seg_timbre_max=[]
	    seg_timbre_min=[]
            seg_timbre_stddev=[]
            seg_timbre_count=[]
	    seg_timbre_sum=[]
            i=0
	    for row in transpose_timbre:
		   seg_timbre_avg.append(get_avg(row))
		   seg_timbre_max.append(get_max(row))
	           seg_timbre_min.append(get_min(row))
		   seg_timbre_stddev.append(get_stddev(row))
		   seg_timbre_count.append(get_count(row))
                   seg_timbre_sum.append(get_sum(row))
		   i=i+1
		


		#Writing to the flat file

            writer.writerow([title,album,artist_name,duration,samp_rt,artist_7digitalid,artist_fam,artist_hotness,artist_id,artist_lat,artist_loc,artist_lon,artist_mbid,genre_array[0],genre_array[1],genre_array[2],
genre_array[3],genre_array[4],genre_array[5],genre_array[6],genre_array[7],genre_array[8],genre_array[9],genre_array[10],genre_array[11],genre_array[12],genre_array[13],genre_array[14],genre_array[15],
genre_array[16],genre_array[17],genre_array[18],genre_array[19],genre_array[20],genre_array[21],genre_array[22],genre_array[23],genre_array[24],genre_array[25],genre_array[26],
genre_array[27],genre_array[28],genre_array[29],genre_array[30],genre_array[31],genre_array[32],genre_array[33],genre_array[34],genre_array[35],genre_array[36],genre_array[37],genre_array[38],
genre_array[39],genre_array[40],genre_array[41],genre_array[42],genre_array[43],genre_array[44],genre_array[45],genre_array[46],genre_array[47],genre_array[48],genre_array[49],
genre_array[50],genre_array[51],genre_array[52],genre_array[53],genre_array[54],genre_array[55],genre_array[56],genre_array[57],genre_array[58],genre_array[59],
genre_array[60],genre_array[61],genre_array[62],genre_array[63],genre_array[64],genre_array[65],genre_array[66],genre_array[67],genre_array[68],genre_array[69],
genre_array[70],genre_array[71],genre_array[72],genre_array[73],genre_array[74],genre_array[75],genre_array[76],genre_array[77],genre_array[78],genre_array[79],
genre_array[80],genre_array[81],genre_array[82],genre_array[83],genre_array[84],genre_array[85],genre_array[86],genre_array[87],genre_array[88],genre_array[89],
genre_array[90],genre_array[91],genre_array[92],genre_array[93],genre_array[94],genre_array[95],genre_array[96],genre_array[97],genre_array[98],genre_array[99],genre_array[100],genre_array[101],
genre_array[102],genre_array[103],genre_array[104],genre_array[105],genre_array[106],genre_array[107],genre_array[108],genre_array[109],genre_array[110],genre_array[111],genre_array[112],
genre_array[113],genre_array[114],genre_array[115],genre_array[116],genre_array[117],genre_array[118],genre_array[119],genre_array[120],genre_array[121],genre_array[122],genre_array[123],
genre_array[124],genre_array[125],genre_array[126],genre_array[127],genre_array[128],genre_array[129],genre_array[130],genre_array[131],genre_array[132],
artist_pmid,audio_md5,danceability,end_fade_in,energy,song_key,key_c,loudness,mode,mode_conf,release_7digitalid,song_hot,song_id,start_fade_out,tempo,time_sig,time_sig_c,track_id,track_7digitalid,year,bars_c_avg,bars_c_max,bars_c_min,bars_c_stddev,bars_c_count,bars_c_sum,bars_start_avg,bars_start_max,bars_start_min,bars_start_stddev,bars_start_count,bars_start_sum,beats_c_avg,beats_c_max,beats_c_min,beats_c_stddev,beats_c_count,beats_c_sum,beats_start_avg,beats_start_max,beats_start_min, beats_start_stddev,beats_start_count,beats_start_sum, sec_c_avg,sec_c_max,sec_c_min,sec_c_stddev,sec_c_count,sec_c_sum,sec_start_avg,sec_start_max,sec_start_min,sec_start_stddev,sec_start_count,sec_start_sum,seg_c_avg,seg_c_max,seg_c_min,seg_c_stddev,seg_c_count,seg_c_sum,seg_loud_max_avg,seg_loud_max_max,seg_loud_max_min,seg_loud_max_stddev,seg_loud_max_count,seg_loud_max_sum,seg_loud_max_time_avg,seg_loud_max_time_max,seg_loud_max_time_min,seg_loud_max_time_stddev,seg_loud_max_time_count,seg_loud_max_time_sum,seg_loud_start_avg,seg_loud_start_max,seg_loud_start_min,seg_loud_start_stddev,seg_loud_start_count,seg_loud_start_sum,seg_pitch_avg[0],seg_pitch_max[0],seg_pitch_min[0],seg_pitch_stddev[0],seg_pitch_count[0],seg_pitch_sum[0],seg_pitch_avg[1],seg_pitch_max[1],seg_pitch_min[1],seg_pitch_stddev[1],seg_pitch_count[1],seg_pitch_sum[1],seg_pitch_avg[2],seg_pitch_max[2],seg_pitch_min[2],seg_pitch_stddev[2],seg_pitch_count[2],seg_pitch_sum[2],seg_pitch_avg[3],seg_pitch_max[3],seg_pitch_min[3],seg_pitch_stddev[3],seg_pitch_count[3],seg_pitch_sum[3],seg_pitch_avg[4],seg_pitch_max[4],seg_pitch_min[4],seg_pitch_stddev[4],seg_pitch_count[4],seg_pitch_sum[4],seg_pitch_avg[5],seg_pitch_max[5],seg_pitch_min[5],seg_pitch_stddev[5],seg_pitch_count[5],seg_pitch_sum[5],seg_pitch_avg[6],seg_pitch_max[6],seg_pitch_min[6],seg_pitch_stddev[6],seg_pitch_count[6],seg_pitch_sum[6],seg_pitch_avg[7],seg_pitch_max[7],seg_pitch_min[7],seg_pitch_stddev[7],seg_pitch_count[7],seg_pitch_sum[7],seg_pitch_avg[8],seg_pitch_max[8],seg_pitch_min[8],seg_pitch_stddev[8],seg_pitch_count[8],seg_pitch_sum[8],seg_pitch_avg[9],seg_pitch_max[9],seg_pitch_min[9],seg_pitch_stddev[9],seg_pitch_count[9],seg_pitch_sum[9],seg_pitch_avg[10],seg_pitch_max[10],seg_pitch_min[10],seg_pitch_stddev[10],seg_pitch_count[10],seg_pitch_sum[10],seg_pitch_avg[11],seg_pitch_max[11],seg_pitch_min[11],
seg_pitch_stddev[11],seg_pitch_count[11],seg_pitch_sum[11],seg_start_avg,seg_start_max,seg_start_min,seg_start_stddev, 
seg_start_count,seg_start_sum,seg_timbre_avg[0],seg_timbre_max[0],seg_timbre_min[0],seg_timbre_stddev[0],seg_timbre_count[0],
seg_timbre_sum[0],seg_timbre_avg[1],seg_timbre_max[1],seg_timbre_min[1],seg_timbre_stddev[1],seg_timbre_count[1],
seg_timbre_sum[1],seg_timbre_avg[2],seg_timbre_max[2],seg_timbre_min[2],seg_timbre_stddev[2],seg_timbre_count[2],
seg_timbre_sum[2],seg_timbre_avg[3],seg_timbre_max[3],seg_timbre_min[3],seg_timbre_stddev[3],seg_timbre_count[3],
seg_timbre_sum[3],seg_timbre_avg[4],seg_timbre_max[4],seg_timbre_min[4],seg_timbre_stddev[4],seg_timbre_count[4],
seg_timbre_sum[4],seg_timbre_avg[5],seg_timbre_max[5],seg_timbre_min[5],seg_timbre_stddev[5],seg_timbre_count[5],
seg_timbre_sum[5],seg_timbre_avg[6],seg_timbre_max[6],seg_timbre_min[6],seg_timbre_stddev[6],seg_timbre_count[6],
seg_timbre_sum[6],seg_timbre_avg[7],seg_timbre_max[7],seg_timbre_min[7],seg_timbre_stddev[7],seg_timbre_count[7],
seg_timbre_sum[7],seg_timbre_avg[8],seg_timbre_max[8],seg_timbre_min[8],seg_timbre_stddev[8],seg_timbre_count[8],
seg_timbre_sum[8],seg_timbre_avg[9],seg_timbre_max[9],seg_timbre_min[9],seg_timbre_stddev[9],seg_timbre_count[9],
seg_timbre_sum[9],seg_timbre_avg[10],seg_timbre_max[10],seg_timbre_min[10],seg_timbre_stddev[10],seg_timbre_count[10],
seg_timbre_sum[10],seg_timbre_avg[11],seg_timbre_max[11],seg_timbre_min[11],seg_timbre_stddev[11],seg_timbre_count[11],
seg_timbre_sum[11],tatms_c_avg,tatms_c_max,tatms_c_min,tatms_c_stddev,tatms_c_count,tatms_c_sum,tatms_start_avg,tatms_start_max,tatms_start_min,tatms_start_stddev,tatms_start_count,tatms_start_sum])






	    h5.close()
	    count=count+1;
	    print count;
コード例 #23
0
def process_filelist_train(filelist=None,
                           testartists=None,
                           tmpfilename=None,
                           npicks=None,
                           winsize=None,
                           finaldim=None,
                           typecompress='picks'):
    """
    Main function, process all files in the list (as long as their artist
    is not in testartist)
    INPUT
       filelist     - a list of song files
       testartists  - set of artist ID that we should not use
       tmpfilename  - where to save our processed features
       npicks       - number of segments to pick per song
       winsize      - size of each segment we pick
       finaldim     - how many values do we keep
       typecompress - one of 'picks' (win of btchroma), 'corrcoef' (correlation coefficients),
                      'cov' (covariance)
    """
    # sanity check
    for arg in locals().values():
        assert not arg is None, 'process_filelist_train, missing an argument, something still None'
    if os.path.isfile(tmpfilename):
        print 'ERROR: file', tmpfilename, 'already exists.'
        return
    # create outputfile
    output = tables.openFile(tmpfilename, mode='a')
    group = output.createGroup("/", 'data', 'TMP FILE FOR YEAR RECOGNITION')
    output.createEArray(group,
                        'feats',
                        tables.Float64Atom(shape=()), (0, finaldim),
                        '',
                        expectedrows=len(filelist))
    output.createEArray(group,
                        'year',
                        tables.IntAtom(shape=()), (0, ),
                        '',
                        expectedrows=len(filelist))
    output.createEArray(group,
                        'track_id',
                        tables.StringAtom(18, shape=()), (0, ),
                        '',
                        expectedrows=len(filelist))
    # random projection
    ndim = 12  # fixed in this dataset
    if typecompress == 'picks':
        randproj = RANDPROJ.proj_point5(ndim * winsize, finaldim)
    elif typecompress == 'corrcoeff' or typecompress == 'cov':
        randproj = RANDPROJ.proj_point5(ndim * ndim, finaldim)
    elif typecompress == 'avgcov':
        randproj = RANDPROJ.proj_point5(90, finaldim)
    else:
        assert False, 'Unknown type of compression: ' + str(typecompress)
    # iterate over files
    cnt_f = 0
    for f in filelist:
        cnt_f += 1
        # verbose
        if cnt_f % 50000 == 0:
            print 'training... checking file #', cnt_f
        # check file
        h5 = GETTERS.open_h5_file_read(f)
        artist_id = GETTERS.get_artist_id(h5)
        year = GETTERS.get_year(h5)
        track_id = GETTERS.get_track_id(h5)
        h5.close()
        if year <= 0 or artist_id in testartists:
            continue
        # we have a train artist with a song year, we're good
        bttimbre = get_bttimbre(f)
        if typecompress == 'picks':
            if bttimbre is None:
                continue
            # we even have normal features, awesome!
            processed_feats = CBTF.extract_and_compress(bttimbre,
                                                        npicks,
                                                        winsize,
                                                        finaldim,
                                                        randproj=randproj)
        elif typecompress == 'corrcoeff':
            h5 = GETTERS.open_h5_file_read(f)
            timbres = GETTERS.get_segments_timbre(h5).T
            h5.close()
            processed_feats = CBTF.corr_and_compress(timbres,
                                                     finaldim,
                                                     randproj=randproj)
        elif typecompress == 'cov':
            h5 = GETTERS.open_h5_file_read(f)
            timbres = GETTERS.get_segments_timbre(h5).T
            h5.close()
            processed_feats = CBTF.cov_and_compress(timbres,
                                                    finaldim,
                                                    randproj=randproj)
        elif typecompress == 'avgcov':
            h5 = GETTERS.open_h5_file_read(f)
            timbres = GETTERS.get_segments_timbre(h5).T
            h5.close()
            processed_feats = CBTF.avgcov_and_compress(timbres,
                                                       finaldim,
                                                       randproj=randproj)
        else:
            assert False, 'Unknown type of compression: ' + str(typecompress)
        # save them to tmp file
        n_p_feats = processed_feats.shape[0]
        output.root.data.year.append(np.array([year] * n_p_feats))
        output.root.data.track_id.append(np.array([track_id] * n_p_feats))
        output.root.data.feats.append(processed_feats)
    # we're done, close output
    output.close()
    return
コード例 #24
0
# formatting statistics
file_count = 0
artists_vars_dict = {}
songs = pd.DataFrame()

for root, dirs, files in os.walk(f_dir):
    for f in files:
        if f[-3:] != '.h5':
            continue
        file_count += 1
        
        h5_file_path = os.path.join(root, f)
        h5_file = hdf5_getters.open_h5_file_read(h5_file_path)
        songs = songs.append(h5_to_df(h5_file))
        
        artist_id = hdf5_getters.get_artist_id(h5_file)
        if artist_id in artists_vars_dict:
            h5_file.close()
            continue

        artists_vars_dict[artist_id] = {}
        for var in artist_vars:
            artists_vars_dict[artist_id][var] = artist_vars[var](h5_file)
            
        h5_file.close()
        
cp.dump([artists_vars_dict, songs], open('song_data.pckl', 'wb'))

print 'total_songs:', len(songs)
print 'files_processed:', file_count
print 'number of artists in songs dataframe:', len(set(songs['artist_id']))
コード例 #25
0

for alpha in string.ascii_uppercase :
   for root, dirs, files in os.walk('/mnt/million-songs/data/'+alpha):
      files = glob.glob(os.path.join(root,'*'+'.h5'))
      for f in files :
         h5 = GETTERS.open_h5_file_read(f)
         num_songs = GETTERS.get_num_songs(h5)
         print f, num_songs

         for i in range(num_songs):
            analysis_sample_rate = GETTERS.get_analysis_sample_rate(h5, i)
            artist_7digitalid = GETTERS.get_artist_7digitalid(h5, i)
            artist_familiarity = GETTERS.get_artist_familiarity(h5, i)
            artist_hotttnesss = GETTERS.get_artist_hotttnesss(h5, i)
            artist_id = GETTERS.get_artist_id(h5, i)
            artist_latitude = GETTERS.get_artist_latitude(h5, i)
            artist_location = GETTERS.get_artist_location(h5, i)
            artist_longitude = GETTERS.get_artist_longitude(h5, i)
            artist_mbid = GETTERS.get_artist_mbid(h5, i)
            artist_mbtags = ','.join(str(e) for e in GETTERS.get_artist_mbtags(h5, i)) # array
            artist_mbtags_count = ','.join(str(e) for e in GETTERS.get_artist_mbtags_count(h5, i)) # array
            artist_name = GETTERS.get_artist_name(h5, i)
            artist_playmeid = GETTERS.get_artist_playmeid(h5, i)
            artist_terms = ','.join(str(e) for e in GETTERS.get_artist_terms(h5, i)) # array
            #artist_terms_freq = ','.join(str(e) for e in GETTERS.get_artist_terms_freq(h5, i)) # array
            #artist_terms_weight = ','.join(str(e) for e in GETTERS.get_artist_terms_weight(h5, i)) # array
            #audio_md5 = GETTERS.get_audio_md5(h5, i)
            #bars_confidence = ','.join(str(e) for e in GETTERS.get_bars_confidence(h5, i)) # array
            #bars_start = ','.join(str(e) for e in GETTERS.get_bars_start(h5, i)) # array
            #beats_confidence = ','.join(str(e) for e in GETTERS.get_beats_confidence(h5, i)) # array
コード例 #26
0
def parse_aggregate_songs(file_name,file_name2,artist_map):
    """
    Given an aggregate filename and artist_map in the format
    {artist_name: {data pertaining to artist}}
    """
    """
    TODO: 
    -this function goes through each song, if artist not in there,
    add all data necesary and add first song info.
    else update any specific song info

    -song info is a map from attributename:[values]
    """
    #artist_map = {}
    h5 = hdf5_getters.open_h5_file_read(file_name)
    numSongs = hdf5_getters.get_num_songs(h5)
    print 'Parsing song file...'
    for i in range(numSongs):
        artist_name = hdf5_getters.get_artist_name(h5,i)

        #Filter location
        longi = hdf5_getters.get_artist_longitude(h5,i)
        lat = hdf5_getters.get_artist_latitude(h5,i)
        loc = hdf5_getters.get_artist_location(h5,i)
        if math.isnan(lat) or math.isnan(longi):
            #skip if no location
            continue

        #filter year
        yr = hdf5_getters.get_year(h5,i)
        if yr == 0:
            #skip if no year
            continue

        #filter hotttness and familiarity
        familiarity = hdf5_getters.get_artist_familiarity(h5,i)
        hotttness = hdf5_getters.get_artist_hotttnesss(h5,i)
        if familiarity<=0.0 or hotttness<=0.0:
            #skip if no hotttness or familiarity computations
            continue

        #TODO:MAYBE filter on dance and energy
        timbre = hdf5_getters.get_segments_timbre(h5,i)
        #timbre[#] gives len 12 array so for each arr in timbre, add up to get segment and add to corresponding 12 features and avg across each
        if not artist_name in artist_map:
            #have not encountered the artist yet, so populate new map
            sub_map = {}
            sub_map['artist_familiarity'] = familiarity
            sub_map['artist_hotttnesss'] = hotttness
            sub_map['artist_id'] = hdf5_getters.get_artist_id(h5,i)
            #longi = hdf5_getters.get_artist_longitude(h5,i)
            #lat = hdf5_getters.get_artist_latitude(h5,i)
            #longi = None if math.isnan(longi) else longi
            #lat = None if math.isnan(lat) else lat
            sub_map['artist_latitude'] = lat
            sub_map['artist_longitude'] = longi
            sub_map['artist_location'] = loc
            sub_map['artist_terms'] = hdf5_getters.get_artist_terms(h5,i)
            #TODO:see if should weight by freq or weight for if the term matches one of the feature terms
            sub_map['artist_terms_freq'] = list(hdf5_getters.get_artist_terms_freq(h5,i))
            sub_map['artist_terms_weight'] = list(hdf5_getters.get_artist_terms_weight(h5,i))

