def get_all_titles(basedir,targetdir,ext='.h5') : global cap decadecount = defaultdict(int) i = 0 for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root,'*'+ext)) for f in files: h5 = hdf5_getters.open_h5_file_read(f) year = hdf5_getters.get_year(h5) print i i+=1 if year == 0: h5.close() continue label = getbin(year) if decadecount[label] > cap: flag = checkforcompletion(decadecount) h5.close() if flag: # All the bins have exceeded their count. We can proceed with the training return decadecount continue # Copy files copy(f,targetdir) decadecount[label] += 1 h5.close() return decadecount
def extract_features(filename): h5 = hdf5_getters.open_h5_file_read(filename) f = [None] * len(features) f[features.index('track_id')] = hdf5_getters.get_track_id(h5, 0).item() f[features.index('song_id')] = hdf5_getters.get_song_id(h5, 0).item() f[features.index('hotttnesss')] = hdf5_getters.get_artist_hotttnesss( h5, 0).item() f[features.index('danceability')] = hdf5_getters.get_danceability( h5, 0).item() f[features.index('duration')] = hdf5_getters.get_duration(h5, 0).item() f[features.index('key')] = hdf5_getters.get_key(h5, 0).item() f[features.index('energy')] = hdf5_getters.get_energy(h5, 0).item() f[features.index('loudness')] = hdf5_getters.get_loudness(h5, 0).item() f[features.index('year')] = hdf5_getters.get_year(h5, 0).item() f[features.index('time_signature')] = hdf5_getters.get_time_signature( h5, 0).item() f[features.index('tempo')] = hdf5_getters.get_tempo(h5, 0).item() tags = '' for tag in hdf5_getters.get_artist_terms(h5): tags += ('%s|' % tag) # Remove trailing pipe. tags = tags[:len(tags) - 1] f[features.index('tags')] = tags h5.close() return f
def feat_from_file(path): feats = [] h5 = GETTERS.open_h5_file_read(path) feats.append( GETTERS.get_track_id(h5) ) feats.append( GETTERS.get_title(h5) ) feats.append( GETTERS.get_artist_name(h5) ) feats.append( GETTERS.get_year(h5) ) feats.append( GETTERS.get_loudness(h5) ) feats.append( GETTERS.get_tempo(h5) ) feats.append( GETTERS.get_time_signature(h5) ) feats.append( GETTERS.get_key(h5) ) feats.append( GETTERS.get_mode(h5) ) feats.append( GETTERS.get_duration(h5) ) #timbre timbre = GETTERS.get_segments_timbre(h5) avg_timbre = np.average(timbre, axis=0) for k in avg_timbre: feats.append(k) var_timbre = np.var(timbre, axis=0) for k in var_timbre: feats.append(k) h5.close() return feats
def func_to_extract_features(filename): """ This function extracts all features: per-track, per-section and per-segment """ # - open the song file h5 = GETTERS.open_h5_file_read(filename) # - get per-track features and put them artist_id = GETTERS.get_artist_id(h5) song_id = GETTERS.get_song_id(h5) artist_familiarity = GETTERS.get_artist_familiarity(h5) artist_hotttnesss = GETTERS.get_artist_hotttnesss(h5) artist_latitude = GETTERS.get_artist_latitude(h5) artist_longitude = GETTERS.get_artist_longitude(h5) danceability = GETTERS.get_danceability(h5) energy = GETTERS.get_energy(h5) loudness = GETTERS.get_loudness(h5) song_hotttnesss = GETTERS.get_song_hotttnesss(h5) tempo = GETTERS.get_tempo(h5) year = GETTERS.get_year(h5) # artist_ids.add(artist_id) # features_tuple = (artist_id, artist_familiarity, artist_hotttnesss, artist_latitude, artist_longitude, danceability, energy, loudness, song_hotttnesss, tempo, year) features_tuple = (artist_id, artist_familiarity, artist_hotttnesss, loudness, song_hotttnesss, tempo, year) # print features_tuple features_tuples[song_id] = features_tuple # files_per_artist[artist_id] += 1 # - close the file h5.close()
def get_all_examples(basedir, genre_dict, ext='.h5'): """ From a base directory, goes through all subdirectories, and grabs all songs and their features and puts them into a pandas dataframe INPUT basedir - base directory of the dataset genre_dict - a dictionary mapping track id to genre based tagraum dataset ext - extension, .h5 by default RETURN dataframe containing all song examples """ features_vs_genre = pd.DataFrame() # iterate over all files in all subdirectories for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root, '*' + ext)) # # count files # count += len(files) # apply function to all files for f in files: h5 = GETTERS.open_h5_file_read(f) song_id = GETTERS.get_track_id(h5).decode('utf-8') if (song_id in genre_dict): genre = genre_dict[song_id] year = GETTERS.get_year(h5) duration = GETTERS.get_duration(h5) end_of_fade_in = GETTERS.get_end_of_fade_in(h5) loudness = GETTERS.get_loudness(h5) song_hotttnesss = GETTERS.get_song_hotttnesss(h5) tempo = GETTERS.get_tempo(h5) key = GETTERS.get_key(h5) key_confidence = GETTERS.get_key_confidence(h5) mode = GETTERS.get_mode(h5) mode_confidence = GETTERS.get_mode_confidence(h5) time_signature = GETTERS.get_time_signature(h5) time_signature_confidence = GETTERS.get_time_signature_confidence( h5) artist_name = GETTERS.get_artist_name(h5) title = GETTERS.get_title(h5) # length of sections_start array gives us number of start num_sections = len(GETTERS.get_sections_start(h5)) num_segments = len(GETTERS.get_segments_confidence(h5)) example = pd.DataFrame( data=[ (artist_name, title, song_id, genre, year, key, key_confidence, mode, mode_confidence, time_signature, time_signature_confidence, duration, end_of_fade_in, loudness, song_hotttnesss, tempo, num_sections) ], columns=[ 'artist_name', 'title', 'song_id', 'genre', 'year', 'key', 'key_confidence', 'mode', 'mode_confidence', 'time_signature', 'time_signature_confidence', 'duration', 'end_of_fade_in', 'loudness', 'song_hotttnesss', 'tempo', 'num_segments' ]) features_vs_genre = features_vs_genre.append(example) h5.close() return features_vs_genre
def func_to_desired_song_data(filename): h5 = GETTERS.open_h5_file_read(filename) track_id = GETTERS.get_track_id(h5) for song in random_songs: if song[0] == track_id: print("FOUND ONE!") title = replace_characters(GETTERS.get_title(h5)) artist = replace_characters(GETTERS.get_artist_name(h5)) year = GETTERS.get_year(h5) tempo = GETTERS.get_tempo(h5) key = GETTERS.get_key(h5) loudness = GETTERS.get_loudness(h5) energy = GETTERS.get_energy(h5) danceability = GETTERS.get_danceability(h5) time_signature = GETTERS.get_time_signature(h5) mode = GETTERS.get_mode(h5) hotttness = GETTERS.get_song_hotttnesss(h5) song_data = { 'title': title, 'artist': artist, 'year': year, 'tempo': tempo, 'key': key, 'loudness': loudness, 'energy': energy, 'danceability': danceability, 'time_signature': time_signature, 'mode': mode, 'hotttness': hotttness } all_the_data.append(song_data) h5.close()
def load_raw_data(): years = [] timbres = [] pitches = [] min_length = 10000 num = 0 for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root, '*' + ext)) for f in files: h5 = getter.open_h5_file_read(f) num += 1 print(num) try: year = getter.get_year(h5) if year != 0: timbre = getter.get_segments_timbre(h5) s = np.size(timbre, 0) if s >= 100: if s < min_length: min_length = s pitch = getter.get_segments_pitches(h5) years.append(year) timbres.append(timbre) pitches.append(pitch) except: print(1) h5.close() return years, timbres, pitches, min_length
def parse_songs(directory): global count global MAX_SONGS for filename in os.listdir(directory): if count >= MAX_SONGS: return file_path = os.path.join(directory, filename) if os.path.isdir(file_path): parse_songs(file_path) else: count += 1 if count % 100 == 0: print('Parsed ' + str(count) + ' songs') with hdf5_getters.open_h5_file_read(file_path) as h5: for i in range(hdf5_getters.get_num_songs(h5)): title = hdf5_getters.get_title(h5, i).decode('UTF-8') year = hdf5_getters.get_year(h5, i).item() danceability = hdf5_getters.get_danceability(h5, i).item() tags = hdf5_getters.get_artist_mbtags(h5, i).tolist() genres = [tag.decode('UTF-8') for tag in tags] tempo = hdf5_getters.get_tempo(h5, i).item() song = { 'title': title, 'year': year, 'danceability': danceability, 'genres': genres, 'tempo': tempo } song = os.path.splitext(filename) with open( "/home/ubuntu/million_songs/parsed_data/" + song[0] + '.json', 'w') as fp: json.dump(song, fp)
def load_non_time_data(): years = [] ten_features=[] num = 0 for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root,'*'+ext)) for f in files: h5 = getter.open_h5_file_read(f) num += 1 print(num) try: year = getter.get_year(h5) if year!=0: years.append(year) title_length = len(getter.get_title(h5)) terms_length = len(getter.get_artist_terms(h5)) tags_length = len(getter.get_artist_mbtags(h5)) hotness = getter.get_artist_hotttnesss(h5) duration = getter.get_duration(h5) loudness = getter.get_loudness(h5) mode = getter.get_mode(h5) release_length = len(getter.get_release(h5)) tempo = getter.get_tempo(h5) name_length = len(getter.get_artist_name(h5)) ten_feature = np.hstack([title_length,tags_length, hotness, duration, terms_length, loudness, mode, release_length, tempo, name_length]) ten_features.append(ten_feature) except: print(1) h5.close() return years,ten_features
def create_songdet(h5, sngidxfle): ''' Collects song details for all unique songs heard by 100 raters. Format of dictionary: { SongID : [ Att_0, Att_1, Att_2 ] } ''' import hdf5_getters sngdetfle = open("songdet.txt", "wb") sngdetdic = dict() sngidxfle = open(sngidxfle, "rb") sngidxdic = pickle.load(sngidxfle) for elem in sngidxdic: songidx = sngidxdic[elem] tempo = hdf5_getters.get_tempo(h5, songidx) loud = hdf5_getters.get_loudness(h5, songidx) year = hdf5_getters.get_year(h5, songidx) tmsig = hdf5_getters.get_time_signature(h5, songidx) key = hdf5_getters.get_key(h5, songidx) mode = hdf5_getters.get_mode(h5, songidx) duration = hdf5_getters.get_duration(h5, songidx) fadein = hdf5_getters.get_end_of_fade_in(h5, songidx) fadeout = hdf5_getters.get_start_of_fade_out(h5, songidx) artfam = hdf5_getters.get_artist_familiarity(h5, songidx) sngdetdic[elem] = [duration, tmsig, tempo, key, mode, fadein, fadeout, year, loud, artfam] pickle.dump(sngdetdic, sngdetfle) sngdetfle.close()