            #song-sepcific data
            #TODO COMPUTE AN AVG TIMBRE FOR A SONG BY IDEA:
            #SUMMING DOWN EACH 12 VECTOR FOR EACH PT IN SONG AND AVG THIS ACROSS SONG
            dance = hdf5_getters.get_danceability(h5,i)
            dance = None if dance == 0.0 else dance
            energy = hdf5_getters.get_energy(h5,i)
            energy = None if energy == 0.0 else energy
            sub_map['danceability'] = [dance]
            sub_map['duration'] = [hdf5_getters.get_duration(h5,i)]
            sub_map['end_of_fade_in'] = [hdf5_getters.get_end_of_fade_in(h5,i)]
            sub_map['energy'] = [energy]
            #since each song has a key, ask if feature for keys should be num of songs that appear in that key or
            #just binary if any of their songs has that key or just be avg of songs with that key
            #same for mode, since its either major or minor...should it be count or avg.?
            sub_map['key'] = [hdf5_getters.get_key(h5,i)]
            sub_map['loudness'] = [hdf5_getters.get_loudness(h5,i)]
            sub_map['mode'] = [hdf5_getters.get_mode(h5,i)] #major or minor 0/1
            s_hot = hdf5_getters.get_song_hotttnesss(h5,i)
            s_hot = None if math.isnan(s_hot) else s_hot
            sub_map['song_hotttnesss'] = [s_hot]
            sub_map['start_of_fade_out'] = [hdf5_getters.get_start_of_fade_out(h5,i)]
            sub_map['tempo'] = [hdf5_getters.get_tempo(h5,i)]
            #should time signature be count as well? binary?
            sub_map['time_signature'] = [hdf5_getters.get_time_signature(h5,i)]
            sub_map['track_id'] = [hdf5_getters.get_track_id(h5,i)]
            #should year be binary since they can have many songs across years and should it be year:count
            sub_map['year'] = [yr]

            artist_map[artist_name] = sub_map
        else:
            #artist already exists, so get its map and update song fields
            dance = hdf5_getters.get_danceability(h5,i)
            dance = None if dance == 0.0 else dance
            energy = hdf5_getters.get_energy(h5,i)
            energy = None if energy == 0.0 else energy
            artist_map[artist_name]['danceability'].append(dance)
            artist_map[artist_name]['duration'].append(hdf5_getters.get_duration(h5,i))
            artist_map[artist_name]['end_of_fade_in'].append(hdf5_getters.get_end_of_fade_in(h5,i))
            artist_map[artist_name]['energy'].append(energy)
            artist_map[artist_name]['key'].append(hdf5_getters.get_key(h5,i))
            artist_map[artist_name]['loudness'].append(hdf5_getters.get_loudness(h5,i))
            artist_map[artist_name]['mode'].append(hdf5_getters.get_mode(h5,i)) #major or minor 0/1
            s_hot = hdf5_getters.get_song_hotttnesss(h5,i)
            s_hot = None if math.isnan(s_hot) else s_hot
            artist_map[artist_name]['song_hotttnesss'].append(s_hot)
            artist_map[artist_name]['start_of_fade_out'].append(hdf5_getters.get_start_of_fade_out(h5,i))
            artist_map[artist_name]['tempo'].append(hdf5_getters.get_tempo(h5,i))
            #should time signature be count as well? binary?
            artist_map[artist_name]['time_signature'].append(hdf5_getters.get_time_signature(h5,i))
            artist_map[artist_name]['track_id'].append(hdf5_getters.get_track_id(h5,i))
            #should year be binary since they can have many songs across years and should it be year:count
            artist_map[artist_name]['year'].append(yr)

    h5 = hdf5_getters.open_h5_file_read(file_name2)
    numSongs = hdf5_getters.get_num_songs(h5)
    print 'Parsing song file2...'
    for i in range(numSongs):
        song_id = hdf5_getters.get_track_id(h5,i)
        artist_name = hdf5_getters.get_artist_name(h5,i)
        if artist_name in artist_map and song_id in artist_map[artist_name]['track_id']:
            continue

        #Filter location
        longi = hdf5_getters.get_artist_longitude(h5,i)
        lat = hdf5_getters.get_artist_latitude(h5,i)
        loc = hdf5_getters.get_artist_location(h5,i)
        if math.isnan(lat) or math.isnan(longi):
            #skip if no location
            continue

        #filter year
        yr = hdf5_getters.get_year(h5,i)
        if yr == 0:
            #skip if no year
            continue

        #filter hotttness and familiarity
        familiarity = hdf5_getters.get_artist_familiarity(h5,i)
        hotttness = hdf5_getters.get_artist_hotttnesss(h5,i)
        if familiarity<=0.0 or hotttness<=0.0:
            #skip if no hotttness or familiarity computations
            continue

        #TODO:MAYBE filter on dance and energy
        timbre = hdf5_getters.get_segments_timbre(h5,i)
        #timbre[#] gives len 12 array so for each arr in timbre, add up to get segment and add to corresponding 12 features and avg across each
        if not artist_name in artist_map:
            #have not encountered the artist yet, so populate new map
            sub_map = {}
            sub_map['artist_familiarity'] = familiarity
            sub_map['artist_hotttnesss'] = hotttness
            sub_map['artist_id'] = hdf5_getters.get_artist_id(h5,i)
            #longi = hdf5_getters.get_artist_longitude(h5,i)
            #lat = hdf5_getters.get_artist_latitude(h5,i)
            #longi = None if math.isnan(longi) else longi
            #lat = None if math.isnan(lat) else lat
            sub_map['artist_latitude'] = lat
            sub_map['artist_longitude'] = longi
            sub_map['artist_location'] = loc
            sub_map['artist_terms'] = hdf5_getters.get_artist_terms(h5,i)
            #TODO:see if should weight by freq or weight for if the term matches one of the feature terms
            sub_map['artist_terms_freq'] = list(hdf5_getters.get_artist_terms_freq(h5,i))
            sub_map['artist_terms_weight'] = list(hdf5_getters.get_artist_terms_weight(h5,i))

            #song-sepcific data
            #TODO COMPUTE AN AVG TIMBRE FOR A SONG BY IDEA:
            #SUMMING DOWN EACH 12 VECTOR FOR EACH PT IN SONG AND AVG THIS ACROSS SONG
            dance = hdf5_getters.get_danceability(h5,i)
            dance = None if dance == 0.0 else dance
            energy = hdf5_getters.get_energy(h5,i)
            energy = None if energy == 0.0 else energy
            sub_map['danceability'] = [dance]
            sub_map['duration'] = [hdf5_getters.get_duration(h5,i)]
            sub_map['end_of_fade_in'] = [hdf5_getters.get_end_of_fade_in(h5,i)]
            sub_map['energy'] = [energy]
            #since each song has a key, ask if feature for keys should be num of songs that appear in that key or
            #just binary if any of their songs has that key or just be avg of songs with that key
            #same for mode, since its either major or minor...should it be count or avg.?
            sub_map['key'] = [hdf5_getters.get_key(h5,i)]
            sub_map['loudness'] = [hdf5_getters.get_loudness(h5,i)]
            sub_map['mode'] = [hdf5_getters.get_mode(h5,i)] #major or minor 0/1
            s_hot = hdf5_getters.get_song_hotttnesss(h5,i)
            s_hot = None if math.isnan(s_hot) else s_hot
            sub_map['song_hotttnesss'] = [s_hot]
            sub_map['start_of_fade_out'] = [hdf5_getters.get_start_of_fade_out(h5,i)]
            sub_map['tempo'] = [hdf5_getters.get_tempo(h5,i)]
            #should time signature be count as well? binary?
            sub_map['time_signature'] = [hdf5_getters.get_time_signature(h5,i)]
            sub_map['track_id'] = [hdf5_getters.get_track_id(h5,i)]
            #should year be binary since they can have many songs across years and should it be year:count
            sub_map['year'] = [yr]

            artist_map[artist_name] = sub_map
        else:
            #artist already exists, so get its map and update song fields
            dance = hdf5_getters.get_danceability(h5,i)
            dance = None if dance == 0.0 else dance
            energy = hdf5_getters.get_energy(h5,i)
            energy = None if energy == 0.0 else energy
            artist_map[artist_name]['danceability'].append(dance)
            artist_map[artist_name]['duration'].append(hdf5_getters.get_duration(h5,i))
            artist_map[artist_name]['end_of_fade_in'].append(hdf5_getters.get_end_of_fade_in(h5,i))
            artist_map[artist_name]['energy'].append(energy)
            artist_map[artist_name]['key'].append(hdf5_getters.get_key(h5,i))
            artist_map[artist_name]['loudness'].append(hdf5_getters.get_loudness(h5,i))
            artist_map[artist_name]['mode'].append(hdf5_getters.get_mode(h5,i)) #major or minor 0/1
            s_hot = hdf5_getters.get_song_hotttnesss(h5,i)
            s_hot = None if math.isnan(s_hot) else s_hot
            artist_map[artist_name]['song_hotttnesss'].append(s_hot)
            artist_map[artist_name]['start_of_fade_out'].append(hdf5_getters.get_start_of_fade_out(h5,i))
            artist_map[artist_name]['tempo'].append(hdf5_getters.get_tempo(h5,i))
            #should time signature be count as well? binary?
            artist_map[artist_name]['time_signature'].append(hdf5_getters.get_time_signature(h5,i))
            artist_map[artist_name]['track_id'].append(hdf5_getters.get_track_id(h5,i))
            #should year be binary since they can have many songs across years and should it be year:count
            artist_map[artist_name]['year'].append(yr)
コード例 #27
0
def classify(h5):
	output_array={}
	# duration
	duration=hdf5_getters.get_duration(h5)
	output_array["duration"]=duration	### ADDED VALUE TO ARRAY
	# number of bars
	bars=hdf5_getters.get_bars_start(h5)
	num_bars=len(bars)
	output_array["num_bars"]=num_bars	### ADDED VALUE TO ARRAY
	# mean and variance in bar length
	bar_length=numpy.ediff1d(bars)
	variance_bar_length=numpy.var(bar_length)
	output_array["variance_bar_length"]=variance_bar_length	### ADDED VALUE TO ARRAY
	# number of beats
	beats=hdf5_getters.get_beats_start(h5)
	num_beats=len(beats)
	output_array["num_beats"]=num_beats	### ADDED VALUE TO ARRAY
	# mean and variance in beats length
	beats_length=numpy.ediff1d(beats)
	variance_beats_length=numpy.var(bar_length)
	output_array["variance_beats_length"]=variance_beats_length	### ADDED VALUE TO ARRAY
	# danceability
	danceability=hdf5_getters.get_danceability(h5)
	output_array["danceability"]=danceability	### ADDED VALUE TO ARRAY
	# end of fade in
	end_of_fade_in=hdf5_getters.get_end_of_fade_in(h5)
	output_array["end_of_fade_in"]=end_of_fade_in	### ADDED VALUE TO ARRAY
	# energy
	energy=hdf5_getters.get_energy(h5)
	output_array["energy"]=energy	### ADDED VALUE TO ARRAY
	# key
	key=hdf5_getters.get_key(h5)
	output_array["key"]=int(key)	### ADDED VALUE TO ARRAY
	# loudness
	loudness=hdf5_getters.get_loudness(h5)
	output_array["loudness"]=loudness	### ADDED VALUE TO ARRAY
	# mode
	mode=hdf5_getters.get_mode(h5)
	output_array["mode"]=int(mode)	### ADDED VALUE TO ARRAY
	# number sections
	sections=hdf5_getters.get_sections_start(h5)
	num_sections=len(sections)
	output_array["num_sections"]=num_sections	### ADDED VALUE TO ARRAY
	# mean and variance in sections length
	sections_length=numpy.ediff1d(sections)
	variance_sections_length=numpy.var(sections)
	output_array["variance_sections_length"]=variance_sections_length	### ADDED VALUE TO ARRAY
	# number segments
	segments=hdf5_getters.get_segments_start(h5)
	num_segments=len(segments)
	output_array["num_segments"]=num_segments	### ADDED VALUE TO ARRAY
	# mean and variance in segments length
	segments_length=numpy.ediff1d(segments)
	variance_segments_length=numpy.var(segments)
	output_array["variance_segments_length"]=variance_segments_length	### ADDED VALUE TO ARRAY
	# segment loudness max
	segment_loudness_max_array=hdf5_getters.get_segments_loudness_max(h5)
	segment_loudness_max_time_array=hdf5_getters.get_segments_loudness_max_time(h5)
	segment_loudness_max_index=0
	for i in range(len(segment_loudness_max_array)):
		if segment_loudness_max_array[i]>segment_loudness_max_array[segment_loudness_max_index]:
			segment_loudness_max_index=i
	segment_loudness_max=segment_loudness_max_array[segment_loudness_max_index]
	segment_loudness_max_time=segment_loudness_max_time_array[segment_loudness_max_index]
	output_array["segment_loudness_max"]=segment_loudness_max	### ADDED VALUE TO ARRAY
	output_array["segment_loudness_time"]=segment_loudness_max_time	### ADDED VALUE TO ARRAY
			
	# POSSIBLE TODO: use average function instead and weight by segment length
	# segment loudness mean (start)
	segment_loudness_array=hdf5_getters.get_segments_loudness_start(h5)
	segment_loudness_mean=numpy.mean(segment_loudness_array)
	output_array["segment_loudness_mean"]=segment_loudness_mean	### ADDED VALUE TO ARRAY
	# segment loudness variance (start)
	segment_loudness_variance=numpy.var(segment_loudness_array)
	output_array["segment_loudness_variance"]=segment_loudness_variance	### ADDED VALUE TO ARRAY
	# segment pitches
	segment_pitches_array=hdf5_getters.get_segments_pitches(h5)
	segment_pitches_mean=numpy.mean(segment_pitches_array,axis=0).tolist()
	output_array["segment_pitches_mean"]=segment_pitches_mean
	# segment pitches variance (start)
	segment_pitches_variance=numpy.var(segment_pitches_array,axis=0).tolist()
	output_array["segment_pitches_variance"]=segment_pitches_variance
	# segment timbres
	segment_timbres_array=hdf5_getters.get_segments_timbre(h5)
	segment_timbres_mean=numpy.mean(segment_timbres_array,axis=0).tolist()
	output_array["segment_timbres_mean"]=segment_timbres_mean
	# segment timbres variance (start)
	segment_timbres_variance=numpy.var(segment_timbres_array,axis=0).tolist()
	output_array["segment_timbres_variance"]=segment_timbres_variance
	# hotttnesss
	hottness=hdf5_getters.get_song_hotttnesss(h5,0)
	output_array["hottness"]=hottness	### ADDED VALUE TO ARRAY
	# duration-start of fade out
	start_of_fade_out=hdf5_getters.get_start_of_fade_out(h5)
	fade_out=duration-start_of_fade_out
	output_array["fade_out"]=fade_out	### ADDED VALUE TO ARRAY
	# tatums
	tatums=hdf5_getters.get_tatums_start(h5)
	num_tatums=len(tatums)
	output_array["num_tatums"]=num_tatums	### ADDED VALUE TO ARRAY
	# mean and variance in tatums length
	tatums_length=numpy.ediff1d(tatums)
	variance_tatums_length=numpy.var(tatums_length)
	output_array["variance_tatums_length"]=variance_tatums_length	### ADDED VALUE TO ARRAY
	# tempo
	tempo=hdf5_getters.get_tempo(h5)
	output_array["tempo"]=tempo	### ADDED VALUE TO ARRAY
	# time signature
	time_signature=hdf5_getters.get_time_signature(h5)
	output_array["time_signature"]=int(time_signature)	### ADDED VALUE TO ARRAY
	# year
	year=hdf5_getters.get_year(h5)
	output_array["year"]=int(year)	### ADDED VALUE TO ARRAY
	# artist terms
	artist_terms=hdf5_getters.get_artist_terms(h5,0)
	output_array["artist_terms"]=artist_terms.tolist()
	artist_terms_freq=hdf5_getters.get_artist_terms_freq(h5,0)
	output_array["artist_terms_freq"]=artist_terms_freq.tolist()
	artist_name=hdf5_getters.get_artist_name(h5,0)
	output_array["artist_name"]=artist_name
	artist_id=hdf5_getters.get_artist_id(h5,0)
	output_array["artist_id"]=artist_id
	# title
	title=hdf5_getters.get_title(h5,0)
	output_array["title"]=title

	return output_array
コード例 #28
0
def data_to_flat_file(basedir,ext='.h5') :
    """ This function extracts the information from the tables and creates the flat file. """
    count = 0; #song counter
    list_to_write= []
    group_index=0
    row_to_write = ""
    writer = csv.writer(open("complete.csv", "wb"))
    for root, dirs, files in os.walk(basedir):
	files = glob.glob(os.path.join(root,'*'+ext))
        for f in files:
	    row=[]
	    print f
            h5 = hdf5_getters.open_h5_file_read(f)
	    title = hdf5_getters.get_title(h5) 
	    title= title.replace('"','') 
            row.append(title)
	    comma=title.find(',')
	    if	comma != -1:
		    print title
		    time.sleep(1)
	    album = hdf5_getters.get_release(h5)
	    album= album.replace('"','')
            row.append(album)
	    comma=album.find(',')
	    if	comma != -1:
		    print album
		    time.sleep(1)
	    artist_name = hdf5_getters.get_artist_name(h5)
	    comma=artist_name.find(',')
	    if	comma != -1:
		    print artist_name
		    time.sleep(1)
	    artist_name= artist_name.replace('"','')
            row.append(artist_name)
	    duration = hdf5_getters.get_duration(h5)
            row.append(duration)
	    samp_rt = hdf5_getters.get_analysis_sample_rate(h5)
            row.append(samp_rt)
	    artist_7digitalid = hdf5_getters.get_artist_7digitalid(h5)
            row.append(artist_7digitalid)
	    artist_fam = hdf5_getters.get_artist_familiarity(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(artist_fam) == True:
	            artist_fam=-1
            row.append(artist_fam)
	    artist_hotness= hdf5_getters.get_artist_hotttnesss(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(artist_hotness) == True:
	             artist_hotness=-1
            row.append(artist_hotness)
	    artist_id = hdf5_getters.get_artist_id(h5)
            row.append(artist_id)           
	    artist_lat = hdf5_getters.get_artist_latitude(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(artist_lat) == True:
	            artist_lat=-1
            row.append(artist_lat)
	    artist_loc = hdf5_getters.get_artist_location(h5)
            row.append(artist_loc)
	    artist_lon = hdf5_getters.get_artist_longitude(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(artist_lon) == True:
	            artist_lon=-1
            row.append(artist_lon)
	    artist_mbid = hdf5_getters.get_artist_mbid(h5)
            row.append(artist_mbid)

	    #Getting the genre				       
            art_trm = hdf5_getters.get_artist_terms(h5)
            trm_freq = hdf5_getters.get_artist_terms_freq(h5)
	    trn_wght = hdf5_getters.get_artist_terms_weight(h5)
	    a_mb_tags = hdf5_getters.get_artist_mbtags(h5)
	    genre_indexes=get_genre_indexes(trm_freq) 		    #index of the highest freq
	    genre_set=0					            #flag to see if the genre has been set or not
	    final_genre=[]
	    genres_so_far=[]
	    for i in range(len(genre_indexes)):
		    genre_tmp=get_genre(art_trm,genre_indexes[i])   #genre that corresponds to the highest freq
		    genres_so_far=genre_dict.get_genre_in_dict(genre_tmp) #getting the genre from the dictionary
		    if len(genres_so_far) != 0:
			for i in genres_so_far:
				final_genre.append(i)
			    	genre_set=1
			
			
	    if genre_set == 1:
		col_num=[]
		for i in final_genre:
			column=int(i)				#getting the column number of the genre
			col_num.append(column)
	
		genre_array=genre_columns(col_num)	                #genre array 
	        for i in range(len(genre_array)):                   	#appending the genre_array to the row 
			row.append(genre_array[i])
	    else:
		genre_array=genre_columns(-1)				#when there is no genre matched, return an array of [0...0]
	        for i in range(len(genre_array)):                   	#appending the genre_array to the row 
			row.append(genre_array[i])
					

	    artist_pmid = hdf5_getters.get_artist_playmeid(h5)
            row.append(artist_pmid)
	    audio_md5 = hdf5_getters.get_audio_md5(h5)
            row.append(audio_md5)
	    danceability = hdf5_getters.get_danceability(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(danceability) == True:
	            danceability=-1
            row.append(danceability)
	    end_fade_in =hdf5_getters.get_end_of_fade_in(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(end_fade_in) == True:
	            end_fade_in=-1
            row.append(end_fade_in)
	    energy = hdf5_getters.get_energy(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(energy) == True:
	            energy=-1
            row.append(energy)
            song_key = hdf5_getters.get_key(h5)
            row.append(song_key)
	    key_c = hdf5_getters.get_key_confidence(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(key_c) == True:
	            key_c=-1
            row.append(key_c)
	    loudness = hdf5_getters.get_loudness(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(loudness) == True:
	            loudness=-1
            row.append(loudness)
	    mode = hdf5_getters.get_mode(h5)
            row.append(mode)
	    mode_conf = hdf5_getters.get_mode_confidence(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(mode_conf) == True:
	            mode_conf=-1
            row.append(mode_conf)
	    release_7digitalid = hdf5_getters.get_release_7digitalid(h5)
            row.append(release_7digitalid)
	    song_hot = hdf5_getters.get_song_hotttnesss(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(song_hot) == True:
	            song_hot=-1
            row.append(song_hot)
	    song_id = hdf5_getters.get_song_id(h5)
            row.append(song_id)
	    start_fade_out = hdf5_getters.get_start_of_fade_out(h5)
            row.append(start_fade_out)
	    tempo = hdf5_getters.get_tempo(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(tempo) == True:
	            tempo=-1
            row.append(tempo)
	    time_sig = hdf5_getters.get_time_signature(h5)
            row.append(time_sig)
	    time_sig_c = hdf5_getters.get_time_signature_confidence(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(time_sig_c) == True:
	            time_sig_c=-1
            row.append(time_sig_c)
	    track_id = hdf5_getters.get_track_id(h5)
            row.append(track_id)
	    track_7digitalid = hdf5_getters.get_track_7digitalid(h5)
            row.append(track_7digitalid)
	    year = hdf5_getters.get_year(h5)
            row.append(year)
	    bars_c = hdf5_getters.get_bars_confidence(h5)
            bars_start = hdf5_getters.get_bars_start(h5)
	    row_bars_padding=padding(245)   #this is the array that will be attached at the end of th row

	    #--------------bars---------------"
	    gral_info=[]
	    gral_info=row[:]
	    empty=[]
	    for i,item in enumerate(bars_c):
                row.append(group_index)
                row.append(i)
                row.append(bars_c[i])
	        bars_c_avg= get_avg(bars_c)
                row.append(bars_c_avg)
	        bars_c_max= get_max(bars_c)	
                row.append(bars_c_max)
	        bars_c_min = get_min(bars_c)
                row.append(bars_c_min)
	        bars_c_stddev= get_stddev(bars_c)
                row.append(bars_c_stddev)
	        bars_c_count = get_count(bars_c)
                row.append(bars_c_count)
	        bars_c_sum = get_sum(bars_c)
                row.append(bars_c_sum)
                row.append(bars_start[i])	         
	        bars_start_avg = get_avg(bars_start)
                row.append(bars_start_avg)	         
	        bars_start_max= get_max(bars_start)
                row.append(bars_start_max)	         
	        bars_start_min = get_min(bars_start)
                row.append(bars_start_min)	         
	        bars_start_stddev= get_stddev(bars_start)
                row.append(bars_start_stddev)	         
	        bars_start_count = get_count(bars_start)
                row.append(bars_start_count)	         
	        bars_start_sum = get_sum(bars_start)
                row.append(bars_start_sum)	         
		for i in row_bars_padding:
			row.append(i)

                writer.writerow(row)
		row=[]
		row=gral_info[:]
	 

            #--------beats---------------"
	    beats_c = hdf5_getters.get_beats_confidence(h5)
	    group_index=1
	    row=[]
	    row=gral_info[:]
	    row_front=padding(14)  	#blanks left in front of the row(empty spaces for bars)
	    row_beats_padding=padding(231)
	    for i,item in enumerate(beats_c):
	   	row.append(group_index)
		row.append(i)
		for index in row_front:  #padding blanks in front of the beats
			row.append(index)
		
		row.append(beats_c[i])
	        beats_c_avg= get_avg(beats_c)
		row.append(beats_c_avg)
	        beats_c_max= get_max(beats_c)
		row.append(beats_c_max)
                beats_c_min = get_min(beats_c)
		row.append(beats_c_min)
	        beats_c_stddev= get_stddev(beats_c)
		row.append(beats_c_stddev)
	        beats_c_count = get_count(beats_c)
		row.append(beats_c_count)
	        beats_c_sum = get_sum(beats_c)
		row.append(beats_c_sum)
                beats_start = hdf5_getters.get_beats_start(h5)
		row.append(beats_start[i])
 	        beats_start_avg = get_avg(beats_start)
		row.append(beats_start_avg)
	        beats_start_max= get_max(beats_start)
		row.append(beats_start_max)
	        beats_start_min = get_min(beats_start)
		row.append(beats_start_min)
	        beats_start_stddev= get_stddev(beats_start)
		row.append(beats_start_stddev)
	        beats_start_count = get_count(beats_start)
		row.append(beats_start_count)
	        beats_start_sum = get_sum(beats_start)
		row.append(beats_start_sum)
		for i in row_beats_padding:
			row.append(i)
                
		writer.writerow(row)
		row=[]
		row=gral_info[:]

            # "--------sections---------------"
	    row_sec_padding=padding(217)	#blank spaces left at the end of the row
	    sec_c = hdf5_getters.get_sections_confidence(h5)
	    group_index=2
	    row=[]
	    row=gral_info[:]
	    row_front=padding(28)		#blank spaces left in front(empty spaces for bars,beats)
	    for i,item in enumerate(sec_c):
		row.append(group_index)
		row.append(i)
		for index in row_front:  	#padding blanks in front of the sections
			row.append(index)

		row.append(sec_c[i])
                sec_c_avg= get_avg(sec_c)
		row.append(sec_c_avg)
	        sec_c_max= get_max(sec_c)
		row.append(sec_c_max)
	        sec_c_min = get_min(sec_c)
		row.append(sec_c_min)
	        sec_c_stddev= get_stddev(sec_c)
		row.append(sec_c_stddev)
	        sec_c_count = get_count(sec_c)
		row.append(sec_c_count)
	        sec_c_sum = get_sum(sec_c)
		row.append(sec_c_sum)
	        sec_start = hdf5_getters.get_sections_start(h5)
		row.append(sec_start[i])	   
                sec_start_avg = get_avg(sec_start)
		row.append(sec_start_avg)
	        sec_start_max= get_max(sec_start)
		row.append(sec_start_max)
	        sec_start_min = get_min(sec_start)
		row.append(sec_start_min)
	        sec_start_stddev= get_stddev(sec_start)
		row.append(sec_start_stddev)
	        sec_start_count = get_count(sec_start)
		row.append(sec_start_count)
	        sec_start_sum = get_sum(sec_start)
		row.append(sec_start_sum)
		for i in row_sec_padding:	#appending the blank spaces at the end of the row
			row.append(i)
                

		writer.writerow(row)
		row=[]
		row=gral_info[:]


            #--------segments---------------"
	    row_seg_padding=padding(182)	#blank spaces at the end of the row
 	    row_front=padding(42)		#blank spaces left in front of segments
	    seg_c = hdf5_getters.get_segments_confidence(h5)
	    group_index=3
	    row=[]
	    row=gral_info[:]
	    for i,item in enumerate(seg_c):
		row.append(group_index)
		row.append(i)
		for index in row_front:  	#padding blanks in front of the segments
			row.append(index)

		row.append(seg_c[i])
                seg_c_avg= get_avg(seg_c)
		row.append(seg_c_avg)
	        seg_c_max= get_max(seg_c)
		row.append(seg_c_max)
	        seg_c_min = get_min(seg_c)
		row.append(seg_c_min)
	        seg_c_stddev= get_stddev(seg_c)
		row.append(seg_c_stddev)
	        seg_c_count = get_count(seg_c)
		row.append(seg_c_count)
	        seg_c_sum = get_sum(seg_c)
		row.append(seg_c_sum)
                seg_loud_max = hdf5_getters.get_segments_loudness_max(h5)
		row.append(seg_loud_max[i])
                seg_loud_max_avg= get_avg(seg_loud_max)
		row.append(seg_loud_max_avg)
	        seg_loud_max_max= get_max(seg_loud_max)
		row.append(seg_loud_max_max)
	        seg_loud_max_min = get_min(seg_loud_max)
		row.append(seg_loud_max_min)
	        seg_loud_max_stddev= get_stddev(seg_loud_max)
		row.append(seg_loud_max_stddev)
	        seg_loud_max_count = get_count(seg_loud_max)
		row.append(seg_loud_max_count)
	        seg_loud_max_sum = get_sum(seg_loud_max)
		row.append(seg_loud_max_sum)
	        seg_loud_max_time = hdf5_getters.get_segments_loudness_max_time(h5)
		row.append(seg_loud_max_time[i])
	        seg_loud_max_time_avg= get_avg(seg_loud_max_time)
		row.append(seg_loud_max_time_avg)
	        seg_loud_max_time_max= get_max(seg_loud_max_time)
		row.append(seg_loud_max_time_max)
	        seg_loud_max_time_min = get_min(seg_loud_max_time)
		row.append(seg_loud_max_time_min)
	        seg_loud_max_time_stddev= get_stddev(seg_loud_max_time)
		row.append(seg_loud_max_time_stddev)
	        seg_loud_max_time_count = get_count(seg_loud_max_time)
		row.append(seg_loud_max_time_count)
	        seg_loud_max_time_sum = get_sum(seg_loud_max_time)
		row.append(seg_loud_max_time_sum)
	        seg_loud_start = hdf5_getters.get_segments_loudness_start(h5)
		row.append(seg_loud_start[i])
	        seg_loud_start_avg= get_avg(seg_loud_start)
		row.append(seg_loud_start_avg)
	        seg_loud_start_max= get_max(seg_loud_start)
		row.append(seg_loud_start_max)
	        seg_loud_start_min = get_min(seg_loud_start)
		row.append(seg_loud_start_min)
	        seg_loud_start_stddev= get_stddev(seg_loud_start)
		row.append(seg_loud_start_stddev)
	        seg_loud_start_count = get_count(seg_loud_start)
		row.append(seg_loud_start_count)
	        seg_loud_start_sum = get_sum(seg_loud_start)					      
		row.append(seg_loud_start_sum)
	        seg_start = hdf5_getters.get_segments_start(h5)
		row.append(seg_start[i])
	        seg_start_avg= get_avg(seg_start)
		row.append(seg_start_avg)
	        seg_start_max= get_max(seg_start)
		row.append(seg_start_max)
	        seg_start_min = get_min(seg_start)
		row.append(seg_start_min)
	        seg_start_stddev= get_stddev(seg_start)
		row.append(seg_start_stddev)
	        seg_start_count = get_count(seg_start)
		row.append(seg_start_count)
	        seg_start_sum = get_sum(seg_start)
		row.append(seg_start_sum)
		for i in row_seg_padding:	#appending blank spaces at the end of the row
			row.append(i)
                
		writer.writerow(row)
		row=[]
		row=gral_info[:]

	    #----------segments pitch and timbre---------------"
	    row_seg2_padding=padding(14)	#blank spaces left at the end of the row
	    row_front=padding(77)		#blank spaces left at the front of the segments and timbre
	    seg_pitch = hdf5_getters.get_segments_pitches(h5)
	    transpose_pitch= seg_pitch.transpose()          #this is to tranpose the matrix,so we can have 12 rows
	    group_index=4
	    row=[]
	    row=gral_info[:]
	    for i,item in enumerate(transpose_pitch[0]):
		row.append(group_index)
		row.append(i)
		for index in row_front:  	#padding blanks in front of segments and timbre
			row.append(index)
	   
		row.append(transpose_pitch[0][i])
  		seg_pitch_avg= get_avg(transpose_pitch[0])
		row.append(seg_pitch_avg)
		seg_pitch_max= get_max(transpose_pitch[0])	
		row.append(seg_pitch_max)
		seg_pitch_min = get_min(transpose_pitch[0])
		row.append(seg_pitch_min)
		seg_pitch_stddev= get_stddev(transpose_pitch[0])
		row.append(seg_pitch_stddev)
		seg_pitch_count = get_count(transpose_pitch[0])
		row.append(seg_pitch_count)
		seg_pitch_sum = get_sum(transpose_pitch[0])
		row.append(seg_pitch_sum)   
 		row.append(transpose_pitch[1][i])
 		seg_pitch_avg= get_avg(transpose_pitch[1])
		row.append(seg_pitch_avg)
		seg_pitch_max= get_max(transpose_pitch[1])	
		row.append(seg_pitch_max)
	        seg_pitch_min = get_min(transpose_pitch[1])
		row.append(seg_pitch_min)
	        seg_pitch_stddev= get_stddev(transpose_pitch[1])
		row.append(seg_pitch_stddev)
	        seg_pitch_count = get_count(transpose_pitch[1])
		row.append(seg_pitch_count)
	        seg_pitch_sum = get_sum(transpose_pitch[1])
		row.append(seg_pitch_sum)   
		row.append(transpose_pitch[2][i])
 		seg_pitch_avg= get_avg(transpose_pitch[2])
		row.append(seg_pitch_avg)
		seg_pitch_max= get_max(transpose_pitch[2])	
		row.append(seg_pitch_max)
	        seg_pitch_min = get_min(transpose_pitch[2])
		row.append(seg_pitch_min)
	        seg_pitch_stddev= get_stddev(transpose_pitch[2])
		row.append(seg_pitch_stddev)
	        seg_pitch_count = get_count(transpose_pitch[2])
		row.append(seg_pitch_count)
	        seg_pitch_sum = get_sum(transpose_pitch[2])
		row.append(seg_pitch_sum)   
		row.append(transpose_pitch[3][i])
 		seg_pitch_avg= get_avg(transpose_pitch[3])
		row.append(seg_pitch_avg)
		seg_pitch_max= get_max(transpose_pitch[3])	
		row.append(seg_pitch_max)
	        seg_pitch_min = get_min(transpose_pitch[3])
		row.append(seg_pitch_min)
	        seg_pitch_stddev= get_stddev(transpose_pitch[3])
		row.append(seg_pitch_stddev)
	        seg_pitch_count = get_count(transpose_pitch[3])
		row.append(seg_pitch_count)
	        seg_pitch_sum = get_sum(transpose_pitch[3])
		row.append(seg_pitch_sum)   
		row.append(transpose_pitch[4][i])
 		seg_pitch_avg= get_avg(transpose_pitch[4])
		row.append(seg_pitch_avg)
		seg_pitch_max= get_max(transpose_pitch[4])	
		row.append(seg_pitch_max)
	        seg_pitch_min = get_min(transpose_pitch[4])
		row.append(seg_pitch_min)
	        seg_pitch_stddev= get_stddev(transpose_pitch[4])
		row.append(seg_pitch_stddev)
	        seg_pitch_count = get_count(transpose_pitch[4])
		row.append(seg_pitch_count)
	        seg_pitch_sum = get_sum(transpose_pitch[4])
		row.append(seg_pitch_sum)   
		row.append(transpose_pitch[5][i])
 		seg_pitch_avg= get_avg(transpose_pitch[5])
		row.append(seg_pitch_avg)
		seg_pitch_max= get_max(transpose_pitch[5])	
		row.append(seg_pitch_max)
	        seg_pitch_min = get_min(transpose_pitch[5])
		row.append(seg_pitch_min)
	        seg_pitch_stddev= get_stddev(transpose_pitch[5])
		row.append(seg_pitch_stddev)
	        seg_pitch_count = get_count(transpose_pitch[5])
		row.append(seg_pitch_count)
	        seg_pitch_sum = get_sum(transpose_pitch[5])
		row.append(seg_pitch_sum)   
		row.append(transpose_pitch[6][i])
 		seg_pitch_avg= get_avg(transpose_pitch[6])
		row.append(seg_pitch_avg)
		seg_pitch_max= get_max(transpose_pitch[6])	
		row.append(seg_pitch_max)
	        seg_pitch_min = get_min(transpose_pitch[6])
		row.append(seg_pitch_min)
	        seg_pitch_stddev= get_stddev(transpose_pitch[6])
		row.append(seg_pitch_stddev)
	        seg_pitch_count = get_count(transpose_pitch[6])
		row.append(seg_pitch_count)
	        seg_pitch_sum = get_sum(transpose_pitch[6])
		row.append(seg_pitch_sum)   
		row.append(transpose_pitch[7][i])
 		seg_pitch_avg= get_avg(transpose_pitch[7])
		row.append(seg_pitch_avg)
		seg_pitch_max= get_max(transpose_pitch[7])	
		row.append(seg_pitch_max)
	        seg_pitch_min = get_min(transpose_pitch[7])
		row.append(seg_pitch_min)
	        seg_pitch_stddev= get_stddev(transpose_pitch[7])
		row.append(seg_pitch_stddev)
	        seg_pitch_count = get_count(transpose_pitch[7])
		row.append(seg_pitch_count)
	        seg_pitch_sum = get_sum(transpose_pitch[7])
		row.append(seg_pitch_sum)   
		row.append(transpose_pitch[8][i])
 		seg_pitch_avg= get_avg(transpose_pitch[8])
		row.append(seg_pitch_avg)
		seg_pitch_max= get_max(transpose_pitch[8])	
		row.append(seg_pitch_max)
	        seg_pitch_min = get_min(transpose_pitch[8])
		row.append(seg_pitch_min)
	        seg_pitch_stddev= get_stddev(transpose_pitch[8])
		row.append(seg_pitch_stddev)
	        seg_pitch_count = get_count(transpose_pitch[8])
		row.append(seg_pitch_count)
	        seg_pitch_sum = get_sum(transpose_pitch[8])
		row.append(seg_pitch_sum)   
		row.append(transpose_pitch[9][i])
 		seg_pitch_avg= get_avg(transpose_pitch[9])
		row.append(seg_pitch_avg)
		seg_pitch_max= get_max(transpose_pitch[9])	
		row.append(seg_pitch_max)
	        seg_pitch_min = get_min(transpose_pitch[9])
		row.append(seg_pitch_min)
	        seg_pitch_stddev= get_stddev(transpose_pitch[9])
		row.append(seg_pitch_stddev)
	        seg_pitch_count = get_count(transpose_pitch[9])
		row.append(seg_pitch_count)
	        seg_pitch_sum = get_sum(transpose_pitch[9])
		row.append(seg_pitch_sum)   
		row.append(transpose_pitch[10][i])
 		seg_pitch_avg= get_avg(transpose_pitch[10])
		row.append(seg_pitch_avg)
		seg_pitch_max= get_max(transpose_pitch[10])	
		row.append(seg_pitch_max)
	        seg_pitch_min = get_min(transpose_pitch[10])
		row.append(seg_pitch_min)
	        seg_pitch_stddev= get_stddev(transpose_pitch[10])
		row.append(seg_pitch_stddev)
	        seg_pitch_count = get_count(transpose_pitch[10])
		row.append(seg_pitch_count)
	        seg_pitch_sum = get_sum(transpose_pitch[10])
		row.append(seg_pitch_sum)   
		row.append(transpose_pitch[11][i])
 		seg_pitch_avg= get_avg(transpose_pitch[11])
		row.append(seg_pitch_avg)
		seg_pitch_max= get_max(transpose_pitch[11])	
		row.append(seg_pitch_max)
	        seg_pitch_min = get_min(transpose_pitch[11])
		row.append(seg_pitch_min)
	        seg_pitch_stddev= get_stddev(transpose_pitch[11])
		row.append(seg_pitch_stddev)
	        seg_pitch_count = get_count(transpose_pitch[11])
		row.append(seg_pitch_count)
	        seg_pitch_sum = get_sum(transpose_pitch[11])
		row.append(seg_pitch_sum)   
		#timbre arrays
	        seg_timbre = hdf5_getters.get_segments_timbre(h5)
                transpose_timbre = seg_pitch.transpose() #tranposing matrix, to have 12 rows
		row.append(transpose_timbre[0][i])
  		seg_timbre_avg= get_avg(transpose_timbre[0])
		row.append(seg_timbre_avg)
		seg_timbre_max= get_max(transpose_timbre[0])	
		row.append(seg_timbre_max)
		seg_timbre_min = get_min(transpose_timbre[0])
		row.append(seg_timbre_min)
		seg_timbre_stddev=get_stddev(transpose_timbre[0])
		row.append(seg_timbre_stddev)
		seg_timbre_count = get_count(transpose_timbre[0])
		row.append(seg_timbre_count)
		seg_timbre_sum = get_sum(transpose_timbre[0])
		row.append(seg_timbre_sum)   
 		row.append(transpose_timbre[1][i])
 		seg_timbre_avg= get_avg(transpose_timbre[1])
		row.append(seg_timbre_avg)
		seg_timbre_max= get_max(transpose_timbre[1])	
		row.append(seg_timbre_max)
	        seg_timbre_min = get_min(transpose_timbre[1])
		row.append(seg_timbre_min)
	        seg_timbre_stddev= get_stddev(transpose_timbre[1])
		row.append(seg_timbre_stddev)
	        seg_timbre_count = get_count(transpose_timbre[1])
		row.append(seg_timbre_count)
	        seg_timbre_sum = get_sum(transpose_timbre[1])
		row.append(seg_timbre_sum)   
		row.append(transpose_timbre[2][i])
 		seg_timbre_avg= get_avg(transpose_timbre[2])
		row.append(seg_timbre_avg)
		seg_timbre_max= get_max(transpose_timbre[2])	
		row.append(seg_timbre_max)
	        seg_timbre_min = get_min(transpose_timbre[2])
		row.append(seg_timbre_min)
	        seg_timbre_stddev= get_stddev(transpose_timbre[2])
		row.append(seg_timbre_stddev)
	        seg_timbre_count = get_count(transpose_timbre[2])
		row.append(seg_timbre_count)
	        seg_timbre_sum = get_sum(transpose_timbre[2])
		row.append(seg_timbre_sum)   
		