def getSamples(basedir): X, Y = [], [] feature_labels = [ 'segments_pitch', 'segments_timbre', 'segments_loudness_max', 'tempo' ] cnt = 0 for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root, '*.h5')) print(root, cnt) # apply function to all files for f in files: # try: h5 = GETTERS.open_h5_file_read(f) year = GETTERS.get_year(h5) if year == 0: continue bttimbre = get_bttimbre(h5) if bttimbre is None or year == 0: continue h5.close() X.append(bttimbre) Y.append(year) cnt += 1 if cnt > 10000: break return X, Y, feature_labels
def process_song(self, song_path): song_data = h5.open_h5_file_read(song_path) song_id = h5.get_song_id(song_data).decode('UTF-8') song_int_id = int(h5.get_track_7digitalid(song_data)) song_name = h5.get_title(song_data).decode('UTF-8').lower() artist_name = h5.get_artist_name(song_data).decode('UTF-8').lower() song_year = int(h5.get_year(song_data)) timbre = self.ndarray_list_to_ndlist(h5.get_segments_timbre(song_data)) chroma = self.ndarray_list_to_ndlist( h5.get_segments_pitches(song_data)) song_data.close() song_dict = { 'id': song_int_id, 'source_id': song_id, 'name': song_name, 'artist': artist_name, 'year': song_year, 'timbre': timbre, 'chroma': chroma } return song_dict
def create_songdet(h5, sngidxfle): ''' Collects song details for all unique songs heard by 100 raters. Format of dictionary: { SongID : [ Att_0, Att_1, Att_2 ] } ''' import hdf5_getters sngdetfle = open("songdet.txt", "wb") sngdetdic = dict() sngidxfle = open(sngidxfle, "rb") sngidxdic = pickle.load(sngidxfle) for elem in sngidxdic: songidx = sngidxdic[elem] tempo = hdf5_getters.get_tempo(h5, songidx) loud = hdf5_getters.get_loudness(h5, songidx) year = hdf5_getters.get_year(h5, songidx) tmsig = hdf5_getters.get_time_signature(h5, songidx) key = hdf5_getters.get_key(h5, songidx) mode = hdf5_getters.get_mode(h5, songidx) duration = hdf5_getters.get_duration(h5, songidx) fadein = hdf5_getters.get_end_of_fade_in(h5, songidx) fadeout = hdf5_getters.get_start_of_fade_out(h5, songidx) artfam = hdf5_getters.get_artist_familiarity(h5, songidx) sngdetdic[elem] = [ duration, tmsig, tempo, key, mode, fadein, fadeout, year, loud, artfam ] pickle.dump(sngdetdic, sngdetfle) sngdetfle.close()
def process_song(self, song_path): # read file song_data = h5.open_h5_file_read(song_path) # process file #song_id = h5.get_song_id(song_data).decode('UTF-8') song_int_id = int(h5.get_track_7digitalid(song_data)) song_name = h5.get_title(song_data).decode('UTF-8').lower() artist_name = h5.get_artist_name(song_data).decode('UTF-8').lower() song_year = int(h5.get_year(song_data)) sp = SpotifyInterface() track_info = sp.search_track_info(artist_name, song_name) if track_info == None: song_data.close() return None timbre = self.ndarray_list_to_ndlist(h5.get_segments_timbre(song_data)) chroma = self.ndarray_list_to_ndlist(h5.get_segments_pitches(song_data)) song_data.close() song_dict = {'id': song_int_id, 'name': song_name, 'artist': artist_name, 'year': song_year, 'timbre': timbre, 'chroma': chroma, **track_info} return song_dict
def buildfeatures(basedir,cluster,ext='.h5'): global cap i = 0 features = [] decade = [] decadecount = defaultdict(int) for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root,'*'+ext)) for f in files: h5 = hdf5_getters.open_h5_file_read(f) year = hdf5_getters.get_year(h5) if year == 0: h5.close() continue bins = getbin(year) # dec = (year/10)*10 # if dec < 1960: # h5.close() # continue if decadecount[bins] > cap: flag = checkforcompletion(decadecount) h5.close() if flag: return features,decade continue i += 1 print i clustercount = {} for x in range(50): clustercount[x] = 0 feature = [] try: bttimbre = bt.get_bttimbre(h5) btT = bttimbre.T for x in btT: label = kmeans.predict(x) clustercount[label[0]] += 1 for cl in clustercount.keys(): feature.append(clustercount[cl]) features.append(feature) decade.append(bins) decadecount[bins] += 1 except: h5.close() continue h5.close() return features,decade
def main(): # print("we in") outputFile1 = open('../Datasets/MSDSubsetCSV.csv', 'w') csvRowString = "" csvRowString = "Title,ArtistName" csvAttributeList = re.split(',', csvRowString) for i, v in enumerate(csvAttributeList): csvAttributeList[i] = csvAttributeList[i].lower() csvRowString += ",\n" basedir = '/Users/Owner/Desktop/School/2019-2020/COMP400/MillionSongSubset/' ext = ".h5" #FOR LOOP for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root, '*' + ext)) for f in files: print(f) songH5File = hdf5_getters.open_h5_file_read(f) song = Song(str(hdf5_getters.get_song_id(songH5File))) song.title = str(hdf5_getters.get_title(songH5File)).replace( "b'", "").lower() song.artistName = str( hdf5_getters.get_artist_name(songH5File)).replace("b'", "").lower() song.year = str(hdf5_getters.get_year(songH5File)) if (int(song.year) < 1990): print('nope', int(song.year)) continue for attribute in csvAttributeList: # print "Here is the attribute: " + attribute + " \n" if attribute == 'ArtistName'.lower(): csvRowString += "\"" + song.artistName.replace( "'", "") + "\"" #took out "\"" before and after elif attribute == 'Title'.lower(): csvRowString += "\"" + song.title.replace("'", "") + "\"" else: csvRowString += "Erm. This didn't work. Error. :( :(\n" csvRowString += "," #Remove the final comma from each row in the csv lastIndex = len(csvRowString) csvRowString = csvRowString[0:lastIndex - 1] csvRowString += "\n" outputFile1.write(csvRowString) csvRowString = "" songH5File.close() outputFile1.close()
def getclusters(basedir,ext='.h5') : print 'inside clusters' features = [] cfeatures = [] decadecount = defaultdict(int) deccount = defaultdict(int) i=0 for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root,'*'+ext)) for f in files: h5 = hdf5_getters.open_h5_file_read(f) year = hdf5_getters.get_year(h5) if year == 0: h5.close() continue bins = getbin(year) # decade.append(bin) # dec = (year/10)*10 # decadecount[dec] += 1 # if dec < 1960: # h5.close() # continue deccount[bin] += 1 if decadecount[bins] > cap: flag = checkforcompletion(decadecount) h5.close() if flag: for dec in decadecount.keys(): print 'Dec : ' + str(dec) + ' Count : ' + str(decadecount[dec]) return features,cfeatures continue i += 1 print i try: bttimbre = bt.get_bttimbre(h5) btT = bttimbre.T for x in btT: features.append(x) decadecount[bins] += 1 btchroma = bt.get_btchromas(h5) btc = btchroma.T for x in btc: cfeatures.append(x) decadecount[bins] += 1 except: h5.close() continue h5.close() for dec in deccount.keys(): print 'Dec : ' + str(dec) + ' Count : ' + str(decadecount[dec]) features = array(features) cfeatures = array(cfeatures) return features,cfeatures
def songinfo(if_str): songs_tracks = pickle.load(open ("../../msd_dense_subset/dense/songs_tracks.pkl",'r')); track = str(songs_tracks[if_str]) # build path path = "../../msd_dense_subset/dense/"+track[2]+"/"+track[3]+"/"+track[4]+"/"+track+".h5" h5 = GETTERS.open_h5_file_read(path) artist_name = GETTERS.get_artist_name(h5) song_name = GETTERS.get_title(h5) year = GETTERS.get_year(h5, 0) #segments = GETTERS.get_segments_start(h5, 0); #segments_pitches = GETTERS.get_segments_pitches(h5, 0) h5.close() return artist_name+ " - " +song_name + " (" +str(year) +")"
def _extractSongData(file_path, filename): # song_id, title, release, artist_name, year h5 = hdf5_getters.open_h5_file_read(file_path) track_id = filename[:-3] song_id = hdf5_getters.get_song_id(h5).decode('UTF-8') dig7_id = hdf5_getters.get_track_7digitalid(h5) title = hdf5_getters.get_title(h5).decode('UTF-8') release = hdf5_getters.get_release(h5).decode('UTF-8') artist_name = hdf5_getters.get_artist_name(h5).decode('UTF-8') year = hdf5_getters.get_year(h5) h5.close() # print(song_id, track_id, dig7_id, title, release, artist_name, year) return track_id, song_id, dig7_id, title, release, artist_name, year
def extract_features(songlist,outputf): """ Extract features from a list of songs, save them in a give filename in MLcomp ready format INPUT songlist - arrays of path to HDF5 song files outputf - filename (text file) """ # sanity check if os.path.isfile(outputf): print 'ERROR:',outputf,'already exists.' sys.exit(0) # open file output = open(outputf,'w') # iterate ofer songs cnt = 0 for f in songlist: # counter cnt += 1 if cnt % 50000 == 0: print 'DOING FILE',cnt,'/',len(songlist) # extract info h5 = GETTERS.open_h5_file_read(f) timbres = GETTERS.get_segments_timbre(h5).T year = GETTERS.get_year(h5) h5.close() # sanity checks if year <= 0: continue if timbres.shape[1] == 0 or timbres.shape[0] == 0: continue if timbres.shape[1] < 10: continue # we can save some space from bad examples? # features avg = np.average(timbres,1) cov = np.cov(timbres) covflat = [] for k in range(12): covflat.extend( np.diag(cov,k) ) covflat = np.array(covflat) feats = np.concatenate([avg,covflat]) # sanity check NaN and INF if np.isnan(feats).any() or np.isinf(feats).any(): continue # all good? write to file output.write(str(convert_year(year))+' |avgcov') for k in range(90): output.write(' '+str(k+1)+':%.4f' % feats[k]) output.write('\n') # close file output.close()
def extract_features(songlist, outputf): """ Extract features from a list of songs, save them in a give filename in MLcomp ready format INPUT songlist - arrays of path to HDF5 song files outputf - filename (text file) """ # sanity check if os.path.isfile(outputf): print 'ERROR:', outputf, 'already exists.' sys.exit(0) # open file output = open(outputf, 'w') # iterate ofer songs cnt = 0 for f in songlist: # counter cnt += 1 if cnt % 50000 == 0: print 'DOING FILE', cnt, '/', len(songlist) # extract info h5 = GETTERS.open_h5_file_read(f) timbres = GETTERS.get_segments_timbre(h5).T year = GETTERS.get_year(h5) h5.close() # sanity checks if year <= 0: continue if timbres.shape[1] == 0 or timbres.shape[0] == 0: continue if timbres.shape[1] < 10: continue # we can save some space from bad examples? # features avg = np.average(timbres, 1) cov = np.cov(timbres) covflat = [] for k in range(12): covflat.extend(np.diag(cov, k)) covflat = np.array(covflat) feats = np.concatenate([avg, covflat]) # sanity check NaN and INF if np.isnan(feats).any() or np.isinf(feats).any(): continue # all good? write to file output.write(str(convert_year(year)) + ' |avgcov') for k in range(90): output.write(' ' + str(k + 1) + ':%.4f' % feats[k]) output.write('\n') # close file output.close()