		row.append(transpose_timbre[3][i])
 		seg_timbre_avg= get_avg(transpose_timbre[3])
		row.append(seg_timbre_avg)
		seg_timbre_max= get_max(transpose_timbre[3])	
		row.append(seg_timbre_max)
	        seg_timbre_min = get_min(transpose_timbre[3])
		row.append(seg_timbre_min)
	        seg_timbre_stddev= get_stddev(transpose_timbre[3])
		row.append(seg_timbre_stddev)
	        seg_timbre_count = get_count(transpose_timbre[3])
		row.append(seg_timbre_count)
	        seg_timbre_sum = get_sum(transpose_timbre[3])
		row.append(seg_timbre_sum)   
		
		row.append(transpose_timbre[4][i])
 		seg_timbre_avg= get_avg(transpose_timbre[4])
		row.append(seg_timbre_avg)
		seg_timbre_max= get_max(transpose_timbre[4])	
		row.append(seg_timbre_max)
	        seg_timbre_min = get_min(transpose_timbre[4])
		row.append(seg_timbre_min)
	        seg_timbre_stddev= get_stddev(transpose_timbre[4])
		row.append(seg_timbre_stddev)
	        seg_timbre_count = get_count(transpose_timbre[4])
		row.append(seg_timbre_count)
	        seg_timbre_sum = get_sum(transpose_timbre[4])
		row.append(seg_timbre_sum)   
		
		row.append(transpose_timbre[5][i])
 		seg_timbre_avg= get_avg(transpose_timbre[5])
		row.append(seg_timbre_avg)
		seg_timbre_max= get_max(transpose_timbre[5])	
		row.append(seg_timbre_max)
	        seg_timbre_min = get_min(transpose_timbre[5])
		row.append(seg_timbre_min)
	        seg_timbre_stddev= get_stddev(transpose_timbre[5])
		row.append(seg_timbre_stddev)
	        seg_timbre_count = get_count(transpose_timbre[5])
		row.append(seg_timbre_count)
	        seg_timbre_sum = get_sum(transpose_timbre[5])
		row.append(seg_timbre_sum)   
		
		row.append(transpose_timbre[6][i])
 		seg_timbre_avg= get_avg(transpose_timbre[6])
		row.append(seg_timbre_avg)
		seg_timbre_max= get_max(transpose_timbre[6])	
		row.append(seg_timbre_max)
	        seg_timbre_min = get_min(transpose_timbre[6])
		row.append(seg_timbre_min)
	        seg_timbre_stddev= get_stddev(transpose_timbre[6])
		row.append(seg_timbre_stddev)
	        seg_timbre_count = get_count(transpose_timbre[6])
		row.append(seg_timbre_count)
	        seg_timbre_sum = get_sum(transpose_timbre[6])
		row.append(seg_timbre_sum)   
		
		row.append(transpose_timbre[7][i])
 		seg_timbre_avg= get_avg(transpose_timbre[7])
		row.append(seg_timbre_avg)
		seg_timbre_max= get_max(transpose_timbre[7])	
		row.append(seg_timbre_max)
	        seg_timbre_min = get_min(transpose_timbre[7])
		row.append(seg_timbre_min)
	        seg_timbre_stddev= get_stddev(transpose_timbre[7])
		row.append(seg_timbre_stddev)
	        seg_timbre_count = get_count(transpose_timbre[7])
		row.append(seg_timbre_count)
	        seg_timbre_sum = get_sum(transpose_timbre[7])
		row.append(seg_timbre_sum)   
		
		row.append(transpose_timbre[8][i])
 		seg_timbre_avg= get_avg(transpose_timbre[8])
		row.append(seg_timbre_avg)
		seg_timbre_max= get_max(transpose_timbre[8])	
		row.append(seg_timbre_max)
	        seg_timbre_min = get_min(transpose_timbre[8])
		row.append(seg_timbre_min)
	        seg_timbre_stddev= get_stddev(transpose_timbre[8])
		row.append(seg_timbre_stddev)
	        seg_timbre_count = get_count(transpose_timbre[8])
		row.append(seg_timbre_count)
	        seg_timbre_sum = get_sum(transpose_timbre[8])
		row.append(seg_timbre_sum)   
		
		row.append(transpose_timbre[9][i])
 		seg_timbre_avg= get_avg(transpose_timbre[9])
		row.append(seg_timbre_avg)
		seg_timbre_max= get_max(transpose_timbre[9])	
		row.append(seg_timbre_max)
	        seg_timbre_min = get_min(transpose_timbre[9])
		row.append(seg_timbre_min)
	        seg_timbre_stddev= get_stddev(transpose_timbre[9])
		row.append(seg_timbre_stddev)
	        seg_timbre_count = get_count(transpose_timbre[9])
		row.append(seg_timbre_count)
	        seg_timbre_sum = get_sum(transpose_timbre[9])
		row.append(seg_timbre_sum)   
		
		row.append(transpose_timbre[10][i])
 		seg_timbre_avg= get_avg(transpose_timbre[10])
		row.append(seg_timbre_avg)
		seg_timbre_max= get_max(transpose_timbre[10])	
		row.append(seg_timbre_max)
	        seg_timbre_min = get_min(transpose_timbre[10])
		row.append(seg_timbre_min)
	        seg_timbre_stddev= get_stddev(transpose_timbre[10])
		row.append(seg_timbre_stddev)
	        seg_timbre_count = get_count(transpose_timbre[10])
		row.append(seg_timbre_count)
	        seg_timbre_sum = get_sum(transpose_timbre[10])
		row.append(seg_timbre_sum)   
		
		row.append(transpose_timbre[11][i])
 		seg_timbre_avg= get_avg(transpose_timbre[11])
		row.append(seg_timbre_avg)
		seg_timbre_max= get_max(transpose_timbre[11])	
		row.append(seg_timbre_max)
	        seg_timbre_min = get_min(transpose_timbre[11])
		row.append(seg_timbre_min)
	        seg_timbre_stddev= get_stddev(transpose_timbre[11])
		row.append(seg_timbre_stddev)
	        seg_timbre_count = get_count(transpose_timbre[11])
		row.append(seg_timbre_count)
	        seg_timbre_sum = get_sum(transpose_timbre[11])
		row.append(seg_timbre_sum)
	        for item in row_seg2_padding:
			row.append(item)
		writer.writerow(row)
		row=[]
		row=gral_info[:]


            # "--------tatums---------------"
	    tatms_c = hdf5_getters.get_tatums_confidence(h5)
	    group_index=5
	    row_front=padding(245)	#blank spaces left in front of tatums
	    row=[]
	    row=gral_info[:]
	    for i,item in enumerate(tatms_c):
		row.append(group_index)
		row.append(i)
		for item in row_front:	#appending blank spaces at the front of the row
			row.append(item)

		row.append(tatms_c[i])
		tatms_c_avg= get_avg(tatms_c)
		row.append(tatms_c_avg)
	 	tatms_c_max= get_max(tatms_c)
		row.append(tatms_c_max)
	        tatms_c_min = get_min(tatms_c)
		row.append(tatms_c_min)
	        tatms_c_stddev= get_stddev(tatms_c)
		row.append(tatms_c_stddev)
                tatms_c_count = get_count(tatms_c)
		row.append(tatms_c_count)
                tatms_c_sum = get_sum(tatms_c)
		row.append(tatms_c_sum)
                tatms_start = hdf5_getters.get_tatums_start(h5)
		row.append(tatms_start[i])
	        tatms_start_avg= get_avg(tatms_start)
		row.append(tatms_start_avg)
	        tatms_start_max= get_max(tatms_start)
		row.append(tatms_start_max)
	        tatms_start_min = get_min(tatms_start)
		row.append(tatms_start_min)
	        tatms_start_stddev= get_stddev(tatms_start)
		row.append(tatms_start_stddev)
	        tatms_start_count = get_count(tatms_start)
		row.append(tatms_start_count)
	        tatms_start_sum = get_sum(tatms_start)				   
		row.append(tatms_start_sum)
		writer.writerow(row)
		row=[]
		row=gral_info[:]


 
	    transpose_pitch= seg_pitch.transpose() #this is to tranpose the matrix,so we can have 12 rows
	    #arrays containing the aggregate values of the 12 rows
	    seg_pitch_avg=[]
	    seg_pitch_max=[]
	    seg_pitch_min=[]
            seg_pitch_stddev=[]
            seg_pitch_count=[]
	    seg_pitch_sum=[]
            i=0
	    #Getting the aggregate values in the pitches array
	    for row in transpose_pitch:
		   seg_pitch_avg.append(get_avg(row))
		   seg_pitch_max.append(get_max(row))
	           seg_pitch_min.append(get_min(row))
		   seg_pitch_stddev.append(get_stddev(row))
		   seg_pitch_count.append(get_count(row))
                   seg_pitch_sum.append(get_sum(row))
		   i=i+1

	    #extracting information from the timbre array 
            transpose_timbre = seg_pitch.transpose() #tranposing matrix, to have 12 rows
	    #arrays containing the aggregate values of the 12 rows
	    seg_timbre_avg=[]
	    seg_timbre_max=[]
	    seg_timbre_min=[]
            seg_timbre_stddev=[]
            seg_timbre_count=[]
	    seg_timbre_sum=[]
            i=0
	    for row in transpose_timbre:
		   seg_timbre_avg.append(get_avg(row))
		   seg_timbre_max.append(get_max(row))
	           seg_timbre_min.append(get_min(row))
		   seg_timbre_stddev.append(get_stddev(row))
		   seg_timbre_count.append(get_count(row))
                   seg_timbre_sum.append(get_sum(row))
		   i=i+1








	    h5.close()
	    count=count+1;
	    print count;
コード例 #29
0
def process_filelist_train(filelist=None,testartists=None,tmpfilename=None,
                           npicks=None,winsize=None,finaldim=None,typecompress='picks'):
    """
    Main function, process all files in the list (as long as their artist
    is not in testartist)
    INPUT
       filelist     - a list of song files
       testartists  - set of artist ID that we should not use
       tmpfilename  - where to save our processed features
       npicks       - number of segments to pick per song
       winsize      - size of each segment we pick
       finaldim     - how many values do we keep
       typecompress - one of 'picks' (win of btchroma), 'corrcoef' (correlation coefficients),
                      'cov' (covariance)
    """
    # sanity check
    for arg in locals().values():
        assert not arg is None,'process_filelist_train, missing an argument, something still None'
    if os.path.isfile(tmpfilename):
        print 'ERROR: file',tmpfilename,'already exists.'
        return
    # create outputfile
    output = tables.openFile(tmpfilename, mode='a')
    group = output.createGroup("/",'data','TMP FILE FOR YEAR RECOGNITION')
    output.createEArray(group,'feats',tables.Float64Atom(shape=()),(0,finaldim),'',
                        expectedrows=len(filelist))
    output.createEArray(group,'year',tables.IntAtom(shape=()),(0,),'',
                        expectedrows=len(filelist))
    output.createEArray(group,'track_id',tables.StringAtom(18,shape=()),(0,),'',
                        expectedrows=len(filelist))
    # random projection
    ndim = 12 # fixed in this dataset
    if typecompress == 'picks':
        randproj = RANDPROJ.proj_point5(ndim * winsize, finaldim)
    elif typecompress == 'corrcoeff' or typecompress == 'cov':
        randproj = RANDPROJ.proj_point5(ndim * ndim, finaldim)
    elif typecompress == 'avgcov':
        randproj = RANDPROJ.proj_point5(90, finaldim)
    else:
        assert False,'Unknown type of compression: '+str(typecompress)
    # iterate over files
    cnt_f = 0
    for f in filelist:
        cnt_f += 1
        # verbose
        if cnt_f % 50000 == 0:
            print 'training... checking file #',cnt_f
        # check file
        h5 = GETTERS.open_h5_file_read(f)
        artist_id = GETTERS.get_artist_id(h5)
        year = GETTERS.get_year(h5)
        track_id = GETTERS.get_track_id(h5)
        h5.close()
        if year <= 0 or artist_id in testartists:
            continue
        # we have a train artist with a song year, we're good
        bttimbre = get_bttimbre(f)
        if typecompress == 'picks':
            if bttimbre is None:
                continue
            # we even have normal features, awesome!
            processed_feats = CBTF.extract_and_compress(bttimbre,npicks,winsize,finaldim,
                                                        randproj=randproj)
        elif typecompress == 'corrcoeff':
            h5 = GETTERS.open_h5_file_read(f)
            timbres = GETTERS.get_segments_timbre(h5).T
            h5.close()
            processed_feats = CBTF.corr_and_compress(timbres,finaldim,randproj=randproj)
        elif typecompress == 'cov':
            h5 = GETTERS.open_h5_file_read(f)
            timbres = GETTERS.get_segments_timbre(h5).T
            h5.close()
            processed_feats = CBTF.cov_and_compress(timbres,finaldim,randproj=randproj)
        elif typecompress == 'avgcov':
            h5 = GETTERS.open_h5_file_read(f)
            timbres = GETTERS.get_segments_timbre(h5).T
            h5.close()
            processed_feats = CBTF.avgcov_and_compress(timbres,finaldim,randproj=randproj)
        else:
            assert False,'Unknown type of compression: '+str(typecompress)
        # save them to tmp file
        n_p_feats = processed_feats.shape[0]
        output.root.data.year.append( np.array( [year] * n_p_feats ) )
        output.root.data.track_id.append( np.array( [track_id] * n_p_feats ) )
        output.root.data.feats.append( processed_feats )
    # we're done, close output
    output.close()
    return
コード例 #30
0
def main():
    outputFile1 = open('SongCSV.csv', 'w')
    csvRowString = ""

    #################################################
    #if you want to prompt the user for the order of attributes in the csv,
    #leave the prompt boolean set to True
    #else, set 'prompt' to False and set the order of attributes in the 'else'
    #clause
    prompt = False
    #################################################
    if prompt == True:
        while prompt:

            prompt = False

            csvAttributeString = raw_input(
                "\n\nIn what order would you like the colums of the CSV file?\n"
                + "Please delineate with commas. The options are: " +
                "AlbumName, AlbumID, ArtistID, ArtistLatitude, ArtistLocation, ArtistLongitude,"
                +
                " ArtistName, Danceability, Duration, KeySignature, KeySignatureConfidence, Tempo,"
                +
                " SongID, TimeSignature, TimeSignatureConfidence, Title, and Year.\n\n"
                +
                "For example, you may write \"Title, Tempo, Duration\"...\n\n"
                + "...or exit by typing 'exit'.\n\n")

            csvAttributeList = re.split('\W+', csvAttributeString)
            for i, v in enumerate(csvAttributeList):
                csvAttributeList[i] = csvAttributeList[i].lower()

            for attribute in csvAttributeList:
                # print "Here is the attribute: " + attribute + " \n"

                if attribute == 'AlbumID'.lower():
                    csvRowString += 'AlbumID'
                elif attribute == 'AlbumName'.lower():
                    csvRowString += 'AlbumName'
                elif attribute == 'ArtistID'.lower():
                    csvRowString += 'ArtistID'
                elif attribute == 'ArtistLatitude'.lower():
                    csvRowString += 'ArtistLatitude'
                elif attribute == 'ArtistLocation'.lower():
                    csvRowString += 'ArtistLocation'
                elif attribute == 'ArtistLongitude'.lower():
                    csvRowString += 'ArtistLongitude'
                elif attribute == 'ArtistName'.lower():
                    csvRowString += 'ArtistName'
                elif attribute == 'Danceability'.lower():
                    csvRowString += 'Danceability'
                elif attribute == 'Duration'.lower():
                    csvRowString += 'Duration'
                elif attribute == 'KeySignature'.lower():
                    csvRowString += 'KeySignature'
                elif attribute == 'KeySignatureConfidence'.lower():
                    csvRowString += 'KeySignatureConfidence'
                elif attribute == 'SongID'.lower():
                    csvRowString += "SongID"
                elif attribute == 'Tempo'.lower():
                    csvRowString += 'Tempo'
                elif attribute == 'TimeSignature'.lower():
                    csvRowString += 'TimeSignature'
                elif attribute == 'TimeSignatureConfidence'.lower():
                    csvRowString += 'TimeSignatureConfidence'
                elif attribute == 'Title'.lower():
                    csvRowString += 'Title'
                elif attribute == 'Year'.lower():
                    csvRowString += 'Year'
                elif attribute == 'Familiarity'.lower():  ####Added by us!
                    csvRowString += song.familiarity
                elif attribute == 'artist_mbid'.lower():
                    csvRowString += song.artist_mbid
                elif attribute == 'artist_playmeid'.lower():
                    csvRowString += song.artist_playmeid
                elif attribute == 'artist_7digid'.lower():
                    csvRowString += song.artist_7digid
                elif attribute == 'hottness'.lower():
                    csvRowString += song.hottness
                elif attribute == 'song_hottness'.lower():
                    csvRowString += song.song_hottness
                elif attribute == 'digitalid7'.lower():
                    csvRowString += song.digitalid7
                elif attribute == 'similar_artists'.lower():
                    csvRowString += song.similar_artists
                elif attribute == 'artist_terms'.lower():
                    csvRowString += song.artist_terms
                elif attribute == 'art_terms_freq'.lower():
                    csvRowString += song.art_terms_freq
                elif attribute == 'art_terms_weight'.lower():
                    csvRowString += song.art_terms_weight
                elif attribute == 'a_sample_rate'.lower():
                    csvRowString += song.a_sample_rate
                elif attribute == 'audio_md5'.lower():
                    csvRowString += song.audio_md5
                elif attribute == 'end_of_fade_in'.lower():
                    csvRowString += song.end_of_fade_in
                elif attribute == 'energy'.lower():
                    csvRowString += song.energy
                elif attribute == 'loudness'.lower():
                    csvRowString += song.loudness
                elif attribute == 'mode'.lower():
                    csvRowString += song.mode
                elif attribute == 'mode_conf'.lower():
                    csvRowString += song.mode_conf
                elif attribute == 'start_of_fade_out'.lower():
                    csvRowString += song.start_of_fade_out
                elif attribute == 'trackid'.lower():
                    csvRowString += song.trackid
                elif attribute == 'segm_start'.lower():
                    csvRowString += song.segm_start
                elif attribute == 'segm_conf'.lower():
                    csvRowString += song.segm_conf
                elif attribute == 'segm_pitch'.lower():
                    csvRowString += song.segm_pitch
                elif attribute == 'segm_timbre'.lower():
                    csvRowString += song.segm_timbre
                elif attribute == 'segm_max_loud'.lower():
                    csvRowString += song.segm_max_loud
                elif attribute == 'segm_max_loud_time'.lower():
                    csvRowString += song.segm_max_loud_time
                elif attribute == 'segm_loud_start'.lower():
                    csvRowString += song.segm_loud_start
                elif attribute == 'sect_start'.lower():
                    csvRowString += song.sect_start
                elif attribute == 'sect_conf'.lower():
                    csvRowString += song.sect_conf
                elif attribute == 'beats_start'.lower():
                    csvRowString += song.beats_start
                elif attribute == 'beats_conf'.lower():
                    csvRowString += song.beats_conf
                elif attribute == 'bars_start'.lower():
                    csvRowString += song.bars_start
                elif attribute == 'bars_conf'.lower():
                    csvRowString += song.bars_conf
                elif attribute == 'tatums_start'.lower():
                    csvRowString += song.tatums_start
                elif attribute == 'tatums_conf'.lower():
                    csvRowString += song.tatums_conf
                elif attribute == 'artist_mbtags'.lower():
                    csvRowString += song.artist_mbtags
                elif attribute == 'artist_mbtags_count'.lower():
                    csvRowString += song.artist_mbtags_count
                elif attribute == 'Exit'.lower():
                    sys.exit()
                else:
                    prompt = True
                    print("==============")
                    print("I believe there has been an error with the input.")
                    print("==============")
                    break

                csvRowString += ","

            lastIndex = len(csvRowString)
            csvRowString = csvRowString[0:lastIndex - 1]
            csvRowString += "\n"
            outputFile1.write(csvRowString)
            csvRowString = ""
    #else, if you want to hard code the order of the csv file and not prompt
    #the user,
    else:
        #################################################
        #change the order of the csv file here
        #Default is to list all available attributes (in alphabetical order)
        csvRowString = "SongID,AlbumID,AlbumName,ArtistID,ArtistLatitude,ArtistLocation,ArtistLongitude,ArtistName,Danceability,Duration,KeySignature,KeySignatureConfidence,Tempo,TimeSignature,TimeSignatureConfidence,Title,Year,Familiarity,Artist_Mbid,Artist_PlaymeId,Artist_7didId,Hottness,Song_Hottness,7digitalid,A_Sample_Rate,Audio_Md5,End_Of_Fade_In,Energy,Loudness,Mode,Mode_Conf,Start_Of_Fade_Out,TrackId"
        #################################################

        csvAttributeList = re.split(',', csvRowString)
        for i, v in enumerate(csvAttributeList):
            csvAttributeList[i] = csvAttributeList[i].lower()
        csvRowString += "\n"
        outputFile1.write(csvRowString)
        csvRowString = ""

    #################################################

    #Set the basedir here, the root directory from which the search
    #for files stored in a (hierarchical data structure) will originate
    basedir = "/home/bigdata/smalltest/"  # "." As the default means the current directory
    ext = ".h5"  #Set the extension here. H5 is the extension for HDF5 files.
    #################################################

    #FOR LOOP
    for root, dirs, files in os.walk(basedir):
        files = glob.glob(os.path.join(root, '*' + ext))
        for f in files:
            print(f)

            songH5File = hdf5_getters.open_h5_file_read(f)
            song = Song(str(hdf5_getters.get_song_id(songH5File)))

            # testDanceability = hdf5_getters.get_danceability(songH5File)
            # print type(testDanceability)
            # print ("Here is the danceability: ") + str(testDanceability)

            song.artistID = str(hdf5_getters.get_artist_id(songH5File))
            song.albumID = str(hdf5_getters.get_release_7digitalid(songH5File))
            song.albumName = str(hdf5_getters.get_release(songH5File))
            song.artistLatitude = str(
                hdf5_getters.get_artist_latitude(songH5File))
            song.artistLocation = str(
                hdf5_getters.get_artist_location(songH5File))
            song.artistLongitude = str(
                hdf5_getters.get_artist_longitude(songH5File))
            song.artistName = str(hdf5_getters.get_artist_name(songH5File))
            song.danceability = str(hdf5_getters.get_danceability(songH5File))
            song.duration = str(hdf5_getters.get_duration(songH5File))
            # song.setGenreList()
            song.keySignature = str(hdf5_getters.get_key(songH5File))
            song.keySignatureConfidence = str(
                hdf5_getters.get_key_confidence(songH5File))
            # song.lyrics = None
            # song.popularity = None
            song.tempo = str(hdf5_getters.get_tempo(songH5File))
            song.timeSignature = str(
                hdf5_getters.get_time_signature(songH5File))
            song.timeSignatureConfidence = str(
                hdf5_getters.get_time_signature_confidence(songH5File))
            song.title = str(hdf5_getters.get_title(songH5File))
            song.year = str(hdf5_getters.get_year(songH5File))

            #########Added by us!
            song.familiarity = str(
                hdf5_getters.get_artist_familiarity(songH5File))
            song.artist_mbid = str(hdf5_getters.get_artist_mbid(songH5File))
            song.artist_playmeid = str(
                hdf5_getters.get_artist_playmeid(songH5File))
            song.artist_7digid = str(
                hdf5_getters.get_artist_7digitalid(songH5File))
            song.hottness = str(hdf5_getters.get_artist_hotttnesss(songH5File))
            song.song_hottness = str(
                hdf5_getters.get_song_hotttnesss(songH5File))
            song.digitalid7 = str(
                hdf5_getters.get_track_7digitalid(songH5File))
            #song.similar_artists = str(hdf5_getters.get_similar_artists(songH5File))
            #song.artist_terms = str(hdf5_getters.get_artist_terms(songH5File))
            #song.art_terms_freq = str(hdf5_getters.get_artist_terms_freq(songH5File))
            #song.art_terms_weight = str(hdf5_getters.get_artist_terms_weight(songH5File))
            song.a_sample_rate = str(
                hdf5_getters.get_analysis_sample_rate(songH5File))
            song.audio_md5 = str(hdf5_getters.get_audio_md5(songH5File))
            song.end_of_fade_in = str(
                hdf5_getters.get_end_of_fade_in(songH5File))
            song.energy = str(hdf5_getters.get_energy(songH5File))
            song.loudness = str(hdf5_getters.get_loudness(songH5File))
            song.mode = str(hdf5_getters.get_mode(songH5File))
            song.mode_conf = str(hdf5_getters.get_mode_confidence(songH5File))
            song.start_of_fade_out = str(
                hdf5_getters.get_start_of_fade_out(songH5File))
            song.trackid = str(hdf5_getters.get_track_id(songH5File))
            #song.segm_start = str(hdf5_getters.get_segments_start(songH5File))
            #song.segm_conf = str(hdf5_getters.get_segments_confidence(songH5File))
            #song.segm_pitch = str(hdf5_getters.get_segments_pitches(songH5File))
            #song.segm_timbre = str(hdf5_getters.get_segments_timbre(songH5File))
            #song.segm_max_loud = str(hdf5_getters.get_segments_loudness_max(songH5File))
            #song.segm_max_loud_time = str(hdf5_getters.get_segments_loudness_max_time(songH5File))
            #song.segm_loud_start = str(hdf5_getters.get_segments_loudness_start(songH5File))
            #song.sect_start = str(hdf5_getters.get_sections_start(songH5File))
            #song.sect_conf = str(hdf5_getters.get_sections_confidence(songH5File))
            #song.beats_start = str(hdf5_getters.get_beats_start(songH5File))
            #song.beats_conf = str(hdf5_getters.get_beats_confidence(songH5File))
            #song.bars_start = str(hdf5_getters.get_bars_start(songH5File))
            #song.bars_conf = str(hdf5_getters.get_bars_confidence(songH5File))
            #song.tatums_start = str(hdf5_getters.get_tatums_start(songH5File))
            #song.tatums_conf = str(hdf5_getters.get_tatums_confidence(songH5File))
            #song.artist_mbtags = str(hdf5_getters.get_artist_mbtags(songH5File))
            #song.artist_mbtags_count = str(hdf5_getters.get_artist_mbtags_count(songH5File))

            #print song count
            #csvRowString += str(song.songCount) + ","

            for attribute in csvAttributeList:
                # print "Here is the attribute: " + attribute + " \n"

                if attribute == 'AlbumID'.lower():
                    csvRowString += song.albumID
                elif attribute == 'AlbumName'.lower():
                    albumName = song.albumName
                    albumName = albumName.replace("b\"", "")
                    albumName = albumName.replace("\"", "")
                    albumName = albumName.replace(',', "")
                    csvRowString += "\"" + albumName + "\""
                elif attribute == 'ArtistID'.lower():
                    csvRowString += "\"" + song.artistID + "\""
                elif attribute == 'ArtistLatitude'.lower():
                    latitude = song.artistLatitude
                    if latitude == 'nan':
                        latitude = ''
                    csvRowString += latitude
                elif attribute == 'ArtistLocation'.lower():
                    location = song.artistLocation
                    location = location.replace(',', '')
                    location = location.replace("b\"", "")
                    location = location.replace("\"", "")
                    csvRowString += "\"" + location + "\""
                elif attribute == 'ArtistLongitude'.lower():
                    longitude = song.artistLongitude
                    if longitude == 'nan':
                        longitude = ''
                    csvRowString += longitude
                elif attribute == 'ArtistName'.lower():
                    artistName = song.artistName
                    artistName = artistName.replace("b\"", "")
                    artistName = artistName.replace("\"", "")
                    csvRowString += "\"" + artistName + "\""
                elif attribute == 'Danceability'.lower():
                    csvRowString += song.danceability
                elif attribute == 'Duration'.lower():
                    csvRowString += song.duration
                elif attribute == 'KeySignature'.lower():
                    csvRowString += song.keySignature
                elif attribute == 'KeySignatureConfidence'.lower():
                    # print "key sig conf: " + song.timeSignatureConfidence
                    csvRowString += song.keySignatureConfidence
                elif attribute == 'SongID'.lower():
                    csvRowString += "\"" + song.id + "\""
                elif attribute == 'Tempo'.lower():
                    # print "Tempo: " + song.tempo
                    csvRowString += song.tempo
                elif attribute == 'TimeSignature'.lower():
                    csvRowString += song.timeSignature
                elif attribute == 'TimeSignatureConfidence'.lower():
                    # print "time sig conf: " + song.timeSignatureConfidence
                    csvRowString += song.timeSignatureConfidence
                elif attribute == 'Title'.lower():
                    t = song.title
                    t = t.replace("b\"", "")
                    t = t.replace("\"", "")
                    csvRowString += "\"" + t + "\""
                elif attribute == 'Year'.lower():
                    csvRowString += song.year
                elif attribute == 'Familiarity'.lower():  ####Added by us!
                    csvRowString += song.familiarity
                elif attribute == 'artist_mbid'.lower():
                    csvRowString += "\"" + song.artist_mbid + "\""
                elif attribute == 'artist_playmeid'.lower():
                    csvRowString += song.artist_playmeid
                elif attribute == 'artist_7digid'.lower():
                    csvRowString += song.artist_7digid
                elif attribute == 'hottness'.lower():
                    csvRowString += song.hottness
                elif attribute == 'song_hottness'.lower():
                    csvRowString += song.song_hottness
                elif attribute == 'digitalid7'.lower():
                    csvRowString += song.digitalid7
                elif attribute == 'similar_artists'.lower():
                    csvRowString += song.similar_artists
                elif attribute == 'artist_terms'.lower():
                    csvRowString += song.artist_terms
                elif attribute == 'art_terms_freq'.lower():
                    csvRowString += song.art_terms_freq
                elif attribute == 'art_terms_weight'.lower():
                    csvRowString += song.art_terms_weight
                elif attribute == 'a_sample_rate'.lower():
                    csvRowString += song.a_sample_rate
                elif attribute == 'audio_md5'.lower():
                    csvRowString += "\"" + song.audio_md5 + "\""
                elif attribute == 'end_of_fade_in'.lower():
                    csvRowString += song.end_of_fade_in
                elif attribute == 'energy'.lower():
                    csvRowString += song.energy
                elif attribute == 'loudness'.lower():
                    csvRowString += song.loudness
                elif attribute == 'mode'.lower():
                    csvRowString += song.mode
                elif attribute == 'mode_conf'.lower():
                    csvRowString += song.mode_conf
                elif attribute == 'start_of_fade_out'.lower():
                    csvRowString += song.start_of_fade_out
                elif attribute == 'trackid'.lower():
                    csvRowString += "\"" + song.trackid + "\""
                elif attribute == 'segm_start'.lower():
                    csvRowString += song.segm_start
                elif attribute == 'segm_conf'.lower():
                    csvRowString += song.segm_conf
                elif attribute == 'segm_pitch'.lower():
                    csvRowString += song.segm_pitch
                elif attribute == 'segm_timbre'.lower():
                    csvRowString += song.segm_timbre
                elif attribute == 'segm_max_loud'.lower():
                    csvRowString += song.segm_max_loud
                elif attribute == 'segm_max_loud_time'.lower():
                    csvRowString += song.segm_max_loud_time
                elif attribute == 'segm_loud_start'.lower():
                    csvRowString += song.segm_loud_start
                elif attribute == 'sect_start'.lower():
                    csvRowString += song.sect_start
                elif attribute == 'sect_conf'.lower():
                    csvRowString += song.sect_conf
                elif attribute == 'beats_start'.lower():
                    csvRowString += song.beats_start
                elif attribute == 'beats_conf'.lower():
                    csvRowString += song.beats_conf
                elif attribute == 'bars_start'.lower():
                    csvRowString += song.bars_start
                elif attribute == 'bars_conf'.lower():
                    csvRowString += song.bars_conf
                elif attribute == 'tatums_start'.lower():
                    csvRowString += song.tatums_start
                elif attribute == 'tatums_conf'.lower():
                    csvRowString += song.tatums_conf
                elif attribute == 'artist_mbtags'.lower():
                    csvRowString += song.artist_mbtags
                elif attribute == 'artist_mbtags_count'.lower():
                    csvRowString += song.artist_mbtags_count
                else:
                    csvRowString += "\"ERR\""

                csvRowString += ","

            #Remove the final comma from each row in the csv
            lastIndex = len(csvRowString)
            csvRowString = csvRowString[0:lastIndex - 1]
            csvRowString += "\n"
            outputFile1.write(csvRowString)
            csvRowString = ""

            songH5File.close()

    outputFile1.close()
コード例 #31
0
def complete_hd5_to_csv(basedir):
    ext = '.h5'  # Get all files with extension .h5

    # Header title. Essentially it is a schema for all the following songs
    header = [
        'Title', 'Artist familiarity', 'Artist hotness', 'Artist ID',
        'Artist mbID', 'Artist playmeid', 'Artist 7DigitalID',
        'Artist latitude', 'Artist longitude', 'Artist location',
        'Artist Name', 'Release', 'Release 7DigitalID', 'Song ID',
        'Song Hotness', 'Track 7Digital', 'Analysis sample rate', 'Audio md5',
        'Danceability', 'Duration', 'End of Fade', 'Energy', 'Key',
        'Key Confidence', 'Loudness', 'Mode', 'Mode Confidence',
        'Start of fade out', 'Tempo', 'Time signature',
        'Time signature confidence', 'Track ID', 'Year'
    ]

    with open('Tester2.csv', 'w', newline='') as csvfile:
        csv_writer = csv.writer(csvfile, delimiter=';')

        # writing the header line. This line contains the schema of the data
        csv_writer.writerow(header)

        # Read all files from the given directories
        for root, dirs, files in os.walk(basedir):
            files = glob.glob(os.path.join(root, '*' + ext))
            print(files)

            for f in files:
                h5 = hdf5_getters.open_h5_file_read(f)

                # Write as row all elements. NOTE: Only the serialized elements are parsed and not arrays
                csv_writer.writerow([
                    hdf5_getters.get_title(h5),
                    hdf5_getters.get_artist_familiarity(h5),
                    hdf5_getters.get_artist_hotttnesss(h5),
                    hdf5_getters.get_artist_id(h5),
                    hdf5_getters.get_artist_mbid(h5),
                    hdf5_getters.get_artist_playmeid(h5),
                    hdf5_getters.get_artist_7digitalid(h5),
                    hdf5_getters.get_artist_latitude(h5),
                    hdf5_getters.get_artist_longitude(h5),
                    hdf5_getters.get_artist_location(h5),
                    hdf5_getters.get_artist_name(h5),
                    hdf5_getters.get_release(h5),
                    hdf5_getters.get_release_7digitalid(h5),
                    hdf5_getters.get_song_id(h5),
                    hdf5_getters.get_song_hotttnesss(h5),
                    hdf5_getters.get_track_7digitalid(h5),
                    hdf5_getters.get_analysis_sample_rate(h5),
                    hdf5_getters.get_audio_md5(h5),
                    hdf5_getters.get_danceability(h5),
                    hdf5_getters.get_duration(h5),
                    hdf5_getters.get_end_of_fade_in(h5),
                    hdf5_getters.get_energy(h5),
                    hdf5_getters.get_key(h5),
                    hdf5_getters.get_key_confidence(h5),
                    hdf5_getters.get_loudness(h5),
                    hdf5_getters.get_mode(h5),
                    hdf5_getters.get_mode_confidence(h5),
                    hdf5_getters.get_start_of_fade_out(h5),
                    hdf5_getters.get_tempo(h5),
                    hdf5_getters.get_time_signature(h5),
                    hdf5_getters.get_time_signature_confidence(h5),
                    hdf5_getters.get_track_id(h5),
                    hdf5_getters.get_year(h5)
                ])