def insert_song(): print('Inserting song tuples') conn = get_conn() cursor = get_cursor(conn) __id = None __title = None __avg_rate = None __release_date = None __duration = None __price = None __provider_name = None __genre_id = None __singer_id = None __download = None try: for i in range(hard.NUM_SONGS): __id = bytes2str(GETTERS.get_song_id(h5, i)) __title = bytes2str(GETTERS.get_title(h5, i)) __avg_rate = 0.0 # use int() to transform the numpy.int32 to int which is supported by Oracle __release_date = int(GETTERS.get_year(h5, i)) if __release_date == 0: __release_date = None __duration = int(GETTERS.get_duration(h5, i)) __price = InfoGenerator.gen_price() __provider_name = InfoGenerator.get_provider_name() __genre_id = InfoGenerator.get_genre_id() __singer_id = bytes2str(GETTERS.get_artist_id(h5, i)) __download = 0 cursor.execute(sql.INSERT_SONG, id = __id, title = __title, avg_rate = __avg_rate, release_date = __release_date, duration = __duration, price = __price, provider_name = __provider_name, genre_id = __genre_id, singer_id = __singer_id, download = __download) songs[i] = Song(__id, __title, __avg_rate, __release_date, __duration, __price, __provider_name, __genre_id, __singer_id, __download) return 0 except Exception as e: print(e) print('i:', i, '\nid:',__id, '\ntitle:', __title, '\navg_rate:', __avg_rate, '\nrelease_date:', __release_date, '\nduration', __duration, '\nprice', __price, 'provider_name:',__provider_name, '\ngenre_id:', __genre_id, '\nsinger_id', __singer_id, 'download:',__download) return -1 finally: conn.commit() close_all(conn, cursor)
def songinfo(if_str): songs_tracks = pickle.load( open("../../msd_dense_subset/dense/songs_tracks.pkl", 'r')) track = str(songs_tracks[if_str]) # build path path = "../../msd_dense_subset/dense/" + track[2] + "/" + track[ 3] + "/" + track[4] + "/" + track + ".h5" h5 = GETTERS.open_h5_file_read(path) artist_name = GETTERS.get_artist_name(h5) song_name = GETTERS.get_title(h5) year = GETTERS.get_year(h5, 0) #segments = GETTERS.get_segments_start(h5, 0); #segments_pitches = GETTERS.get_segments_pitches(h5, 0) h5.close() return artist_name + " - " + song_name + " (" + str(year) + ")"
def process_song(h5_song_file): song = {} song['artist_familiarity'] = hdf5_getters.get_artist_familiarity(h5) song['artist_id'] = hdf5_getters.get_artist_id(h5) song['artist_name'] = hdf5_getters.get_artist_name(h5) song['artist_hotttnesss'] = hdf5_getters.get_artist_hotttnesss(h5); song['title'] = hdf5_getters.get_title(h5) terms = hdf5_getters.get_artist_terms(h5) terms_freq = hdf5_getters.get_artist_terms_freq(h5) terms_weight = hdf5_getters.get_artist_terms_weight(h5) terms_array = [] # Creating a array of [term, its frequency, its weight]. Doing this for all terms associated # with the artist for i in range(len(terms)): terms_array.append([terms[i], terms_freq[i], terms_weight[i]]) song['artist_terms'] = terms_array beats_start = hdf5_getters.get_beats_start(h5) song['beats_start_variance'] = variance(beats_start) #beats variance in yocto seconds(10^-24s) song['number_of_beats'] = len(beats_start) song['duration'] = hdf5_getters.get_duration(h5) song['loudness'] = hdf5_getters.get_loudness(h5) sections_start = hdf5_getters.get_sections_start(h5) song['sections_start_variance'] = variance(sections_start) song['number_of_sections'] = len(sections_start) segments_pitches = hdf5_getters.get_segments_pitches(h5) (a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11) = split_segments(segments_pitches) song['segments_pitches_variance'] = [variance(a0), variance(a1), variance(a2), variance(a3), variance(a4), variance(a5), variance(a6), variance(a7), variance(a8), variance(a9), variance(a10), variance(a11)] song['segments_pitches_mean'] = [mean(a0), mean(a1), mean(a2), mean(a3), mean(a4), mean(a5), mean(a6), mean(a7), mean(a8), mean(a9), mean(a10), mean(a11)] segments_timbre = hdf5_getters.get_segments_timbre(h5) (a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11) = split_segments(segments_timbre) song['segments_timbre_variance'] = [variance(a0), variance(a1), variance(a2), variance(a3), variance(a4), variance(a5), variance(a6), variance(a7), variance(a8), variance(a9), variance(a10), variance(a11)] song['segments_timbre_mean'] = [mean(a0), mean(a1), mean(a2), mean(a3), mean(a4), mean(a5), mean(a6), mean(a7), mean(a8), mean(a9), mean(a10), mean(a11)] song['tempo'] = hdf5_getters.get_tempo(h5) song['_id'] = hdf5_getters.get_song_id(h5) song['year'] = hdf5_getters.get_year(h5) return song
def validate_song(h5_file,song): '''Returns true/false if song is valid or not. This is essentially cleanup and only lets through songs which have 'good' data (have a non-negligible duration, and have segments being most important)''' try: assert gt.get_year(h5_file, song)!='0' assert gt.get_duration(h5_file, song)>60.0 assert gt.get_mode_confidence(h5_file, song)>0.2 assert gt.get_key_confidence(h5_file, song)>0.2 assert gt.get_time_signature_confidence(h5_file, song)>0.2 terms=np.array(gt.get_artist_terms(h5_file, song)) assert terms.size>0 segments=np.array(gt.get_segments_start) assert segments.size>0 sections=np.array(gt.get_sections_start) assert sections.size>0 except: return False return True
def load_raw_data(): years = [] ten_features=[] timbres = [] pitches = [] min_length = 10000 num = 0 for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root,'*'+ext)) for f in files: h5 = getter.open_h5_file_read(f) num += 1 print(num) try: year = getter.get_year(h5) if year!=0: timbre = getter.get_segments_timbre(h5) s = np.size(timbre,0) if s>=100: if s<min_length: min_length = s pitch = getter.get_segments_pitches(h5) years.append(year) timbres.append(timbre) pitches.append(pitch) title_length = len(getter.get_title(h5)) terms_length = len(getter.get_artist_terms(h5)) tags_length = len(getter.get_artist_mbtags(h5)) hotness = getter.get_artist_hotttnesss(h5) duration = getter.get_duration(h5) loudness = getter.get_loudness(h5) mode = getter.get_mode(h5) release_length = len(getter.get_release(h5)) tempo = getter.get_tempo(h5) name_length = len(getter.get_artist_name(h5)) ten_feature = np.hstack([title_length, hotness, duration, tags_length, terms_length,loudness, mode, release_length, tempo, name_length]) ten_features.append(ten_feature) except: print(1) h5.close() return years, timbres, pitches,min_length,ten_features
def h5_to_csv_fields(h5,song): '''Converts h5 format to text Inputs: h5, an h5 file object, usable with the wrapper code MSongsDB song, an integer, representing which song in the h5 file to take the info out of (h5 files contain many songs) Output: a string representing all the information of this song, as a single line of a csv file ''' rv=[] ##All these are regular getter functions from wrapper code rv.append(gt.get_artist_name(h5,song)) rv.append(gt.get_title(h5, song)) rv.append(gt.get_release(h5, song)) rv.append(gt.get_year(h5,song)) rv.append(gt.get_duration(h5,song)) rv.append(gt.get_artist_familiarity(h5,song)) rv.append(gt.get_artist_hotttnesss(h5,song)) rv.append(gt.get_song_hotttnesss(h5, song)) ##artist_terms, artist_terms_freq, and artist_terms_weight getter functions ##are all arrays, so we need to turn them into strings first. We used '_' as a separator rv.append(array_to_csv_field(list(gt.get_artist_terms(h5,song)))) rv.append(array_to_csv_field(list(gt.get_artist_terms_freq(h5,song)))) rv.append(array_to_csv_field(list(gt.get_artist_terms_weight(h5,song)))) rv.append(gt.get_mode(h5,song)) rv.append(gt.get_key(h5,song)) rv.append(gt.get_tempo(h5,song)) rv.append(gt.get_loudness(h5,song)) rv.append(gt.get_danceability(h5,song)) rv.append(gt.get_energy(h5,song)) rv.append(gt.get_time_signature(h5,song)) rv.append(array_to_csv_field(list(gt.get_segments_start(h5,song)))) ##These arrays have vectors (Arrays) as items, 12 dimensional each ##An array like [[1,2,3],[4,5,6]] will be written to csv as '1;2;3_4;5;6', i.e. there's two types of separators rv.append(double_Array_to_csv_field(list(gt.get_segments_timbre(h5,song)),'_',';')) rv.append(double_Array_to_csv_field(list(gt.get_segments_pitches(h5,song)),'_',';')) rv.append(array_to_csv_field(list(gt.get_segments_loudness_start(h5,song)))) rv.append(array_to_csv_field(list(gt.get_segments_loudness_max(h5,song)))) rv.append(array_to_csv_field(list(gt.get_segments_loudness_max_time(h5,song)))) rv.append(array_to_csv_field(list(gt.get_sections_start(h5,song)))) ##turn this list into a string with comma separators (i.e. a csv line) rv_string=array_to_csv_field(rv, ",") rv_string+="\n" return rv_string
def getTrackInfo(starting_num): my_list = [] f = hdf5_getters.open_h5_file_read(filepath) progress_bar = tqdm(range(tracks_per_thread)) for iteration in progress_bar: i = int(iteration) + (starting_num*tracks_per_thread) track_id = hdf5_getters.get_track_id(f, i).decode() if track_id not in lyric_track_ids_set: continue # skip it an go on artist_name = hdf5_getters.get_artist_name(f, i).decode() duration = hdf5_getters.get_duration(f, i) loudness = hdf5_getters.get_loudness(f, i) tempo = hdf5_getters.get_tempo(f, i) title = hdf5_getters.get_title(f, i).decode() year = hdf5_getters.get_year(f, i) long_list = [track_id, artist_name, duration, loudness, tempo, title, year] my_list.append(long_list) progress_bar.set_description("Iteration %d" % i) f.close() return my_list