                # For debugging purposes. Everything as expected
                # print()
                # print("Num of songs -- ", hdf5_getters.get_num_songs(h5))  # One song per file
                # print("Title -- ", hdf5_getters.get_title(h5))  # Print the title of a specific h5 file
                # print("Artist familiarity -- ", hdf5_getters.get_artist_familiarity(h5))
                # print("Artist hotness -- ", hdf5_getters.get_artist_hotttnesss(h5))
                # print("Artist ID -- ", hdf5_getters.get_artist_id(h5))
                # print("Artist mbID -- ", hdf5_getters.get_artist_mbid(h5))
                # print("Artist playmeid -- ", hdf5_getters.get_artist_playmeid(h5))
                # print("Artist 7DigitalID -- ", hdf5_getters.get_artist_7digitalid(h5))
                # print("Artist latitude -- ", hdf5_getters.get_artist_latitude(h5))
                # print("Artist longitude -- ", hdf5_getters.get_artist_longitude(h5))
                # print("Artist location -- ", hdf5_getters.get_artist_location(h5))
                # print("Artist Name -- ", hdf5_getters.get_artist_name(h5))
                # print("Release -- ", hdf5_getters.get_release(h5))
                # print("Release 7DigitalID -- ", hdf5_getters.get_release_7digitalid(h5))
                # print("Song ID -- ", hdf5_getters.get_song_id(h5))
                # print("Song Hotness -- ", hdf5_getters.get_song_hotttnesss(h5))
                # print("Track 7Digital -- ", hdf5_getters.get_track_7digitalid(h5))
                # print("Analysis sample rate -- ", hdf5_getters.get_analysis_sample_rate(h5))
                # print("Audio md5 -- ", hdf5_getters.get_audio_md5(h5))
                # print("Danceability -- ", hdf5_getters.get_danceability(h5))
                # print("Duration -- ", hdf5_getters.get_duration(h5))
                # print("End of Fade -- ", hdf5_getters.get_end_of_fade_in(h5))
                # print("Energy -- ", hdf5_getters.get_energy(h5))
                # print("Key -- ", hdf5_getters.get_key(h5))
                # print("Key Confidence -- ", hdf5_getters.get_key_confidence(h5))
                # print("Loudness -- ", hdf5_getters.get_loudness(h5))
                # print("Mode -- ", hdf5_getters.get_mode(h5))
                # print("Mode Confidence -- ", hdf5_getters.get_mode_confidence(h5))
                # print("Start of fade out -- ", hdf5_getters.get_start_of_fade_out(h5))
                # print("Tempo -- ", hdf5_getters.get_tempo(h5))
                # print("Time signature -- ", hdf5_getters.get_time_signature(h5))
                # print("Time signature confidence -- ", hdf5_getters.get_time_signature_confidence(h5))
                # print("Track ID -- ", hdf5_getters.get_track_id(h5))
                # # print("Artist mbtags -- ", hdf5_getters.get_artist_mbtags(h5))
                # # print("Artist mbtags count -- ", hdf5_getters.get_artist_mbtags_count(h5))
                # print("Year -- ", hdf5_getters.get_year(h5))

                h5.close()
コード例 #32
0
def data_to_flat_file(basedir,ext='.h5') :
    """This function extract the information from the tables and creates the flat file."""	
    count = 0;	#song counter
    list_to_write= []
    row_to_write = ""
    writer = csv.writer(open("metadata_wholeA.csv", "wb"))
    for root, dirs, files in os.walk(basedir):
	files = glob.glob(os.path.join(root,'*'+ext))
        for f in files:
	    print f	#the name of the file
            h5 = hdf5_getters.open_h5_file_read(f)
	    title = hdf5_getters.get_title(h5) 
	    title= title.replace('"','') 
	    comma=title.find(',')	#eliminating commas in the title
	    if	comma != -1:
		    print title
		    time.sleep(1)
	    album = hdf5_getters.get_release(h5)
	    album= album.replace('"','')	#eliminating commas in the album	
	    comma=album.find(',')
	    if	comma != -1:
		    print album
		    time.sleep(1)
	    artist_name = hdf5_getters.get_artist_name(h5)
	    comma=artist_name.find(',')
	    if	comma != -1:
		    print artist_name
		    time.sleep(1)
	    artist_name= artist_name.replace('"','')	#eliminating double quotes
	    duration = hdf5_getters.get_duration(h5)
	    samp_rt = hdf5_getters.get_analysis_sample_rate(h5)
	    artist_7digitalid = hdf5_getters.get_artist_7digitalid(h5)
	    artist_fam = hdf5_getters.get_artist_familiarity(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(artist_fam) == True:
	            artist_fam=-1
	    artist_hotness= hdf5_getters.get_artist_hotttnesss(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(artist_hotness) == True:
	            artist_hotness=-1
	    artist_id = hdf5_getters.get_artist_id(h5)
	    artist_lat = hdf5_getters.get_artist_latitude(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(artist_lat) == True:
	            artist_lat=-1
	    artist_loc = hdf5_getters.get_artist_location(h5)
		#checks artist_loc to see if it is a hyperlink if it is set as empty string
	    artist_loc = artist_loc.replace(",", "\,");
	    if artist_loc.startswith("<a"):
                artist_loc = ""
	    if len(artist_loc) > 100:
                artist_loc = ""
	    artist_lon = hdf5_getters.get_artist_longitude(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(artist_lon) == True:
	            artist_lon=-1
	    artist_mbid = hdf5_getters.get_artist_mbid(h5)
	    artist_pmid = hdf5_getters.get_artist_playmeid(h5)
	    audio_md5 = hdf5_getters.get_audio_md5(h5)
	    danceability = hdf5_getters.get_danceability(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(danceability) == True:
	            danceability=-1
	    end_fade_in =hdf5_getters.get_end_of_fade_in(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(end_fade_in) == True:
	            end_fade_in=-1
	    energy = hdf5_getters.get_energy(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(energy) == True:
	            energy=-1
            song_key = hdf5_getters.get_key(h5)
	    key_c = hdf5_getters.get_key_confidence(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(key_c) == True:
	            key_c=-1
	    loudness = hdf5_getters.get_loudness(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(loudness) == True:
	            loudness=-1
	    mode = hdf5_getters.get_mode(h5)
	    mode_conf = hdf5_getters.get_mode_confidence(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(mode_conf) == True:
	            mode_conf=-1
	    release_7digitalid = hdf5_getters.get_release_7digitalid(h5)
	    song_hot = hdf5_getters.get_song_hotttnesss(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(song_hot) == True:
	            song_hot=-1
	    song_id = hdf5_getters.get_song_id(h5)
	    start_fade_out = hdf5_getters.get_start_of_fade_out(h5)
	    tempo = hdf5_getters.get_tempo(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(tempo) == True:
	            tempo=-1
	    time_sig = hdf5_getters.get_time_signature(h5)
	    time_sig_c = hdf5_getters.get_time_signature_confidence(h5)
	    #checking if we get a "nan" if we do we change it to -1
	    if numpy.isnan(time_sig_c) == True:
	            time_sig_c=-1
	    track_id = hdf5_getters.get_track_id(h5)
	    track_7digitalid = hdf5_getters.get_track_7digitalid(h5)
	    year = hdf5_getters.get_year(h5)
	    bars_c = hdf5_getters.get_bars_confidence(h5)
	    bars_c_avg= get_avg(bars_c)
	    bars_c_max= get_max(bars_c)
	    bars_c_min = get_min(bars_c)
	    bars_c_stddev= get_stddev(bars_c)
	    bars_c_count = get_count(bars_c)
	    bars_c_sum = get_sum(bars_c)
	    bars_start = hdf5_getters.get_bars_start(h5)
	    bars_start_avg = get_avg(bars_start)
	    bars_start_max= get_max(bars_start)
	    bars_start_min = get_min(bars_start)
	    bars_start_stddev= get_stddev(bars_start)
	    bars_start_count = get_count(bars_start)
	    bars_start_sum = get_sum(bars_start)
            beats_c = hdf5_getters.get_beats_confidence(h5)
            beats_c_avg= get_avg(beats_c)
	    beats_c_max= get_max(beats_c)
	    beats_c_min = get_min(beats_c)
	    beats_c_stddev= get_stddev(beats_c)
	    beats_c_count = get_count(beats_c)
	    beats_c_sum = get_sum(beats_c)
            beats_start = hdf5_getters.get_beats_start(h5)
 	    beats_start_avg = get_avg(beats_start)
	    beats_start_max= get_max(beats_start)
	    beats_start_min = get_min(beats_start)
	    beats_start_stddev= get_stddev(beats_start)
	    beats_start_count = get_count(beats_start)
	    beats_start_sum = get_sum(beats_start)
	    sec_c = hdf5_getters.get_sections_confidence(h5)
            sec_c_avg= get_avg(sec_c)
	    sec_c_max= get_max(sec_c)
	    sec_c_min = get_min(sec_c)
	    sec_c_stddev= get_stddev(sec_c)
	    sec_c_count = get_count(sec_c)
	    sec_c_sum = get_sum(sec_c)
	    sec_start = hdf5_getters.get_sections_start(h5)
            sec_start_avg = get_avg(sec_start)
	    sec_start_max= get_max(sec_start)
	    sec_start_min = get_min(sec_start)
	    sec_start_stddev= get_stddev(sec_start)
	    sec_start_count = get_count(sec_start)
	    sec_start_sum = get_sum(sec_start)
	    seg_c = hdf5_getters.get_segments_confidence(h5)
	    seg_c_avg= get_avg(seg_c)
	    seg_c_max= get_max(seg_c)
	    seg_c_min = get_min(seg_c)
	    seg_c_stddev= get_stddev(seg_c)
	    seg_c_count = get_count(seg_c)
	    seg_c_sum = get_sum(seg_c)
            seg_loud_max = hdf5_getters.get_segments_loudness_max(h5)
            seg_loud_max_avg= get_avg(seg_loud_max)
	    seg_loud_max_max= get_max(seg_loud_max)
	    seg_loud_max_min = get_min(seg_loud_max)
	    seg_loud_max_stddev= get_stddev(seg_loud_max)
	    seg_loud_max_count = get_count(seg_loud_max)
	    seg_loud_max_sum = get_sum(seg_loud_max)
	    seg_loud_max_time = hdf5_getters.get_segments_loudness_max_time(h5)
	    seg_loud_max_time_avg= get_avg(seg_loud_max_time)
	    seg_loud_max_time_max= get_max(seg_loud_max_time)
	    seg_loud_max_time_min = get_min(seg_loud_max_time)
	    seg_loud_max_time_stddev= get_stddev(seg_loud_max_time)
	    seg_loud_max_time_count = get_count(seg_loud_max_time)
	    seg_loud_max_time_sum = get_sum(seg_loud_max_time)
	    seg_loud_start = hdf5_getters.get_segments_loudness_start(h5)
	    seg_loud_start_avg= get_avg(seg_loud_start)
	    seg_loud_start_max= get_max(seg_loud_start)
	    seg_loud_start_min = get_min(seg_loud_start)
	    seg_loud_start_stddev= get_stddev(seg_loud_start)
	    seg_loud_start_count = get_count(seg_loud_start)
	    seg_loud_start_sum = get_sum(seg_loud_start)					      
	    seg_pitch = hdf5_getters.get_segments_pitches(h5)
	    pitch_size = len(seg_pitch)
	    seg_start = hdf5_getters.get_segments_start(h5)
	    seg_start_avg= get_avg(seg_start)
	    seg_start_max= get_max(seg_start)
	    seg_start_min = get_min(seg_start)
	    seg_start_stddev= get_stddev(seg_start)
	    seg_start_count = get_count(seg_start)
	    seg_start_sum = get_sum(seg_start)
	    seg_timbre = hdf5_getters.get_segments_timbre(h5)
	    tatms_c = hdf5_getters.get_tatums_confidence(h5)
	    tatms_c_avg= get_avg(tatms_c)
	    tatms_c_max= get_max(tatms_c)
	    tatms_c_min = get_min(tatms_c)
	    tatms_c_stddev= get_stddev(tatms_c)
	    tatms_c_count = get_count(tatms_c)
	    tatms_c_sum = get_sum(tatms_c)
	    tatms_start = hdf5_getters.get_tatums_start(h5)
	    tatms_start_avg= get_avg(tatms_start)
	    tatms_start_max= get_max(tatms_start)
	    tatms_start_min = get_min(tatms_start)
	    tatms_start_stddev= get_stddev(tatms_start)
	    tatms_start_count = get_count(tatms_start)
	    tatms_start_sum = get_sum(tatms_start)
	
	    #Getting the genres
	    genre_set = 0    #flag to see if the genre has been set or not
	    art_trm = hdf5_getters.get_artist_terms(h5)
	    trm_freq = hdf5_getters.get_artist_terms_freq(h5)
	    trn_wght = hdf5_getters.get_artist_terms_weight(h5)
	    a_mb_tags = hdf5_getters.get_artist_mbtags(h5)
	    genre_indexes=get_genre_indexes(trm_freq) #index of the highest freq
	    final_genre=[]
	    genres_so_far=[]
	    for i in range(len(genre_indexes)):
		    genre_tmp=get_genre(art_trm,genre_indexes[i])   #genre that corresponds to the highest freq
		    genres_so_far=genre_dict.get_genre_in_dict(genre_tmp) #getting the genre from the dictionary
		    if len(genres_so_far) != 0:
			    for i in genres_so_far:
				final_genre.append(i)
				genre_set=1				#genre was found in dictionary
				  
		
	    
	    if genre_set == 1:
		    col_num=[]
		   
		    for genre in final_genre:
			    column=int(genre)				#getting the column number of the genre
			    col_num.append(column)

		    genre_array=genre_columns(col_num)	         #genre array
 	    else:
		    genre_array=genre_columns(-1)		#the genre was not found in the dictionary

	    transpose_pitch= seg_pitch.transpose() #this is to tranpose the matrix,so we can have 12 rows
	    #arrays containing the aggregate values of the 12 rows
	    seg_pitch_avg=[]
	    seg_pitch_max=[]
	    seg_pitch_min=[]
            seg_pitch_stddev=[]
            seg_pitch_count=[]
	    seg_pitch_sum=[]
            i=0
	    #Getting the aggregate values in the pitches array
	    for row in transpose_pitch:
		   seg_pitch_avg.append(get_avg(row))
		   seg_pitch_max.append(get_max(row))
	           seg_pitch_min.append(get_min(row))
		   seg_pitch_stddev.append(get_stddev(row))
		   seg_pitch_count.append(get_count(row))
                   seg_pitch_sum.append(get_sum(row))
		   i=i+1

	    #extracting information from the timbre array 
            transpose_timbre = seg_pitch.transpose() #tranposing matrix, to have 12 rows
	    #arrays containing the aggregate values of the 12 rows
	    seg_timbre_avg=[]
	    seg_timbre_max=[]
	    seg_timbre_min=[]
            seg_timbre_stddev=[]
            seg_timbre_count=[]
	    seg_timbre_sum=[]
            i=0
	    for row in transpose_timbre:
		   seg_timbre_avg.append(get_avg(row))
		   seg_timbre_max.append(get_max(row))
	           seg_timbre_min.append(get_min(row))
		   seg_timbre_stddev.append(get_stddev(row))
		   seg_timbre_count.append(get_count(row))
                   seg_timbre_sum.append(get_sum(row))
		   i=i+1
		


		#Writing to the flat file
            writer.writerow([title,album,artist_name,year,duration,seg_start_count, tempo])

	    h5.close()
	    count=count+1;
	    print count;
コード例 #33
0
def get_all_rows(basedir, ext='.h5'):
    rows = []
    for root, dirs, files in os.walk(basedir):
        files = glob.glob(os.path.join(root, '*' + ext))
        for f in files:
            #            print(os.path.join(root, f))
            h5 = hdf5_getters.open_h5_file_read(f)
            num_songs = hdf5_getters.get_num_songs(h5)
            #            print(num_songs)

            for i in range(num_songs):
                print(i)
                obj = {}
                obj['artist_name'] = hdf5_getters.get_artist_name(
                    h5, i).decode('UTF-8')
                obj['artist_familiarity'] = hdf5_getters.get_artist_familiarity(
                    h5, i)
                obj['artist_hotness'] = hdf5_getters.get_artist_hotttnesss(
                    h5, i)
                obj['artist_id'] = hdf5_getters.get_artist_id(
                    h5, i).decode('UTF-8')
                #                obj['artist_mbid']=hdf5_getters.get_artist_mbid(h5,i).decode('UTF-8')
                obj['artist_playmeid'] = hdf5_getters.get_artist_playmeid(
                    h5, i)
                obj['artist_7digitalid'] = hdf5_getters.get_artist_7digitalid(
                    h5, i)
                #                obj['artist_latitude']=hdf5_getters.get_artist_latitude(h5,i)
                #                obj['artist_longitude']=hdf5_getters.get_artist_longitude(h5,i)
                #                obj['artist_location']=hdf5_getters.get_artist_location(h5,i).decode('UTF-8')
                obj['artist_name'] = hdf5_getters.get_artist_name(
                    h5, i).decode('UTF-8')
                obj['release'] = hdf5_getters.get_release(h5,
                                                          i).decode('UTF-8')
                obj['song_hotttnesss'] = hdf5_getters.get_song_hotttnesss(
                    h5, i)
                obj['title'] = hdf5_getters.get_title(h5, i).decode('UTF-8')

                #            obj['artist_terms']=hdf5_getters.get_artist_terms(h5)
                #                obj['artist_terms_freq']=hdf5_getters.get_artist_terms_freq(h5)
                #                obj['artist_terms_weight']=hdf5_getters.get_artist_terms_weight(h5)
                #            obj['audio_md5']=hdf5_getters.get_audio_md5(h5).decode('UTF-8')
                obj['danceability'] = hdf5_getters.get_danceability(h5, i)
                obj['duration'] = hdf5_getters.get_duration(h5, i)
                obj['end_of_fade_in'] = hdf5_getters.get_end_of_fade_in(h5, i)
                obj['energy'] = hdf5_getters.get_energy(h5, i)
                obj['key'] = hdf5_getters.get_key(h5, i)
                obj['key_confidence'] = hdf5_getters.get_key_confidence(h5, i)
                obj['loudness'] = hdf5_getters.get_loudness(h5, i)
                obj['mode'] = hdf5_getters.get_mode(h5, i)
                #            obj['start_of_fade_out']=hdf5_getters.get_start_of_fade_out(h5)
                obj['tempo'] = hdf5_getters.get_tempo(h5, i)
                obj['time_signature'] = hdf5_getters.get_time_signature(h5, i)
                #            obj['time_signature_confidence']=hdf5_getters.get_time_signature_confidence(h5)
                obj['track_id'] = hdf5_getters.get_track_id(h5,
                                                            i).decode('UTF-8')
                #            obj['segments_start']=hdf5_getters.get_segments_start(h5)
                #            obj['segments_confidence']=hdf5_getters.get_segments_confidence(h5)
                #            obj['segments_pitches']=hdf5_getters.get_segments_pitches(h5)
                #            obj['segments_timbre']=hdf5_getters.get_segments_timbre(h5)
                #            obj['segments_loudness_max']=hdf5_getters.get_segments_loudness_max(h5)
                #            obj['segments_loudness_max_time']=hdf5_getters.get_segments_loudness_max_time(h5)
                #            obj['segments_confidence']=hdf5_getters.get_segments_confidence(h5)
                #            obj['segments_loudness_start']=hdf5_getters.get_segments_loudness_start(h5)
                #            obj['sections_start']=hdf5_getters.get_sections_start(h5)
                #            obj['sections_confidence']=hdf5_getters.get_sections_confidence(h5)
                #            obj['beats_start']=hdf5_getters.get_beats_start(h5)
                #            obj['beats_confidence']=hdf5_getters.get_beats_confidence(h5)
                #            obj['bars_start']=hdf5_getters.get_bars_start(h5)
                #            obj['bars_confidence']=hdf5_getters.get_bars_confidence(h5)
                #            obj['tatums_start']=hdf5_getters.get_tatums_start(h5)
                #            obj['artist_mbtags']=hdf5_getters.get_artist_mbtags(h5)
                #            obj['artist_mbtags_count']=hdf5_getters.get_artist_mbtags_count(h5)
                obj['year'] = hdf5_getters.get_year(h5, i)
                rows.append(obj)
        h5.close()
    return rows
コード例 #34
0
db = MySQLdb.connect(host="localhost",
                     user="******",
                     passwd="password",
                     db="FinalProject")
db.query("DELETE FROM artist WHERE artist_id = 'a';")
cursor = db.cursor(MySQLdb.cursors.DictCursor)

counter = 0
for subdir, dirs, files in os.walk("data/"):
    for file in files:
        f = os.path.join(subdir, file)
        if ".h5" in f:
            h5 = h.open_h5_file_read(f)
            print("----------")
            ''' Store artist tuples '''
            artist_id = h.get_artist_id(h5, 0)
            artist_name = h.get_artist_name(h5, 0)
            artist_name = artist_name.replace("'", "")
            artist_hottness = str(h.get_artist_hotttnesss(h5, 0))
            print artist_hottness
            if artist_hottness == "nan":
                artist_hottness = "0.0"
            artist_familiarity = str(h.get_artist_familiarity(h5, 0))
            if artist_familiarity == "nan":
                artist_familiarity = "0.0"
            cursor.execute("SELECT * FROM artist WHERE artist_id = '" +
                           artist_id + "'")
            rs = cursor.fetchall()
            if cursor.rowcount != 1:
                cursor.execute("INSERT INTO artist VALUES ('" + artist_id +
                               "','" + artist_name + "'," + artist_hottness +
コード例 #35
0
def data_to_flat_file(basedir, ext='.h5'):
    """ This function extracts the information from the tables and creates the flat file. """
    count = 0
    #song counter
    list_to_write = []
    group_index = 0
    row_to_write = ""
    writer = csv.writer(open("complete.csv", "wb"))
    for root, dirs, files in os.walk(basedir):
        files = glob.glob(os.path.join(root, '*' + ext))
        for f in files:
            row = []
            print f
            h5 = hdf5_getters.open_h5_file_read(f)
            title = hdf5_getters.get_title(h5)
            title = title.replace('"', '')
            row.append(title)
            comma = title.find(',')
            if comma != -1:
                print title
                time.sleep(1)
            album = hdf5_getters.get_release(h5)
            album = album.replace('"', '')
            row.append(album)
            comma = album.find(',')
            if comma != -1:
                print album
                time.sleep(1)
            artist_name = hdf5_getters.get_artist_name(h5)
            comma = artist_name.find(',')
            if comma != -1:
                print artist_name
                time.sleep(1)
            artist_name = artist_name.replace('"', '')
            row.append(artist_name)
            duration = hdf5_getters.get_duration(h5)
            row.append(duration)
            samp_rt = hdf5_getters.get_analysis_sample_rate(h5)
            row.append(samp_rt)
            artist_7digitalid = hdf5_getters.get_artist_7digitalid(h5)
            row.append(artist_7digitalid)
            artist_fam = hdf5_getters.get_artist_familiarity(h5)
            #checking if we get a "nan" if we do we change it to -1
            if numpy.isnan(artist_fam) == True:
                artist_fam = -1
            row.append(artist_fam)
            artist_hotness = hdf5_getters.get_artist_hotttnesss(h5)
            #checking if we get a "nan" if we do we change it to -1
            if numpy.isnan(artist_hotness) == True:
                artist_hotness = -1
            row.append(artist_hotness)
            artist_id = hdf5_getters.get_artist_id(h5)
            row.append(artist_id)
            artist_lat = hdf5_getters.get_artist_latitude(h5)
            #checking if we get a "nan" if we do we change it to -1
            if numpy.isnan(artist_lat) == True:
                artist_lat = -1
            row.append(artist_lat)
            artist_loc = hdf5_getters.get_artist_location(h5)
            row.append(artist_loc)
            artist_lon = hdf5_getters.get_artist_longitude(h5)
            #checking if we get a "nan" if we do we change it to -1
            if numpy.isnan(artist_lon) == True:
                artist_lon = -1
            row.append(artist_lon)
            artist_mbid = hdf5_getters.get_artist_mbid(h5)
            row.append(artist_mbid)

            #Getting the genre
            art_trm = hdf5_getters.get_artist_terms(h5)
            trm_freq = hdf5_getters.get_artist_terms_freq(h5)
            trn_wght = hdf5_getters.get_artist_terms_weight(h5)
            a_mb_tags = hdf5_getters.get_artist_mbtags(h5)
            genre_indexes = get_genre_indexes(
                trm_freq)  #index of the highest freq
            genre_set = 0  #flag to see if the genre has been set or not
            final_genre = []
            genres_so_far = []
            for i in range(len(genre_indexes)):
                genre_tmp = get_genre(
                    art_trm, genre_indexes[i]
                )  #genre that corresponds to the highest freq
                genres_so_far = genre_dict.get_genre_in_dict(
                    genre_tmp)  #getting the genre from the dictionary
                if len(genres_so_far) != 0:
                    for i in genres_so_far:
                        final_genre.append(i)
                        genre_set = 1

            if genre_set == 1:
                col_num = []
                for i in final_genre:
                    column = int(i)  #getting the column number of the genre
                    col_num.append(column)

                genre_array = genre_columns(col_num)  #genre array
                for i in range(len(
                        genre_array)):  #appending the genre_array to the row
                    row.append(genre_array[i])
            else:
                genre_array = genre_columns(
                    -1
                )  #when there is no genre matched, return an array of [0...0]
                for i in range(len(
                        genre_array)):  #appending the genre_array to the row
                    row.append(genre_array[i])

            artist_pmid = hdf5_getters.get_artist_playmeid(h5)
            row.append(artist_pmid)
            audio_md5 = hdf5_getters.get_audio_md5(h5)
            row.append(audio_md5)
            danceability = hdf5_getters.get_danceability(h5)
            #checking if we get a "nan" if we do we change it to -1
            if numpy.isnan(danceability) == True:
                danceability = -1
            row.append(danceability)
            end_fade_in = hdf5_getters.get_end_of_fade_in(h5)
            #checking if we get a "nan" if we do we change it to -1
            if numpy.isnan(end_fade_in) == True:
                end_fade_in = -1
            row.append(end_fade_in)
            energy = hdf5_getters.get_energy(h5)
            #checking if we get a "nan" if we do we change it to -1
            if numpy.isnan(energy) == True:
                energy = -1
            row.append(energy)
            song_key = hdf5_getters.get_key(h5)
            row.append(song_key)
            key_c = hdf5_getters.get_key_confidence(h5)
            #checking if we get a "nan" if we do we change it to -1
            if numpy.isnan(key_c) == True:
                key_c = -1
            row.append(key_c)
            loudness = hdf5_getters.get_loudness(h5)
            #checking if we get a "nan" if we do we change it to -1
            if numpy.isnan(loudness) == True:
                loudness = -1
            row.append(loudness)
            mode = hdf5_getters.get_mode(h5)
            row.append(mode)
            mode_conf = hdf5_getters.get_mode_confidence(h5)
            #checking if we get a "nan" if we do we change it to -1
            if numpy.isnan(mode_conf) == True:
                mode_conf = -1
            row.append(mode_conf)
            release_7digitalid = hdf5_getters.get_release_7digitalid(h5)
            row.append(release_7digitalid)
            song_hot = hdf5_getters.get_song_hotttnesss(h5)
            #checking if we get a "nan" if we do we change it to -1
            if numpy.isnan(song_hot) == True:
                song_hot = -1
            row.append(song_hot)
            song_id = hdf5_getters.get_song_id(h5)
            row.append(song_id)
            start_fade_out = hdf5_getters.get_start_of_fade_out(h5)
            row.append(start_fade_out)
            tempo = hdf5_getters.get_tempo(h5)
            #checking if we get a "nan" if we do we change it to -1
            if numpy.isnan(tempo) == True:
                tempo = -1
            row.append(tempo)
            time_sig = hdf5_getters.get_time_signature(h5)
            row.append(time_sig)
            time_sig_c = hdf5_getters.get_time_signature_confidence(h5)
            #checking if we get a "nan" if we do we change it to -1
            if numpy.isnan(time_sig_c) == True:
                time_sig_c = -1
            row.append(time_sig_c)
            track_id = hdf5_getters.get_track_id(h5)
            row.append(track_id)
            track_7digitalid = hdf5_getters.get_track_7digitalid(h5)
            row.append(track_7digitalid)
            year = hdf5_getters.get_year(h5)
            row.append(year)
            bars_c = hdf5_getters.get_bars_confidence(h5)
            bars_start = hdf5_getters.get_bars_start(h5)
            row_bars_padding = padding(
                245
            )  #this is the array that will be attached at the end of th row

            #--------------bars---------------"
            gral_info = []
            gral_info = row[:]
            empty = []
            for i, item in enumerate(bars_c):
                row.append(group_index)
                row.append(i)
                row.append(bars_c[i])
                bars_c_avg = get_avg(bars_c)
                row.append(bars_c_avg)
                bars_c_max = get_max(bars_c)
                row.append(bars_c_max)
                bars_c_min = get_min(bars_c)
                row.append(bars_c_min)
                bars_c_stddev = get_stddev(bars_c)
                row.append(bars_c_stddev)
                bars_c_count = get_count(bars_c)
                row.append(bars_c_count)
                bars_c_sum = get_sum(bars_c)
                row.append(bars_c_sum)
                row.append(bars_start[i])
                bars_start_avg = get_avg(bars_start)
                row.append(bars_start_avg)
                bars_start_max = get_max(bars_start)
                row.append(bars_start_max)
                bars_start_min = get_min(bars_start)
                row.append(bars_start_min)
                bars_start_stddev = get_stddev(bars_start)
                row.append(bars_start_stddev)
                bars_start_count = get_count(bars_start)
                row.append(bars_start_count)
                bars_start_sum = get_sum(bars_start)
                row.append(bars_start_sum)
                for i in row_bars_padding:
                    row.append(i)

                writer.writerow(row)
                row = []
                row = gral_info[:]

    #--------beats---------------"
            beats_c = hdf5_getters.get_beats_confidence(h5)
            group_index = 1
            row = []
            row = gral_info[:]
            row_front = padding(
                14)  #blanks left in front of the row(empty spaces for bars)
            row_beats_padding = padding(231)
            for i, item in enumerate(beats_c):
                row.append(group_index)
                row.append(i)
                for index in row_front:  #padding blanks in front of the beats
                    row.append(index)

                row.append(beats_c[i])
                beats_c_avg = get_avg(beats_c)
                row.append(beats_c_avg)
                beats_c_max = get_max(beats_c)
                row.append(beats_c_max)
                beats_c_min = get_min(beats_c)
                row.append(beats_c_min)
                beats_c_stddev = get_stddev(beats_c)
                row.append(beats_c_stddev)
                beats_c_count = get_count(beats_c)
                row.append(beats_c_count)
                beats_c_sum = get_sum(beats_c)
                row.append(beats_c_sum)
                beats_start = hdf5_getters.get_beats_start(h5)
                row.append(beats_start[i])
                beats_start_avg = get_avg(beats_start)
                row.append(beats_start_avg)
                beats_start_max = get_max(beats_start)
                row.append(beats_start_max)
                beats_start_min = get_min(beats_start)
                row.append(beats_start_min)
                beats_start_stddev = get_stddev(beats_start)
                row.append(beats_start_stddev)
                beats_start_count = get_count(beats_start)
                row.append(beats_start_count)
                beats_start_sum = get_sum(beats_start)
                row.append(beats_start_sum)
                for i in row_beats_padding:
                    row.append(i)

                writer.writerow(row)
                row = []
                row = gral_info[:]

    # "--------sections---------------"
            row_sec_padding = padding(
                217)  #blank spaces left at the end of the row
            sec_c = hdf5_getters.get_sections_confidence(h5)
            group_index = 2
            row = []
            row = gral_info[:]
            row_front = padding(
                28)  #blank spaces left in front(empty spaces for bars,beats)
            for i, item in enumerate(sec_c):
                row.append(group_index)
                row.append(i)
                for index in row_front:  #padding blanks in front of the sections
                    row.append(index)

                row.append(sec_c[i])
                sec_c_avg = get_avg(sec_c)
                row.append(sec_c_avg)
                sec_c_max = get_max(sec_c)
                row.append(sec_c_max)
                sec_c_min = get_min(sec_c)
                row.append(sec_c_min)
                sec_c_stddev = get_stddev(sec_c)
                row.append(sec_c_stddev)
                sec_c_count = get_count(sec_c)
                row.append(sec_c_count)
                sec_c_sum = get_sum(sec_c)
                row.append(sec_c_sum)
                sec_start = hdf5_getters.get_sections_start(h5)
                row.append(sec_start[i])
                sec_start_avg = get_avg(sec_start)
                row.append(sec_start_avg)
                sec_start_max = get_max(sec_start)
                row.append(sec_start_max)
                sec_start_min = get_min(sec_start)
                row.append(sec_start_min)
                sec_start_stddev = get_stddev(sec_start)
                row.append(sec_start_stddev)
                sec_start_count = get_count(sec_start)
                row.append(sec_start_count)
                sec_start_sum = get_sum(sec_start)
                row.append(sec_start_sum)
                for i in row_sec_padding:  #appending the blank spaces at the end of the row
                    row.append(i)

                writer.writerow(row)
                row = []
                row = gral_info[:]

    #--------segments---------------"
            row_seg_padding = padding(182)  #blank spaces at the end of the row
            row_front = padding(42)  #blank spaces left in front of segments
            seg_c = hdf5_getters.get_segments_confidence(h5)
            group_index = 3
            row = []
            row = gral_info[:]
            for i, item in enumerate(seg_c):
                row.append(group_index)
                row.append(i)
                for index in row_front:  #padding blanks in front of the segments
                    row.append(index)

                row.append(seg_c[i])
                seg_c_avg = get_avg(seg_c)
                row.append(seg_c_avg)
                seg_c_max = get_max(seg_c)
                row.append(seg_c_max)
                seg_c_min = get_min(seg_c)
                row.append(seg_c_min)
                seg_c_stddev = get_stddev(seg_c)
                row.append(seg_c_stddev)
                seg_c_count = get_count(seg_c)
                row.append(seg_c_count)
                seg_c_sum = get_sum(seg_c)
                row.append(seg_c_sum)
                seg_loud_max = hdf5_getters.get_segments_loudness_max(h5)
                row.append(seg_loud_max[i])
                seg_loud_max_avg = get_avg(seg_loud_max)
                row.append(seg_loud_max_avg)
                seg_loud_max_max = get_max(seg_loud_max)
                row.append(seg_loud_max_max)
                seg_loud_max_min = get_min(seg_loud_max)
                row.append(seg_loud_max_min)
                seg_loud_max_stddev = get_stddev(seg_loud_max)
                row.append(seg_loud_max_stddev)
                seg_loud_max_count = get_count(seg_loud_max)
                row.append(seg_loud_max_count)
                seg_loud_max_sum = get_sum(seg_loud_max)
                row.append(seg_loud_max_sum)
                seg_loud_max_time = hdf5_getters.get_segments_loudness_max_time(
                    h5)
                row.append(seg_loud_max_time[i])
                seg_loud_max_time_avg = get_avg(seg_loud_max_time)
                row.append(seg_loud_max_time_avg)
                seg_loud_max_time_max = get_max(seg_loud_max_time)
                row.append(seg_loud_max_time_max)
                seg_loud_max_time_min = get_min(seg_loud_max_time)
                row.append(seg_loud_max_time_min)
                seg_loud_max_time_stddev = get_stddev(seg_loud_max_time)
                row.append(seg_loud_max_time_stddev)
                seg_loud_max_time_count = get_count(seg_loud_max_time)
                row.append(seg_loud_max_time_count)
                seg_loud_max_time_sum = get_sum(seg_loud_max_time)
                row.append(seg_loud_max_time_sum)
                seg_loud_start = hdf5_getters.get_segments_loudness_start(h5)
                row.append(seg_loud_start[i])
                seg_loud_start_avg = get_avg(seg_loud_start)
                row.append(seg_loud_start_avg)
                seg_loud_start_max = get_max(seg_loud_start)
                row.append(seg_loud_start_max)
                seg_loud_start_min = get_min(seg_loud_start)
                row.append(seg_loud_start_min)
                seg_loud_start_stddev = get_stddev(seg_loud_start)
                row.append(seg_loud_start_stddev)
                seg_loud_start_count = get_count(seg_loud_start)
                row.append(seg_loud_start_count)
                seg_loud_start_sum = get_sum(seg_loud_start)
                row.append(seg_loud_start_sum)
                seg_start = hdf5_getters.get_segments_start(h5)
                row.append(seg_start[i])
                seg_start_avg = get_avg(seg_start)
                row.append(seg_start_avg)
                seg_start_max = get_max(seg_start)
                row.append(seg_start_max)
                seg_start_min = get_min(seg_start)
                row.append(seg_start_min)
                seg_start_stddev = get_stddev(seg_start)
                row.append(seg_start_stddev)
                seg_start_count = get_count(seg_start)
                row.append(seg_start_count)
                seg_start_sum = get_sum(seg_start)
                row.append(seg_start_sum)
                for i in row_seg_padding:  #appending blank spaces at the end of the row
                    row.append(i)

                writer.writerow(row)
                row = []
                row = gral_info[:]

            #----------segments pitch and timbre---------------"
            row_seg2_padding = padding(
                14)  #blank spaces left at the end of the row
            row_front = padding(
                77)  #blank spaces left at the front of the segments and timbre
            seg_pitch = hdf5_getters.get_segments_pitches(h5)
            transpose_pitch = seg_pitch.transpose(
            )  #this is to tranpose the matrix,so we can have 12 rows
            group_index = 4
            row = []
            row = gral_info[:]
            for i, item in enumerate(transpose_pitch[0]):
                row.append(group_index)
                row.append(i)
                for index in row_front:  #padding blanks in front of segments and timbre
                    row.append(index)