def func_to_extract_year(filename): """ This function does 3 simple things: - open the song file - get artist ID and put it - close the file """ global cntnan global listloudness h5 = GETTERS.open_h5_file_read(filename) nanfound = 0 #Get target feature: song loudness song_year = GETTERS.get_year(h5) if song_year == 0: nanfound = 1 cntnan = cntnan + 1 else: listyear.append(song_year) h5.close()
def get_all_data(target, basedir, ext='.h5') : # header target.write("%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n" % ( "track_id", "song_id", "title", "artist_name", "artist_location", "artist_hotttnesss", "release", "year", "song_hotttnesss", "danceability", "duration", "loudness", "sample_rate", "tempo" )) count = 0 for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root,'*'+ext)) for f in files: for line in f: new_file = open("tmp.txt", 'w') new_file.write(line) h5 = hdf5_getters.open_h5_file_read(new_file) target.write("%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n" % ( hdf5_getters.get_track_id(h5), hdf5_getters.get_song_id(h5), hdf5_getters.get_title(h5), hdf5_getters.get_artist_name(h5), hdf5_getters.get_artist_location(h5), hdf5_getters.get_artist_hotttnesss(h5), hdf5_getters.get_release(h5), hdf5_getters.get_year(h5), hdf5_getters.get_song_hotttnesss(h5), hdf5_getters.get_danceability(h5), hdf5_getters.get_duration(h5), hdf5_getters.get_loudness(h5), hdf5_getters.get_analysis_sample_rate(h5), hdf5_getters.get_tempo(h5) )) # show progress count += 1 print "%d/10000" % (count) h5.close()
def get_all_attributes(filename): """ This function does 3 simple things: - open the song file - get all required attributes - write it to a csv file - close the files """ with open('attributes.csv', 'a') as csvfile: try: # let's apply the previous function to all files csvwriter = csv.writer(csvfile, delimiter='\t') h5 = GETTERS.open_h5_file_read(filename) RESULTS = [] RESULTS.append(GETTERS.get_year(h5)) RESULTS.append(GETTERS.get_artist_id(h5)) RESULTS.append(GETTERS.get_artist_name(h5)) RESULTS.append(GETTERS.get_artist_mbid(h5)) RESULTS.append(convert_terms(GETTERS.get_artist_terms(h5))) RESULTS.append(GETTERS.get_artist_hotttnesss(h5)) RESULTS.append(GETTERS.get_artist_latitude(h5)) RESULTS.append(GETTERS.get_artist_longitude(h5)) RESULTS.append(GETTERS.get_artist_familiarity(h5)) RESULTS.append(GETTERS.get_danceability(h5)) RESULTS.append(GETTERS.get_duration(h5)) RESULTS.append(GETTERS.get_energy(h5)) RESULTS.append(GETTERS.get_loudness(h5)) RESULTS.append(GETTERS.get_song_hotttnesss(h5)) RESULTS.append(GETTERS.get_song_id(h5)) RESULTS.append(GETTERS.get_tempo(h5)) RESULTS.append(GETTERS.get_time_signature(h5)) RESULTS.append(GETTERS.get_title(h5)) RESULTS.append(GETTERS.get_track_id(h5)) RESULTS.append(GETTERS.get_release(h5)) csvwriter.writerow(RESULTS) h5.close() except AttributeError: pass
def get_feats(h5): f = [] f.append(hdf5_getters.get_artist_name(h5).decode('utf8').replace(',', '')) f.append(hdf5_getters.get_title(h5).decode('utf8').replace(',', '')) f.append(str(hdf5_getters.get_loudness(h5))) f.append(str(hdf5_getters.get_tempo(h5))) f.append(str(hdf5_getters.get_time_signature(h5))) f.append(str(hdf5_getters.get_key(h5))) f.append(str(hdf5_getters.get_mode(h5))) f.append(str(hdf5_getters.get_duration(h5))) f.extend(get_statistical_feats(hdf5_getters.get_segments_timbre(h5))) f.extend(get_statistical_feats(hdf5_getters.get_segments_pitches(h5))) f.extend(get_statistical_feats(hdf5_getters.get_segments_loudness_max(h5))) f.extend( get_statistical_feats(hdf5_getters.get_segments_loudness_max_time(h5))) f.extend( get_statistical_feats(hdf5_getters.get_segments_loudness_start(h5))) f.append(str(hdf5_getters.get_song_hotttnesss(h5))) f.append(str(hdf5_getters.get_danceability(h5))) f.append(str(hdf5_getters.get_end_of_fade_in(h5))) f.append(str(hdf5_getters.get_energy(h5))) f.append(str(hdf5_getters.get_start_of_fade_out(h5))) f.append(str(hdf5_getters.get_year(h5))) return f
def parse_aggregate_songs(file_name,file_name2,artist_map): """ Given an aggregate filename and artist_map in the format {artist_name: {data pertaining to artist}} """ """ TODO: -this function goes through each song, if artist not in there, add all data necesary and add first song info. else update any specific song info -song info is a map from attributename:[values] """ #artist_map = {} h5 = hdf5_getters.open_h5_file_read(file_name) numSongs = hdf5_getters.get_num_songs(h5) print 'Parsing song file...' for i in range(numSongs): artist_name = hdf5_getters.get_artist_name(h5,i) #Filter location longi = hdf5_getters.get_artist_longitude(h5,i) lat = hdf5_getters.get_artist_latitude(h5,i) loc = hdf5_getters.get_artist_location(h5,i) if math.isnan(lat) or math.isnan(longi): #skip if no location continue #filter year yr = hdf5_getters.get_year(h5,i) if yr == 0: #skip if no year continue #filter hotttness and familiarity familiarity = hdf5_getters.get_artist_familiarity(h5,i) hotttness = hdf5_getters.get_artist_hotttnesss(h5,i) if familiarity<=0.0 or hotttness<=0.0: #skip if no hotttness or familiarity computations continue #TODO:MAYBE filter on dance and energy timbre = hdf5_getters.get_segments_timbre(h5,i) #timbre[#] gives len 12 array so for each arr in timbre, add up to get segment and add to corresponding 12 features and avg across each if not artist_name in artist_map: #have not encountered the artist yet, so populate new map sub_map = {} sub_map['artist_familiarity'] = familiarity sub_map['artist_hotttnesss'] = hotttness sub_map['artist_id'] = hdf5_getters.get_artist_id(h5,i) #longi = hdf5_getters.get_artist_longitude(h5,i) #lat = hdf5_getters.get_artist_latitude(h5,i) #longi = None if math.isnan(longi) else longi #lat = None if math.isnan(lat) else lat sub_map['artist_latitude'] = lat sub_map['artist_longitude'] = longi sub_map['artist_location'] = loc sub_map['artist_terms'] = hdf5_getters.get_artist_terms(h5,i) #TODO:see if should weight by freq or weight for if the term matches one of the feature terms sub_map['artist_terms_freq'] = list(hdf5_getters.get_artist_terms_freq(h5,i)) sub_map['artist_terms_weight'] = list(hdf5_getters.get_artist_terms_weight(h5,i)) #song-sepcific data #TODO COMPUTE AN AVG TIMBRE FOR A SONG BY IDEA: #SUMMING DOWN EACH 12 VECTOR FOR EACH PT IN SONG AND AVG THIS ACROSS SONG dance = hdf5_getters.get_danceability(h5,i) dance = None if dance == 0.0 else dance energy = hdf5_getters.get_energy(h5,i) energy = None if energy == 0.0 else energy sub_map['danceability'] = [dance] sub_map['duration'] = [hdf5_getters.get_duration(h5,i)] sub_map['end_of_fade_in'] = [hdf5_getters.get_end_of_fade_in(h5,i)] sub_map['energy'] = [energy] #since each song has a key, ask if feature for keys should be num of songs that appear in that key or #just binary if any of their songs has that key or just be avg of songs with that key #same for mode, since its either major or minor...should it be count or avg.? sub_map['key'] = [hdf5_getters.get_key(h5,i)] sub_map['loudness'] = [hdf5_getters.get_loudness(h5,i)] sub_map['mode'] = [hdf5_getters.get_mode(h5,i)] #major or minor 0/1 s_hot = hdf5_getters.get_song_hotttnesss(h5,i) s_hot = None if math.isnan(s_hot) else s_hot sub_map['song_hotttnesss'] = [s_hot] sub_map['start_of_fade_out'] = [hdf5_getters.get_start_of_fade_out(h5,i)] sub_map['tempo'] = [hdf5_getters.get_tempo(h5,i)] #should time signature be count as well? binary? sub_map['time_signature'] = [hdf5_getters.get_time_signature(h5,i)] sub_map['track_id'] = [hdf5_getters.get_track_id(h5,i)] #should year be binary since they can have many songs across years and should it be year:count sub_map['year'] = [yr] artist_map[artist_name] = sub_map else: #artist already exists, so get its map and update song fields dance = hdf5_getters.get_danceability(h5,i) dance = None if dance == 0.0 else dance energy = hdf5_getters.get_energy(h5,i) energy = None if energy == 0.0 else energy artist_map[artist_name]['danceability'].append(dance) artist_map[artist_name]['duration'].append(hdf5_getters.get_duration(h5,i)) artist_map[artist_name]['end_of_fade_in'].append(hdf5_getters.get_end_of_fade_in(h5,i)) artist_map[artist_name]['energy'].append(energy) artist_map[artist_name]['key'].append(hdf5_getters.get_key(h5,i)) artist_map[artist_name]['loudness'].append(hdf5_getters.get_loudness(h5,i)) artist_map[artist_name]['mode'].append(hdf5_getters.get_mode(h5,i)) #major or minor 0/1 s_hot = hdf5_getters.get_song_hotttnesss(h5,i) s_hot = None if math.isnan(s_hot) else s_hot artist_map[artist_name]['song_hotttnesss'].append(s_hot) artist_map[artist_name]['start_of_fade_out'].append(hdf5_getters.get_start_of_fade_out(h5,i)) artist_map[artist_name]['tempo'].append(hdf5_getters.get_tempo(h5,i)) #should time signature be count as well? binary? artist_map[artist_name]['time_signature'].append(hdf5_getters.get_time_signature(h5,i)) artist_map[artist_name]['track_id'].append(hdf5_getters.get_track_id(h5,i)) #should year be binary since they can have many songs across years and should it be year:count artist_map[artist_name]['year'].append(yr) h5 = hdf5_getters.open_h5_file_read(file_name2) numSongs = hdf5_getters.get_num_songs(h5) print 'Parsing song file2...' for i in range(numSongs): song_id = hdf5_getters.get_track_id(h5,i) artist_name = hdf5_getters.get_artist_name(h5,i) if artist_name in artist_map and song_id in artist_map[artist_name]['track_id']: continue #Filter location longi = hdf5_getters.get_artist_longitude(h5,i) lat = hdf5_getters.get_artist_latitude(h5,i) loc = hdf5_getters.get_artist_location(h5,i) if math.isnan(lat) or math.isnan(longi): #skip if no location continue #filter year yr = hdf5_getters.get_year(h5,i) if yr == 0: #skip if no year continue #filter hotttness and familiarity familiarity = hdf5_getters.get_artist_familiarity(h5,i) hotttness = hdf5_getters.get_artist_hotttnesss(h5,i) if familiarity<=0.0 or hotttness<=0.0: #skip if no hotttness or familiarity computations continue #TODO:MAYBE filter on dance and energy timbre = hdf5_getters.get_segments_timbre(h5,i) #timbre[#] gives len 12 array so for each arr in timbre, add up to get segment and add to corresponding 12 features and avg across each if not artist_name in artist_map: #have not encountered the artist yet, so populate new map sub_map = {} sub_map['artist_familiarity'] = familiarity sub_map['artist_hotttnesss'] = hotttness sub_map['artist_id'] = hdf5_getters.get_artist_id(h5,i) #longi = hdf5_getters.get_artist_longitude(h5,i) #lat = hdf5_getters.get_artist_latitude(h5,i) #longi = None if math.isnan(longi) else longi #lat = None if math.isnan(lat) else lat sub_map['artist_latitude'] = lat sub_map['artist_longitude'] = longi sub_map['artist_location'] = loc sub_map['artist_terms'] = hdf5_getters.get_artist_terms(h5,i) #TODO:see if should weight by freq or weight for if the term matches one of the feature terms sub_map['artist_terms_freq'] = list(hdf5_getters.get_artist_terms_freq(h5,i)) sub_map['artist_terms_weight'] = list(hdf5_getters.get_artist_terms_weight(h5,i)) #song-sepcific data #TODO COMPUTE AN AVG TIMBRE FOR A SONG BY IDEA: #SUMMING DOWN EACH 12 VECTOR FOR EACH PT IN SONG AND AVG THIS ACROSS SONG dance = hdf5_getters.get_danceability(h5,i) dance = None if dance == 0.0 else dance energy = hdf5_getters.get_energy(h5,i) energy = None if energy == 0.0 else energy sub_map['danceability'] = [dance] sub_map['duration'] = [hdf5_getters.get_duration(h5,i)] sub_map['end_of_fade_in'] = [hdf5_getters.get_end_of_fade_in(h5,i)] sub_map['energy'] = [energy] #since each song has a key, ask if feature for keys should be num of songs that appear in that key or #just binary if any of their songs has that key or just be avg of songs with that key #same for mode, since its either major or minor...should it be count or avg.? sub_map['key'] = [hdf5_getters.get_key(h5,i)] sub_map['loudness'] = [hdf5_getters.get_loudness(h5,i)] sub_map['mode'] = [hdf5_getters.get_mode(h5,i)] #major or minor 0/1 s_hot = hdf5_getters.get_song_hotttnesss(h5,i) s_hot = None if math.isnan(s_hot) else s_hot sub_map['song_hotttnesss'] = [s_hot] sub_map['start_of_fade_out'] = [hdf5_getters.get_start_of_fade_out(h5,i)] sub_map['tempo'] = [hdf5_getters.get_tempo(h5,i)] #should time signature be count as well? binary? sub_map['time_signature'] = [hdf5_getters.get_time_signature(h5,i)] sub_map['track_id'] = [hdf5_getters.get_track_id(h5,i)] #should year be binary since they can have many songs across years and should it be year:count sub_map['year'] = [yr] artist_map[artist_name] = sub_map else: #artist already exists, so get its map and update song fields dance = hdf5_getters.get_danceability(h5,i) dance = None if dance == 0.0 else dance energy = hdf5_getters.get_energy(h5,i) energy = None if energy == 0.0 else energy artist_map[artist_name]['danceability'].append(dance) artist_map[artist_name]['duration'].append(hdf5_getters.get_duration(h5,i)) artist_map[artist_name]['end_of_fade_in'].append(hdf5_getters.get_end_of_fade_in(h5,i)) artist_map[artist_name]['energy'].append(energy) artist_map[artist_name]['key'].append(hdf5_getters.get_key(h5,i)) artist_map[artist_name]['loudness'].append(hdf5_getters.get_loudness(h5,i)) artist_map[artist_name]['mode'].append(hdf5_getters.get_mode(h5,i)) #major or minor 0/1 s_hot = hdf5_getters.get_song_hotttnesss(h5,i) s_hot = None if math.isnan(s_hot) else s_hot artist_map[artist_name]['song_hotttnesss'].append(s_hot) artist_map[artist_name]['start_of_fade_out'].append(hdf5_getters.get_start_of_fade_out(h5,i)) artist_map[artist_name]['tempo'].append(hdf5_getters.get_tempo(h5,i)) #should time signature be count as well? binary? artist_map[artist_name]['time_signature'].append(hdf5_getters.get_time_signature(h5,i)) artist_map[artist_name]['track_id'].append(hdf5_getters.get_track_id(h5,i)) #should year be binary since they can have many songs across years and should it be year:count artist_map[artist_name]['year'].append(yr)
# relevant metadata for all EDM songs found in the MSD all_song_data = {} pitch_segs_data = [] count = 0 start_time = time.time() ''' preprocessing before actually running the dirichlet process takes much more time than running the dirichlet process on data ''' for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root,'*'+ext)) for f in files: h5 = hdf5_getters.open_h5_file_read(f) # if year unknown, throw out sample if hdf5_getters.get_year(h5) == 0: h5.close() continue if any(tag in str(hdf5_getters.get_artist_mbtags(h5)) for tag in target_genres): print 'found electronic music song at {0} seconds'.format(time.time()-start_time) count += 1 chord_changes = [0 for i in range(0,192)] segments_pitches_old = hdf5_getters.get_segments_pitches(h5) segments_pitches_old_smoothed = [] smoothing_factor = max(3,round(len(segments_pitches_old) * 60.0 / (hdf5_getters.get_tempo(h5) * hdf5_getters.get_duration(h5)))) for i in range(0,int(math.floor(len(segments_pitches_old))/smoothing_factor)): segments = segments_pitches_old[(smoothing_factor*i):(smoothing_factor*i+smoothing_factor)] # calculate mean frequency of each note over a block of 5 time segments segments_mean = map(mean, zip(*segments)) segments_pitches_old_smoothed.append(segments_mean) most_likely_chords = [msd_utils.find_most_likely_chord(seg) for seg in segments_pitches_old_smoothed]
def data_to_flat_file(basedir,ext='.h5') : """ This function extracts the information from the tables and creates the flat file. """ count = 0; #song counter list_to_write= [] group_index=0 row_to_write = "" writer = csv.writer(open("complete.csv", "wb")) for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root,'*'+ext)) for f in files: row=[] print f h5 = hdf5_getters.open_h5_file_read(f) title = hdf5_getters.get_title(h5) title= title.replace('"','') row.append(title) comma=title.find(',') if comma != -1: print title time.sleep(1) album = hdf5_getters.get_release(h5) album= album.replace('"','') row.append(album) comma=album.find(',') if comma != -1: print album time.sleep(1) artist_name = hdf5_getters.get_artist_name(h5) comma=artist_name.find(',') if comma != -1: print artist_name time.sleep(1) artist_name= artist_name.replace('"','') row.append(artist_name) duration = hdf5_getters.get_duration(h5) row.append(duration) samp_rt = hdf5_getters.get_analysis_sample_rate(h5) row.append(samp_rt) artist_7digitalid = hdf5_getters.get_artist_7digitalid(h5) row.append(artist_7digitalid) artist_fam = hdf5_getters.get_artist_familiarity(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_fam) == True: artist_fam=-1 row.append(artist_fam) artist_hotness= hdf5_getters.get_artist_hotttnesss(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_hotness) == True: artist_hotness=-1 row.append(artist_hotness) artist_id = hdf5_getters.get_artist_id(h5) row.append(artist_id) artist_lat = hdf5_getters.get_artist_latitude(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_lat) == True: artist_lat=-1 row.append(artist_lat) artist_loc = hdf5_getters.get_artist_location(h5) row.append(artist_loc) artist_lon = hdf5_getters.get_artist_longitude(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_lon) == True: artist_lon=-1 row.append(artist_lon) artist_mbid = hdf5_getters.get_artist_mbid(h5) row.append(artist_mbid) #Getting the genre art_trm = hdf5_getters.get_artist_terms(h5) trm_freq = hdf5_getters.get_artist_terms_freq(h5) trn_wght = hdf5_getters.get_artist_terms_weight(h5) a_mb_tags = hdf5_getters.get_artist_mbtags(h5) genre_indexes=get_genre_indexes(trm_freq) #index of the highest freq genre_set=0 #flag to see if the genre has been set or not final_genre=[] genres_so_far=[] for i in range(len(genre_indexes)): genre_tmp=get_genre(art_trm,genre_indexes[i]) #genre that corresponds to the highest freq genres_so_far=genre_dict.get_genre_in_dict(genre_tmp) #getting the genre from the dictionary if len(genres_so_far) != 0: for i in genres_so_far: final_genre.append(i) genre_set=1 if genre_set == 1: col_num=[] for i in final_genre: column=int(i) #getting the column number of the genre col_num.append(column) genre_array=genre_columns(col_num) #genre array for i in range(len(genre_array)): #appending the genre_array to the row row.append(genre_array[i]) else: genre_array=genre_columns(-1) #when there is no genre matched, return an array of [0...0] for i in range(len(genre_array)): #appending the genre_array to the row row.append(genre_array[i]) artist_pmid = hdf5_getters.get_artist_playmeid(h5) row.append(artist_pmid) audio_md5 = hdf5_getters.get_audio_md5(h5) row.append(audio_md5) danceability = hdf5_getters.get_danceability(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(danceability) == True: danceability=-1 row.append(danceability) end_fade_in =hdf5_getters.get_end_of_fade_in(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(end_fade_in) == True: end_fade_in=-1 row.append(end_fade_in) energy = hdf5_getters.get_energy(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(energy) == True: energy=-1 row.append(energy) song_key = hdf5_getters.get_key(h5) row.append(song_key) key_c = hdf5_getters.get_key_confidence(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(key_c) == True: key_c=-1 row.append(key_c) loudness = hdf5_getters.get_loudness(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(loudness) == True: loudness=-1 row.append(loudness) mode = hdf5_getters.get_mode(h5) row.append(mode) mode_conf = hdf5_getters.get_mode_confidence(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(mode_conf) == True: mode_conf=-1 row.append(mode_conf) release_7digitalid = hdf5_getters.get_release_7digitalid(h5) row.append(release_7digitalid) song_hot = hdf5_getters.get_song_hotttnesss(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(song_hot) == True: song_hot=-1 row.append(song_hot) song_id = hdf5_getters.get_song_id(h5) row.append(song_id) start_fade_out = hdf5_getters.get_start_of_fade_out(h5) row.append(start_fade_out) tempo = hdf5_getters.get_tempo(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(tempo) == True: tempo=-1 row.append(tempo) time_sig = hdf5_getters.get_time_signature(h5) row.append(time_sig) time_sig_c = hdf5_getters.get_time_signature_confidence(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(time_sig_c) == True: time_sig_c=-1 row.append(time_sig_c) track_id = hdf5_getters.get_track_id(h5) row.append(track_id) track_7digitalid = hdf5_getters.get_track_7digitalid(h5) row.append(track_7digitalid) year = hdf5_getters.get_year(h5) row.append(year) bars_c = hdf5_getters.get_bars_confidence(h5) bars_start = hdf5_getters.get_bars_start(h5) row_bars_padding=padding(245) #this is the array that will be attached at the end of th row #--------------bars---------------" gral_info=[] gral_info=row[:] empty=[] for i,item in enumerate(bars_c): row.append(group_index) row.append(i) row.append(bars_c[i]) bars_c_avg= get_avg(bars_c) row.append(bars_c_avg) bars_c_max= get_max(bars_c) row.append(bars_c_max) bars_c_min = get_min(bars_c) row.append(bars_c_min) bars_c_stddev= get_stddev(bars_c) row.append(bars_c_stddev) bars_c_count = get_count(bars_c) row.append(bars_c_count) bars_c_sum = get_sum(bars_c) row.append(bars_c_sum) row.append(bars_start[i]) bars_start_avg = get_avg(bars_start) row.append(bars_start_avg) bars_start_max= get_max(bars_start) row.append(bars_start_max) bars_start_min = get_min(bars_start) row.append(bars_start_min) bars_start_stddev= get_stddev(bars_start) row.append(bars_start_stddev) bars_start_count = get_count(bars_start) row.append(bars_start_count) bars_start_sum = get_sum(bars_start) row.append(bars_start_sum) for i in row_bars_padding: row.append(i) writer.writerow(row) row=[] row=gral_info[:] #--------beats---------------" beats_c = hdf5_getters.get_beats_confidence(h5) group_index=1 row=[] row=gral_info[:] row_front=padding(14) #blanks left in front of the row(empty spaces for bars) row_beats_padding=padding(231) for i,item in enumerate(beats_c): row.append(group_index) row.append(i) for index in row_front: #padding blanks in front of the beats row.append(index) row.append(beats_c[i]) beats_c_avg= get_avg(beats_c) row.append(beats_c_avg) beats_c_max= get_max(beats_c) row.append(beats_c_max) beats_c_min = get_min(beats_c) row.append(beats_c_min) beats_c_stddev= get_stddev(beats_c) row.append(beats_c_stddev) beats_c_count = get_count(beats_c) row.append(beats_c_count) beats_c_sum = get_sum(beats_c) row.append(beats_c_sum) beats_start = hdf5_getters.get_beats_start(h5) row.append(beats_start[i]) beats_start_avg = get_avg(beats_start) row.append(beats_start_avg) beats_start_max= get_max(beats_start) row.append(beats_start_max) beats_start_min = get_min(beats_start) row.append(beats_start_min) beats_start_stddev= get_stddev(beats_start) row.append(beats_start_stddev) beats_start_count = get_count(beats_start) row.append(beats_start_count) beats_start_sum = get_sum(beats_start) row.append(beats_start_sum) for i in row_beats_padding: row.append(i) writer.writerow(row) row=[] row=gral_info[:] # "--------sections---------------" row_sec_padding=padding(217) #blank spaces left at the end of the row sec_c = hdf5_getters.get_sections_confidence(h5) group_index=2 row=[] row=gral_info[:] row_front=padding(28) #blank spaces left in front(empty spaces for bars,beats) for i,item in enumerate(sec_c): row.append(group_index) row.append(i) for index in row_front: #padding blanks in front of the sections row.append(index) row.append(sec_c[i]) sec_c_avg= get_avg(sec_c) row.append(sec_c_avg) sec_c_max= get_max(sec_c) row.append(sec_c_max) sec_c_min = get_min(sec_c) row.append(sec_c_min) sec_c_stddev= get_stddev(sec_c) row.append(sec_c_stddev) sec_c_count = get_count(sec_c) row.append(sec_c_count) sec_c_sum = get_sum(sec_c) row.append(sec_c_sum) sec_start = hdf5_getters.get_sections_start(h5) row.append(sec_start[i]) sec_start_avg = get_avg(sec_start) row.append(sec_start_avg) sec_start_max= get_max(sec_start) row.append(sec_start_max) sec_start_min = get_min(sec_start) row.append(sec_start_min) sec_start_stddev= get_stddev(sec_start) row.append(sec_start_stddev) sec_start_count = get_count(sec_start) row.append(sec_start_count) sec_start_sum = get_sum(sec_start) row.append(sec_start_sum) for i in row_sec_padding: #appending the blank spaces at the end of the row row.append(i) writer.writerow(row) row=[] row=gral_info[:] #--------segments---------------" row_seg_padding=padding(182) #blank spaces at the end of the row row_front=padding(42) #blank spaces left in front of segments seg_c = hdf5_getters.get_segments_confidence(h5) group_index=3 row=[] row=gral_info[:] for i,item in enumerate(seg_c): row.append(group_index) row.append(i) for index in row_front: #padding blanks in front of the segments row.append(index) row.append(seg_c[i]) seg_c_avg= get_avg(seg_c) row.append(seg_c_avg) seg_c_max= get_max(seg_c) row.append(seg_c_max) seg_c_min = get_min(seg_c) row.append(seg_c_min) seg_c_stddev= get_stddev(seg_c) row.append(seg_c_stddev) seg_c_count = get_count(seg_c) row.append(seg_c_count) seg_c_sum = get_sum(seg_c) row.append(seg_c_sum) seg_loud_max = hdf5_getters.get_segments_loudness_max(h5) row.append(seg_loud_max[i]) seg_loud_max_avg= get_avg(seg_loud_max) row.append(seg_loud_max_avg) seg_loud_max_max= get_max(seg_loud_max) row.append(seg_loud_max_max) seg_loud_max_min = get_min(seg_loud_max) row.append(seg_loud_max_min) seg_loud_max_stddev= get_stddev(seg_loud_max) row.append(seg_loud_max_stddev) seg_loud_max_count = get_count(seg_loud_max) row.append(seg_loud_max_count) seg_loud_max_sum = get_sum(seg_loud_max) row.append(seg_loud_max_sum) seg_loud_max_time = hdf5_getters.get_segments_loudness_max_time(h5) row.append(seg_loud_max_time[i]) seg_loud_max_time_avg= get_avg(seg_loud_max_time) row.append(seg_loud_max_time_avg) seg_loud_max_time_max= get_max(seg_loud_max_time) row.append(seg_loud_max_time_max) seg_loud_max_time_min = get_min(seg_loud_max_time) row.append(seg_loud_max_time_min) seg_loud_max_time_stddev= get_stddev(seg_loud_max_time) row.append(seg_loud_max_time_stddev) seg_loud_max_time_count = get_count(seg_loud_max_time) row.append(seg_loud_max_time_count) seg_loud_max_time_sum = get_sum(seg_loud_max_time) row.append(seg_loud_max_time_sum) seg_loud_start = hdf5_getters.get_segments_loudness_start(h5) row.append(seg_loud_start[i]) seg_loud_start_avg= get_avg(seg_loud_start) row.append(seg_loud_start_avg) seg_loud_start_max= get_max(seg_loud_start) row.append(seg_loud_start_max) seg_loud_start_min = get_min(seg_loud_start) row.append(seg_loud_start_min) seg_loud_start_stddev= get_stddev(seg_loud_start) row.append(seg_loud_start_stddev) seg_loud_start_count = get_count(seg_loud_start) row.append(seg_loud_start_count) seg_loud_start_sum = get_sum(seg_loud_start) row.append(seg_loud_start_sum) seg_start = hdf5_getters.get_segments_start(h5) row.append(seg_start[i]) seg_start_avg= get_avg(seg_start) row.append(seg_start_avg) seg_start_max= get_max(seg_start) row.append(seg_start_max) seg_start_min = get_min(seg_start) row.append(seg_start_min) seg_start_stddev= get_stddev(seg_start) row.append(seg_start_stddev) seg_start_count = get_count(seg_start) row.append(seg_start_count) seg_start_sum = get_sum(seg_start) row.append(seg_start_sum) for i in row_seg_padding: #appending blank spaces at the end of the row row.append(i) writer.writerow(row) row=[] row=gral_info[:] #----------segments pitch and timbre---------------" row_seg2_padding=padding(14) #blank spaces left at the end of the row row_front=padding(77) #blank spaces left at the front of the segments and timbre seg_pitch = hdf5_getters.get_segments_pitches(h5) transpose_pitch= seg_pitch.transpose() #this is to tranpose the matrix,so we can have 12 rows group_index=4 row=[] row=gral_info[:] for i,item in enumerate(transpose_pitch[0]): row.append(group_index) row.append(i) for index in row_front: #padding blanks in front of segments and timbre row.append(index) row.append(transpose_pitch[0][i]) seg_pitch_avg= get_avg(transpose_pitch[0]) row.append(seg_pitch_avg) seg_pitch_max= get_max(transpose_pitch[0]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[0]) row.append(seg_pitch_min) seg_pitch_stddev= get_stddev(transpose_pitch[0]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[0]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[0]) row.append(seg_pitch_sum) row.append(transpose_pitch[1][i]) seg_pitch_avg= get_avg(transpose_pitch[1]) row.append(seg_pitch_avg) seg_pitch_max= get_max(transpose_pitch[1]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[1]) row.append(seg_pitch_min) seg_pitch_stddev= get_stddev(transpose_pitch[1]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[1]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[1]) row.append(seg_pitch_sum) row.append(transpose_pitch[2][i]) seg_pitch_avg= get_avg(transpose_pitch[2]) row.append(seg_pitch_avg) seg_pitch_max= get_max(transpose_pitch[2]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[2]) row.append(seg_pitch_min) seg_pitch_stddev= get_stddev(transpose_pitch[2]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[2]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[2]) row.append(seg_pitch_sum) row.append(transpose_pitch[3][i]) seg_pitch_avg= get_avg(transpose_pitch[3]) row.append(seg_pitch_avg) seg_pitch_max= get_max(transpose_pitch[3]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[3]) row.append(seg_pitch_min) seg_pitch_stddev= get_stddev(transpose_pitch[3]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[3]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[3]) row.append(seg_pitch_sum) row.append(transpose_pitch[4][i]) seg_pitch_avg= get_avg(transpose_pitch[4]) row.append(seg_pitch_avg) seg_pitch_max= get_max(transpose_pitch[4]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[4]) row.append(seg_pitch_min) seg_pitch_stddev= get_stddev(transpose_pitch[4]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[4]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[4]) row.append(seg_pitch_sum) row.append(transpose_pitch[5][i]) seg_pitch_avg= get_avg(transpose_pitch[5]) row.append(seg_pitch_avg) seg_pitch_max= get_max(transpose_pitch[5]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[5]) row.append(seg_pitch_min) seg_pitch_stddev= get_stddev(transpose_pitch[5]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[5]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[5]) row.append(seg_pitch_sum) row.append(transpose_pitch[6][i]) seg_pitch_avg= get_avg(transpose_pitch[6]) row.append(seg_pitch_avg) seg_pitch_max= get_max(transpose_pitch[6]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[6]) row.append(seg_pitch_min) seg_pitch_stddev= get_stddev(transpose_pitch[6]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[6]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[6]) row.append(seg_pitch_sum) row.append(transpose_pitch[7][i]) seg_pitch_avg= get_avg(transpose_pitch[7]) row.append(seg_pitch_avg) seg_pitch_max= get_max(transpose_pitch[7]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[7]) row.append(seg_pitch_min) seg_pitch_stddev= get_stddev(transpose_pitch[7]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[7]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[7]) row.append(seg_pitch_sum) row.append(transpose_pitch[8][i]) seg_pitch_avg= get_avg(transpose_pitch[8]) row.append(seg_pitch_avg) seg_pitch_max= get_max(transpose_pitch[8]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[8]) row.append(seg_pitch_min) seg_pitch_stddev= get_stddev(transpose_pitch[8]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[8]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[8]) row.append(seg_pitch_sum) row.append(transpose_pitch[9][i]) seg_pitch_avg= get_avg(transpose_pitch[9]) row.append(seg_pitch_avg) seg_pitch_max= get_max(transpose_pitch[9]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[9]) row.append(seg_pitch_min) seg_pitch_stddev= get_stddev(transpose_pitch[9]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[9]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[9]) row.append(seg_pitch_sum) row.append(transpose_pitch[10][i]) seg_pitch_avg= get_avg(transpose_pitch[10]) row.append(seg_pitch_avg) seg_pitch_max= get_max(transpose_pitch[10]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[10]) row.append(seg_pitch_min) seg_pitch_stddev= get_stddev(transpose_pitch[10]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[10]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[10]) row.append(seg_pitch_sum) row.append(transpose_pitch[11][i]) seg_pitch_avg= get_avg(transpose_pitch[11]) row.append(seg_pitch_avg) seg_pitch_max= get_max(transpose_pitch[11]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[11]) row.append(seg_pitch_min) seg_pitch_stddev= get_stddev(transpose_pitch[11]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[11]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[11]) row.append(seg_pitch_sum) #timbre arrays seg_timbre = hdf5_getters.get_segments_timbre(h5) transpose_timbre = seg_pitch.transpose() #tranposing matrix, to have 12 rows row.append(transpose_timbre[0][i]) seg_timbre_avg= get_avg(transpose_timbre[0]) row.append(seg_timbre_avg) seg_timbre_max= get_max(transpose_timbre[0]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[0]) row.append(seg_timbre_min) seg_timbre_stddev=get_stddev(transpose_timbre[0]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[0]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[0]) row.append(seg_timbre_sum) row.append(transpose_timbre[1][i]) seg_timbre_avg= get_avg(transpose_timbre[1]) row.append(seg_timbre_avg) seg_timbre_max= get_max(transpose_timbre[1]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[1]) row.append(seg_timbre_min) seg_timbre_stddev= get_stddev(transpose_timbre[1]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[1]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[1]) row.append(seg_timbre_sum) row.append(transpose_timbre[2][i]) seg_timbre_avg= get_avg(transpose_timbre[2]) row.append(seg_timbre_avg) seg_timbre_max= get_max(transpose_timbre[2]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[2]) row.append(seg_timbre_min) seg_timbre_stddev= get_stddev(transpose_timbre[2]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[2]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[2]) row.append(seg_timbre_sum) row.append(transpose_timbre[3][i]) seg_timbre_avg= get_avg(transpose_timbre[3]) row.append(seg_timbre_avg) seg_timbre_max= get_max(transpose_timbre[3]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[3]) row.append(seg_timbre_min) seg_timbre_stddev= get_stddev(transpose_timbre[3]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[3]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[3]) row.append(seg_timbre_sum) row.append(transpose_timbre[4][i]) seg_timbre_avg= get_avg(transpose_timbre[4]) row.append(seg_timbre_avg) seg_timbre_max= get_max(transpose_timbre[4]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[4]) row.append(seg_timbre_min) seg_timbre_stddev= get_stddev(transpose_timbre[4]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[4]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[4]) row.append(seg_timbre_sum) row.append(transpose_timbre[5][i]) seg_timbre_avg= get_avg(transpose_timbre[5]) row.append(seg_timbre_avg) seg_timbre_max= get_max(transpose_timbre[5]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[5]) row.append(seg_timbre_min) seg_timbre_stddev= get_stddev(transpose_timbre[5]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[5]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[5]) row.append(seg_timbre_sum) row.append(transpose_timbre[6][i]) seg_timbre_avg= get_avg(transpose_timbre[6]) row.append(seg_timbre_avg) seg_timbre_max= get_max(transpose_timbre[6]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[6]) row.append(seg_timbre_min) seg_timbre_stddev= get_stddev(transpose_timbre[6]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[6]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[6]) row.append(seg_timbre_sum) row.append(transpose_timbre[7][i]) seg_timbre_avg= get_avg(transpose_timbre[7]) row.append(seg_timbre_avg) seg_timbre_max= get_max(transpose_timbre[7]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[7]) row.append(seg_timbre_min) seg_timbre_stddev= get_stddev(transpose_timbre[7]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[7]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[7]) row.append(seg_timbre_sum) row.append(transpose_timbre[8][i]) seg_timbre_avg= get_avg(transpose_timbre[8]) row.append(seg_timbre_avg) seg_timbre_max= get_max(transpose_timbre[8]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[8]) row.append(seg_timbre_min) seg_timbre_stddev= get_stddev(transpose_timbre[8]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[8]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[8]) row.append(seg_timbre_sum) row.append(transpose_timbre[9][i]) seg_timbre_avg= get_avg(transpose_timbre[9]) row.append(seg_timbre_avg) seg_timbre_max= get_max(transpose_timbre[9]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[9]) row.append(seg_timbre_min) seg_timbre_stddev= get_stddev(transpose_timbre[9]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[9]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[9]) row.append(seg_timbre_sum) row.append(transpose_timbre[10][i]) seg_timbre_avg= get_avg(transpose_timbre[10]) row.append(seg_timbre_avg) seg_timbre_max= get_max(transpose_timbre[10]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[10]) row.append(seg_timbre_min) seg_timbre_stddev= get_stddev(transpose_timbre[10]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[10]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[10]) row.append(seg_timbre_sum) row.append(transpose_timbre[11][i]) seg_timbre_avg= get_avg(transpose_timbre[11]) row.append(seg_timbre_avg) seg_timbre_max= get_max(transpose_timbre[11]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[11]) row.append(seg_timbre_min) seg_timbre_stddev= get_stddev(transpose_timbre[11]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[11]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[11]) row.append(seg_timbre_sum) for item in row_seg2_padding: row.append(item) writer.writerow(row) row=[] row=gral_info[:] # "--------tatums---------------" tatms_c = hdf5_getters.get_tatums_confidence(h5) group_index=5 row_front=padding(245) #blank spaces left in front of tatums row=[] row=gral_info[:] for i,item in enumerate(tatms_c): row.append(group_index) row.append(i) for item in row_front: #appending blank spaces at the front of the row row.append(item) row.append(tatms_c[i]) tatms_c_avg= get_avg(tatms_c) row.append(tatms_c_avg) tatms_c_max= get_max(tatms_c) row.append(tatms_c_max) tatms_c_min = get_min(tatms_c) row.append(tatms_c_min) tatms_c_stddev= get_stddev(tatms_c) row.append(tatms_c_stddev) tatms_c_count = get_count(tatms_c) row.append(tatms_c_count) tatms_c_sum = get_sum(tatms_c) row.append(tatms_c_sum) tatms_start = hdf5_getters.get_tatums_start(h5) row.append(tatms_start[i]) tatms_start_avg= get_avg(tatms_start) row.append(tatms_start_avg) tatms_start_max= get_max(tatms_start) row.append(tatms_start_max) tatms_start_min = get_min(tatms_start) row.append(tatms_start_min) tatms_start_stddev= get_stddev(tatms_start) row.append(tatms_start_stddev) tatms_start_count = get_count(tatms_start) row.append(tatms_start_count) tatms_start_sum = get_sum(tatms_start) row.append(tatms_start_sum) writer.writerow(row) row=[] row=gral_info[:] transpose_pitch= seg_pitch.transpose() #this is to tranpose the matrix,so we can have 12 rows #arrays containing the aggregate values of the 12 rows seg_pitch_avg=[] seg_pitch_max=[] seg_pitch_min=[] seg_pitch_stddev=[] seg_pitch_count=[] seg_pitch_sum=[] i=0 #Getting the aggregate values in the pitches array for row in transpose_pitch: seg_pitch_avg.append(get_avg(row)) seg_pitch_max.append(get_max(row)) seg_pitch_min.append(get_min(row)) seg_pitch_stddev.append(get_stddev(row)) seg_pitch_count.append(get_count(row)) seg_pitch_sum.append(get_sum(row)) i=i+1 #extracting information from the timbre array transpose_timbre = seg_pitch.transpose() #tranposing matrix, to have 12 rows #arrays containing the aggregate values of the 12 rows seg_timbre_avg=[] seg_timbre_max=[] seg_timbre_min=[] seg_timbre_stddev=[] seg_timbre_count=[] seg_timbre_sum=[] i=0 for row in transpose_timbre: seg_timbre_avg.append(get_avg(row)) seg_timbre_max.append(get_max(row)) seg_timbre_min.append(get_min(row)) seg_timbre_stddev.append(get_stddev(row)) seg_timbre_count.append(get_count(row)) seg_timbre_sum.append(get_sum(row)) i=i+1 h5.close() count=count+1; print count;