                row.append(transpose_pitch[0][i])
                seg_pitch_avg = get_avg(transpose_pitch[0])
                row.append(seg_pitch_avg)
                seg_pitch_max = get_max(transpose_pitch[0])
                row.append(seg_pitch_max)
                seg_pitch_min = get_min(transpose_pitch[0])
                row.append(seg_pitch_min)
                seg_pitch_stddev = get_stddev(transpose_pitch[0])
                row.append(seg_pitch_stddev)
                seg_pitch_count = get_count(transpose_pitch[0])
                row.append(seg_pitch_count)
                seg_pitch_sum = get_sum(transpose_pitch[0])
                row.append(seg_pitch_sum)
                row.append(transpose_pitch[1][i])
                seg_pitch_avg = get_avg(transpose_pitch[1])
                row.append(seg_pitch_avg)
                seg_pitch_max = get_max(transpose_pitch[1])
                row.append(seg_pitch_max)
                seg_pitch_min = get_min(transpose_pitch[1])
                row.append(seg_pitch_min)
                seg_pitch_stddev = get_stddev(transpose_pitch[1])
                row.append(seg_pitch_stddev)
                seg_pitch_count = get_count(transpose_pitch[1])
                row.append(seg_pitch_count)
                seg_pitch_sum = get_sum(transpose_pitch[1])
                row.append(seg_pitch_sum)
                row.append(transpose_pitch[2][i])
                seg_pitch_avg = get_avg(transpose_pitch[2])
                row.append(seg_pitch_avg)
                seg_pitch_max = get_max(transpose_pitch[2])
                row.append(seg_pitch_max)
                seg_pitch_min = get_min(transpose_pitch[2])
                row.append(seg_pitch_min)
                seg_pitch_stddev = get_stddev(transpose_pitch[2])
                row.append(seg_pitch_stddev)
                seg_pitch_count = get_count(transpose_pitch[2])
                row.append(seg_pitch_count)
                seg_pitch_sum = get_sum(transpose_pitch[2])
                row.append(seg_pitch_sum)
                row.append(transpose_pitch[3][i])
                seg_pitch_avg = get_avg(transpose_pitch[3])
                row.append(seg_pitch_avg)
                seg_pitch_max = get_max(transpose_pitch[3])
                row.append(seg_pitch_max)
                seg_pitch_min = get_min(transpose_pitch[3])
                row.append(seg_pitch_min)
                seg_pitch_stddev = get_stddev(transpose_pitch[3])
                row.append(seg_pitch_stddev)
                seg_pitch_count = get_count(transpose_pitch[3])
                row.append(seg_pitch_count)
                seg_pitch_sum = get_sum(transpose_pitch[3])
                row.append(seg_pitch_sum)
                row.append(transpose_pitch[4][i])
                seg_pitch_avg = get_avg(transpose_pitch[4])
                row.append(seg_pitch_avg)
                seg_pitch_max = get_max(transpose_pitch[4])
                row.append(seg_pitch_max)
                seg_pitch_min = get_min(transpose_pitch[4])
                row.append(seg_pitch_min)
                seg_pitch_stddev = get_stddev(transpose_pitch[4])
                row.append(seg_pitch_stddev)
                seg_pitch_count = get_count(transpose_pitch[4])
                row.append(seg_pitch_count)
                seg_pitch_sum = get_sum(transpose_pitch[4])
                row.append(seg_pitch_sum)
                row.append(transpose_pitch[5][i])
                seg_pitch_avg = get_avg(transpose_pitch[5])
                row.append(seg_pitch_avg)
                seg_pitch_max = get_max(transpose_pitch[5])
                row.append(seg_pitch_max)
                seg_pitch_min = get_min(transpose_pitch[5])
                row.append(seg_pitch_min)
                seg_pitch_stddev = get_stddev(transpose_pitch[5])
                row.append(seg_pitch_stddev)
                seg_pitch_count = get_count(transpose_pitch[5])
                row.append(seg_pitch_count)
                seg_pitch_sum = get_sum(transpose_pitch[5])
                row.append(seg_pitch_sum)
                row.append(transpose_pitch[6][i])
                seg_pitch_avg = get_avg(transpose_pitch[6])
                row.append(seg_pitch_avg)
                seg_pitch_max = get_max(transpose_pitch[6])
                row.append(seg_pitch_max)
                seg_pitch_min = get_min(transpose_pitch[6])
                row.append(seg_pitch_min)
                seg_pitch_stddev = get_stddev(transpose_pitch[6])
                row.append(seg_pitch_stddev)
                seg_pitch_count = get_count(transpose_pitch[6])
                row.append(seg_pitch_count)
                seg_pitch_sum = get_sum(transpose_pitch[6])
                row.append(seg_pitch_sum)
                row.append(transpose_pitch[7][i])
                seg_pitch_avg = get_avg(transpose_pitch[7])
                row.append(seg_pitch_avg)
                seg_pitch_max = get_max(transpose_pitch[7])
                row.append(seg_pitch_max)
                seg_pitch_min = get_min(transpose_pitch[7])
                row.append(seg_pitch_min)
                seg_pitch_stddev = get_stddev(transpose_pitch[7])
                row.append(seg_pitch_stddev)
                seg_pitch_count = get_count(transpose_pitch[7])
                row.append(seg_pitch_count)
                seg_pitch_sum = get_sum(transpose_pitch[7])
                row.append(seg_pitch_sum)
                row.append(transpose_pitch[8][i])
                seg_pitch_avg = get_avg(transpose_pitch[8])
                row.append(seg_pitch_avg)
                seg_pitch_max = get_max(transpose_pitch[8])
                row.append(seg_pitch_max)
                seg_pitch_min = get_min(transpose_pitch[8])
                row.append(seg_pitch_min)
                seg_pitch_stddev = get_stddev(transpose_pitch[8])
                row.append(seg_pitch_stddev)
                seg_pitch_count = get_count(transpose_pitch[8])
                row.append(seg_pitch_count)
                seg_pitch_sum = get_sum(transpose_pitch[8])
                row.append(seg_pitch_sum)
                row.append(transpose_pitch[9][i])
                seg_pitch_avg = get_avg(transpose_pitch[9])
                row.append(seg_pitch_avg)
                seg_pitch_max = get_max(transpose_pitch[9])
                row.append(seg_pitch_max)
                seg_pitch_min = get_min(transpose_pitch[9])
                row.append(seg_pitch_min)
                seg_pitch_stddev = get_stddev(transpose_pitch[9])
                row.append(seg_pitch_stddev)
                seg_pitch_count = get_count(transpose_pitch[9])
                row.append(seg_pitch_count)
                seg_pitch_sum = get_sum(transpose_pitch[9])
                row.append(seg_pitch_sum)
                row.append(transpose_pitch[10][i])
                seg_pitch_avg = get_avg(transpose_pitch[10])
                row.append(seg_pitch_avg)
                seg_pitch_max = get_max(transpose_pitch[10])
                row.append(seg_pitch_max)
                seg_pitch_min = get_min(transpose_pitch[10])
                row.append(seg_pitch_min)
                seg_pitch_stddev = get_stddev(transpose_pitch[10])
                row.append(seg_pitch_stddev)
                seg_pitch_count = get_count(transpose_pitch[10])
                row.append(seg_pitch_count)
                seg_pitch_sum = get_sum(transpose_pitch[10])
                row.append(seg_pitch_sum)
                row.append(transpose_pitch[11][i])
                seg_pitch_avg = get_avg(transpose_pitch[11])
                row.append(seg_pitch_avg)
                seg_pitch_max = get_max(transpose_pitch[11])
                row.append(seg_pitch_max)
                seg_pitch_min = get_min(transpose_pitch[11])
                row.append(seg_pitch_min)
                seg_pitch_stddev = get_stddev(transpose_pitch[11])
                row.append(seg_pitch_stddev)
                seg_pitch_count = get_count(transpose_pitch[11])
                row.append(seg_pitch_count)
                seg_pitch_sum = get_sum(transpose_pitch[11])
                row.append(seg_pitch_sum)
                #timbre arrays
                seg_timbre = hdf5_getters.get_segments_timbre(h5)
                transpose_timbre = seg_pitch.transpose(
                )  #tranposing matrix, to have 12 rows
                row.append(transpose_timbre[0][i])
                seg_timbre_avg = get_avg(transpose_timbre[0])
                row.append(seg_timbre_avg)
                seg_timbre_max = get_max(transpose_timbre[0])
                row.append(seg_timbre_max)
                seg_timbre_min = get_min(transpose_timbre[0])
                row.append(seg_timbre_min)
                seg_timbre_stddev = get_stddev(transpose_timbre[0])
                row.append(seg_timbre_stddev)
                seg_timbre_count = get_count(transpose_timbre[0])
                row.append(seg_timbre_count)
                seg_timbre_sum = get_sum(transpose_timbre[0])
                row.append(seg_timbre_sum)
                row.append(transpose_timbre[1][i])
                seg_timbre_avg = get_avg(transpose_timbre[1])
                row.append(seg_timbre_avg)
                seg_timbre_max = get_max(transpose_timbre[1])
                row.append(seg_timbre_max)
                seg_timbre_min = get_min(transpose_timbre[1])
                row.append(seg_timbre_min)
                seg_timbre_stddev = get_stddev(transpose_timbre[1])
                row.append(seg_timbre_stddev)
                seg_timbre_count = get_count(transpose_timbre[1])
                row.append(seg_timbre_count)
                seg_timbre_sum = get_sum(transpose_timbre[1])
                row.append(seg_timbre_sum)
                row.append(transpose_timbre[2][i])
                seg_timbre_avg = get_avg(transpose_timbre[2])
                row.append(seg_timbre_avg)
                seg_timbre_max = get_max(transpose_timbre[2])
                row.append(seg_timbre_max)
                seg_timbre_min = get_min(transpose_timbre[2])
                row.append(seg_timbre_min)
                seg_timbre_stddev = get_stddev(transpose_timbre[2])
                row.append(seg_timbre_stddev)
                seg_timbre_count = get_count(transpose_timbre[2])
                row.append(seg_timbre_count)
                seg_timbre_sum = get_sum(transpose_timbre[2])
                row.append(seg_timbre_sum)

                row.append(transpose_timbre[3][i])
                seg_timbre_avg = get_avg(transpose_timbre[3])
                row.append(seg_timbre_avg)
                seg_timbre_max = get_max(transpose_timbre[3])
                row.append(seg_timbre_max)
                seg_timbre_min = get_min(transpose_timbre[3])
                row.append(seg_timbre_min)
                seg_timbre_stddev = get_stddev(transpose_timbre[3])
                row.append(seg_timbre_stddev)
                seg_timbre_count = get_count(transpose_timbre[3])
                row.append(seg_timbre_count)
                seg_timbre_sum = get_sum(transpose_timbre[3])
                row.append(seg_timbre_sum)

                row.append(transpose_timbre[4][i])
                seg_timbre_avg = get_avg(transpose_timbre[4])
                row.append(seg_timbre_avg)
                seg_timbre_max = get_max(transpose_timbre[4])
                row.append(seg_timbre_max)
                seg_timbre_min = get_min(transpose_timbre[4])
                row.append(seg_timbre_min)
                seg_timbre_stddev = get_stddev(transpose_timbre[4])
                row.append(seg_timbre_stddev)
                seg_timbre_count = get_count(transpose_timbre[4])
                row.append(seg_timbre_count)
                seg_timbre_sum = get_sum(transpose_timbre[4])
                row.append(seg_timbre_sum)

                row.append(transpose_timbre[5][i])
                seg_timbre_avg = get_avg(transpose_timbre[5])
                row.append(seg_timbre_avg)
                seg_timbre_max = get_max(transpose_timbre[5])
                row.append(seg_timbre_max)
                seg_timbre_min = get_min(transpose_timbre[5])
                row.append(seg_timbre_min)
                seg_timbre_stddev = get_stddev(transpose_timbre[5])
                row.append(seg_timbre_stddev)
                seg_timbre_count = get_count(transpose_timbre[5])
                row.append(seg_timbre_count)
                seg_timbre_sum = get_sum(transpose_timbre[5])
                row.append(seg_timbre_sum)

                row.append(transpose_timbre[6][i])
                seg_timbre_avg = get_avg(transpose_timbre[6])
                row.append(seg_timbre_avg)
                seg_timbre_max = get_max(transpose_timbre[6])
                row.append(seg_timbre_max)
                seg_timbre_min = get_min(transpose_timbre[6])
                row.append(seg_timbre_min)
                seg_timbre_stddev = get_stddev(transpose_timbre[6])
                row.append(seg_timbre_stddev)
                seg_timbre_count = get_count(transpose_timbre[6])
                row.append(seg_timbre_count)
                seg_timbre_sum = get_sum(transpose_timbre[6])
                row.append(seg_timbre_sum)

                row.append(transpose_timbre[7][i])
                seg_timbre_avg = get_avg(transpose_timbre[7])
                row.append(seg_timbre_avg)
                seg_timbre_max = get_max(transpose_timbre[7])
                row.append(seg_timbre_max)
                seg_timbre_min = get_min(transpose_timbre[7])
                row.append(seg_timbre_min)
                seg_timbre_stddev = get_stddev(transpose_timbre[7])
                row.append(seg_timbre_stddev)
                seg_timbre_count = get_count(transpose_timbre[7])
                row.append(seg_timbre_count)
                seg_timbre_sum = get_sum(transpose_timbre[7])
                row.append(seg_timbre_sum)

                row.append(transpose_timbre[8][i])
                seg_timbre_avg = get_avg(transpose_timbre[8])
                row.append(seg_timbre_avg)
                seg_timbre_max = get_max(transpose_timbre[8])
                row.append(seg_timbre_max)
                seg_timbre_min = get_min(transpose_timbre[8])
                row.append(seg_timbre_min)
                seg_timbre_stddev = get_stddev(transpose_timbre[8])
                row.append(seg_timbre_stddev)
                seg_timbre_count = get_count(transpose_timbre[8])
                row.append(seg_timbre_count)
                seg_timbre_sum = get_sum(transpose_timbre[8])
                row.append(seg_timbre_sum)

                row.append(transpose_timbre[9][i])
                seg_timbre_avg = get_avg(transpose_timbre[9])
                row.append(seg_timbre_avg)
                seg_timbre_max = get_max(transpose_timbre[9])
                row.append(seg_timbre_max)
                seg_timbre_min = get_min(transpose_timbre[9])
                row.append(seg_timbre_min)
                seg_timbre_stddev = get_stddev(transpose_timbre[9])
                row.append(seg_timbre_stddev)
                seg_timbre_count = get_count(transpose_timbre[9])
                row.append(seg_timbre_count)
                seg_timbre_sum = get_sum(transpose_timbre[9])
                row.append(seg_timbre_sum)

                row.append(transpose_timbre[10][i])
                seg_timbre_avg = get_avg(transpose_timbre[10])
                row.append(seg_timbre_avg)
                seg_timbre_max = get_max(transpose_timbre[10])
                row.append(seg_timbre_max)
                seg_timbre_min = get_min(transpose_timbre[10])
                row.append(seg_timbre_min)
                seg_timbre_stddev = get_stddev(transpose_timbre[10])
                row.append(seg_timbre_stddev)
                seg_timbre_count = get_count(transpose_timbre[10])
                row.append(seg_timbre_count)
                seg_timbre_sum = get_sum(transpose_timbre[10])
                row.append(seg_timbre_sum)

                row.append(transpose_timbre[11][i])
                seg_timbre_avg = get_avg(transpose_timbre[11])
                row.append(seg_timbre_avg)
                seg_timbre_max = get_max(transpose_timbre[11])
                row.append(seg_timbre_max)
                seg_timbre_min = get_min(transpose_timbre[11])
                row.append(seg_timbre_min)
                seg_timbre_stddev = get_stddev(transpose_timbre[11])
                row.append(seg_timbre_stddev)
                seg_timbre_count = get_count(transpose_timbre[11])
                row.append(seg_timbre_count)
                seg_timbre_sum = get_sum(transpose_timbre[11])
                row.append(seg_timbre_sum)
                for item in row_seg2_padding:
                    row.append(item)
                writer.writerow(row)
                row = []
                row = gral_info[:]

    # "--------tatums---------------"
            tatms_c = hdf5_getters.get_tatums_confidence(h5)
            group_index = 5
            row_front = padding(245)  #blank spaces left in front of tatums
            row = []
            row = gral_info[:]
            for i, item in enumerate(tatms_c):
                row.append(group_index)
                row.append(i)
                for item in row_front:  #appending blank spaces at the front of the row
                    row.append(item)

                row.append(tatms_c[i])
                tatms_c_avg = get_avg(tatms_c)
                row.append(tatms_c_avg)
                tatms_c_max = get_max(tatms_c)
                row.append(tatms_c_max)
                tatms_c_min = get_min(tatms_c)
                row.append(tatms_c_min)
                tatms_c_stddev = get_stddev(tatms_c)
                row.append(tatms_c_stddev)
                tatms_c_count = get_count(tatms_c)
                row.append(tatms_c_count)
                tatms_c_sum = get_sum(tatms_c)
                row.append(tatms_c_sum)
                tatms_start = hdf5_getters.get_tatums_start(h5)
                row.append(tatms_start[i])
                tatms_start_avg = get_avg(tatms_start)
                row.append(tatms_start_avg)
                tatms_start_max = get_max(tatms_start)
                row.append(tatms_start_max)
                tatms_start_min = get_min(tatms_start)
                row.append(tatms_start_min)
                tatms_start_stddev = get_stddev(tatms_start)
                row.append(tatms_start_stddev)
                tatms_start_count = get_count(tatms_start)
                row.append(tatms_start_count)
                tatms_start_sum = get_sum(tatms_start)
                row.append(tatms_start_sum)
                writer.writerow(row)
                row = []
                row = gral_info[:]

            transpose_pitch = seg_pitch.transpose(
            )  #this is to tranpose the matrix,so we can have 12 rows
            #arrays containing the aggregate values of the 12 rows
            seg_pitch_avg = []
            seg_pitch_max = []
            seg_pitch_min = []
            seg_pitch_stddev = []
            seg_pitch_count = []
            seg_pitch_sum = []
            i = 0
            #Getting the aggregate values in the pitches array
            for row in transpose_pitch:
                seg_pitch_avg.append(get_avg(row))
                seg_pitch_max.append(get_max(row))
                seg_pitch_min.append(get_min(row))
                seg_pitch_stddev.append(get_stddev(row))
                seg_pitch_count.append(get_count(row))
                seg_pitch_sum.append(get_sum(row))
                i = i + 1

            #extracting information from the timbre array
            transpose_timbre = seg_pitch.transpose(
            )  #tranposing matrix, to have 12 rows
            #arrays containing the aggregate values of the 12 rows
            seg_timbre_avg = []
            seg_timbre_max = []
            seg_timbre_min = []
            seg_timbre_stddev = []
            seg_timbre_count = []
            seg_timbre_sum = []
            i = 0
            for row in transpose_timbre:
                seg_timbre_avg.append(get_avg(row))
                seg_timbre_max.append(get_max(row))
                seg_timbre_min.append(get_min(row))
                seg_timbre_stddev.append(get_stddev(row))
                seg_timbre_count.append(get_count(row))
                seg_timbre_sum.append(get_sum(row))
                i = i + 1

            h5.close()
            count = count + 1
            print count
コード例 #36
0

db = MySQLdb.connect(host="localhost",user="******",passwd="password",db="FinalProject")
db.query("DELETE FROM artist WHERE artist_id = 'a';")
cursor = db.cursor(MySQLdb.cursors.DictCursor)

counter = 0
for subdir, dirs, files in os.walk("data/"):
    for file in files:
        f = os.path.join(subdir, file)
        if ".h5" in f:
            h5 = h.open_h5_file_read(f)
            print ("----------")
            
            ''' Store artist tuples '''
            artist_id = h.get_artist_id(h5,0)
            artist_name = h.get_artist_name(h5,0)
            artist_name = artist_name.replace("'","")
            artist_hottness = str(h.get_artist_hotttnesss(h5,0))
            print artist_hottness
            if artist_hottness == "nan":
                artist_hottness = "0.0"
            artist_familiarity = str(h.get_artist_familiarity(h5,0))
            if artist_familiarity == "nan":
                artist_familiarity = "0.0"
            cursor.execute("SELECT * FROM artist WHERE artist_id = '" + artist_id  + "'")
            rs = cursor.fetchall()
            if cursor.rowcount != 1:
                cursor.execute("INSERT INTO artist VALUES ('" + artist_id + "','" + artist_name  + "'," + artist_hottness + "," + artist_familiarity + ");")
            
            ''' Store artist_genres tuples '''            
コード例 #37
0
                outputFile1 = open(
                    os.path.join(output_dir,
                                 base_file_name).format(file_counter), 'w')
                writeheader(outputFile1, csvHeaderString)

            songH5File = hdf5_getters.open_h5_file_read(f)
            song = Song(str(hdf5_getters.get_song_id(songH5File)))

            testDanceability = hdf5_getters.get_danceability(songH5File)
            # print type(testDanceability)
            # print ("Here is the danceability: ") + str(testDanceability)

            song.artistName = remove_trap_characters(
                str(hdf5_getters.get_artist_name(songH5File)))
            song.artistID = remove_trap_characters(
                str(hdf5_getters.get_artist_id(songH5File)))
            song.albumID = remove_trap_characters(
                str(hdf5_getters.get_release_7digitalid(songH5File)))
            song.artistLatitude = remove_trap_characters(
                str(hdf5_getters.get_artist_latitude(songH5File)))
            # Replace the comma in the location (if there is one), since this will displace the entire row
            song.artistLocation = remove_trap_characters(
                str(hdf5_getters.get_artist_location(songH5File))).replace(
                    ',', ':')
            song.artistLongitude = remove_trap_characters(
                str(hdf5_getters.get_artist_longitude(songH5File)))
            song.artistFamiliarity = remove_trap_characters(
                str(hdf5_getters.get_artist_familiarity(songH5File)))
            song.artistHotttnesss = remove_trap_characters(
                str(hdf5_getters.get_artist_hotttnesss(songH5File)))
            song.artistmbid = remove_trap_characters(