def get_song_info(h5): print '%s - %s | (%s) | %s bpm' % (hdf5_getters.get_artist_name(h5), hdf5_getters.get_title(h5), hdf5_getters.get_year(h5), hdf5_getters.get_tempo(h5))
def main(): outputFile1 = open('SongCSV.csv', 'w') csvRowString = "" ################################################# #if you want to prompt the user for the order of attributes in the csv, #leave the prompt boolean set to True #else, set 'prompt' to False and set the order of attributes in the 'else' #clause prompt = False ################################################# if prompt == True: while prompt: prompt = False csvAttributeString = raw_input( "\n\nIn what order would you like the colums of the CSV file?\n" + "Please delineate with commas. The options are: " + "AlbumName, AlbumID, ArtistID, ArtistLatitude, ArtistLocation, ArtistLongitude," + " ArtistName, Danceability, Duration, KeySignature, KeySignatureConfidence, Tempo," + " SongID, TimeSignature, TimeSignatureConfidence, Title, and Year.\n\n" + "For example, you may write \"Title, Tempo, Duration\"...\n\n" + "...or exit by typing 'exit'.\n\n") csvAttributeList = re.split('\W+', csvAttributeString) for i, v in enumerate(csvAttributeList): csvAttributeList[i] = csvAttributeList[i].lower() for attribute in csvAttributeList: # print "Here is the attribute: " + attribute + " \n" if attribute == 'AlbumID'.lower(): csvRowString += 'AlbumID' elif attribute == 'AlbumName'.lower(): csvRowString += 'AlbumName' elif attribute == 'ArtistID'.lower(): csvRowString += 'ArtistID' elif attribute == 'ArtistLatitude'.lower(): csvRowString += 'ArtistLatitude' elif attribute == 'ArtistLocation'.lower(): csvRowString += 'ArtistLocation' elif attribute == 'ArtistLongitude'.lower(): csvRowString += 'ArtistLongitude' elif attribute == 'ArtistName'.lower(): csvRowString += 'ArtistName' elif attribute == 'Danceability'.lower(): csvRowString += 'Danceability' elif attribute == 'Duration'.lower(): csvRowString += 'Duration' elif attribute == 'KeySignature'.lower(): csvRowString += 'KeySignature' elif attribute == 'KeySignatureConfidence'.lower(): csvRowString += 'KeySignatureConfidence' elif attribute == 'SongID'.lower(): csvRowString += "SongID" elif attribute == 'Tempo'.lower(): csvRowString += 'Tempo' elif attribute == 'TimeSignature'.lower(): csvRowString += 'TimeSignature' elif attribute == 'TimeSignatureConfidence'.lower(): csvRowString += 'TimeSignatureConfidence' elif attribute == 'Title'.lower(): csvRowString += 'Title' elif attribute == 'Year'.lower(): csvRowString += 'Year' elif attribute == 'Exit'.lower(): sys.exit() else: prompt = True print "==============" print "I believe there has been an error with the input." print "==============" break csvRowString += "," lastIndex = len(csvRowString) csvRowString = csvRowString[0:lastIndex - 1] csvRowString += "\n" outputFile1.write(csvRowString) csvRowString = "" #else, if you want to hard code the order of the csv file and not prompt #the user, else: ################################################# #change the order of the csv file here #Default is to list all available attributes (in alphabetical order) csvRowString = ( "SongID,AlbumID,AlbumName,TrackId,ArtistID,ArtistLatitude,ArtistLocation," + "ArtistLongitude,ArtistName,Danceability,Duration,KeySignature," + "KeySignatureConfidence,Tempo,TimeSignature,TimeSignatureConfidence," + "Title,Year") ################################################# csvAttributeList = re.split('\W+', csvRowString) for i, v in enumerate(csvAttributeList): csvAttributeList[i] = csvAttributeList[i].lower() outputFile1.write("SongNumber,") outputFile1.write(csvRowString + "\n") csvRowString = "" ################################################# #Set the basedir here, the root directory from which the search #for files stored in a (hierarchical data structure) will originate basedir = "/home/umwangye/millonsong/MillionSongSubset/data/" # "." As the default means the current directory ext = ".h5" #Set the extension here. H5 is the extension for HDF5 files. ################################################# #FOR LOOP for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root, '*' + ext)) for f in files: print f songH5File = hdf5_getters.open_h5_file_read(f) #song = Song(str(hdf5_getters.get_song_id(songH5File))) #testDanceability = hdf5_getters.get_danceability(songH5File) # print type(testDanceability) # print ("Here is the danceability: ") + str(testDanceability) numPerH5 = hdf5_getters.get_num_songs(songH5File) for cnt in range(numPerH5): song = Song(str(hdf5_getters.get_song_id(songH5File, cnt))) song.trackId = str(hdf5_getters.get_track_id(songH5File, cnt)) song.artistID = str(hdf5_getters.get_artist_id( songH5File, cnt)) song.albumID = str( hdf5_getters.get_release_7digitalid(songH5File, cnt)) song.albumName = str(hdf5_getters.get_release(songH5File, cnt)) song.artistLatitude = str( hdf5_getters.get_artist_latitude(songH5File, cnt)) song.artistLocation = str( hdf5_getters.get_artist_location(songH5File, cnt)) song.artistLongitude = str( hdf5_getters.get_artist_longitude(songH5File, cnt)) song.artistName = str( hdf5_getters.get_artist_name(songH5File, cnt)) song.danceability = str( hdf5_getters.get_danceability(songH5File, cnt)) song.duration = str(hdf5_getters.get_duration(songH5File, cnt)) # song.setGenreList() song.keySignature = str(hdf5_getters.get_key(songH5File, cnt)) song.keySignatureConfidence = str( hdf5_getters.get_key_confidence(songH5File, cnt)) # song.lyrics = None # song.popularity = None song.tempo = str(hdf5_getters.get_tempo(songH5File, cnt)) song.timeSignature = str( hdf5_getters.get_time_signature(songH5File, cnt)) song.timeSignatureConfidence = str( hdf5_getters.get_time_signature_confidence( songH5File, cnt)) song.title = str(hdf5_getters.get_title(songH5File, cnt)) song.year = str(hdf5_getters.get_year(songH5File, cnt)) #print song count csvRowString += str(song.songCount) + "," for attribute in csvAttributeList: # print "Here is the attribute: " + attribute + " \n" if attribute == 'AlbumID'.lower(): csvRowString += song.albumID elif attribute == 'AlbumName'.lower(): albumName = song.albumName albumName = albumName.replace(',', "") csvRowString += "\"" + albumName + "\"" elif attribute == 'TrackId'.lower(): csvRowString += song.trackId elif attribute == 'ArtistID'.lower(): csvRowString += "\"" + song.artistID + "\"" elif attribute == 'ArtistLatitude'.lower(): latitude = song.artistLatitude if latitude == 'nan': latitude = '' csvRowString += latitude elif attribute == 'ArtistLocation'.lower(): location = song.artistLocation location = location.replace(',', '') csvRowString += "\"" + location + "\"" elif attribute == 'ArtistLongitude'.lower(): longitude = song.artistLongitude if longitude == 'nan': longitude = '' csvRowString += longitude elif attribute == 'ArtistName'.lower(): csvRowString += "\"" + song.artistName + "\"" elif attribute == 'Danceability'.lower(): csvRowString += song.danceability elif attribute == 'Duration'.lower(): csvRowString += song.duration elif attribute == 'KeySignature'.lower(): csvRowString += song.keySignature elif attribute == 'KeySignatureConfidence'.lower(): # print "key sig conf: " + song.timeSignatureConfidence csvRowString += song.keySignatureConfidence elif attribute == 'SongID'.lower(): csvRowString += "\"" + song.id + "\"" elif attribute == 'Tempo'.lower(): # print "Tempo: " + song.tempo csvRowString += song.tempo elif attribute == 'TimeSignature'.lower(): csvRowString += song.timeSignature elif attribute == 'TimeSignatureConfidence'.lower(): # print "time sig conf: " + song.timeSignatureConfidence csvRowString += song.timeSignatureConfidence elif attribute == 'Title'.lower(): csvRowString += "\"" + song.title + "\"" elif attribute == 'Year'.lower(): csvRowString += song.year else: csvRowString += "Erm. This didn't work. Error. :( :(\n" csvRowString += "," #Remove the final comma from each row in the csv lastIndex = len(csvRowString) csvRowString = csvRowString[0:lastIndex - 1] csvRowString += "\n" outputFile1.write(csvRowString) csvRowString = "" songH5File.close() outputFile1.close()
def data_to_flat_file(basedir, ext='.h5'): """This function extract the information from the tables and creates the flat file.""" count = 0 #song counter list_to_write = [] row_to_write = "" writer = csv.writer(open("metadata_wholeA.csv", "wb")) for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root, '*' + ext)) for f in files: print f #the name of the file h5 = hdf5_getters.open_h5_file_read(f) title = hdf5_getters.get_title(h5) title = title.replace('"', '') comma = title.find(',') #eliminating commas in the title if comma != -1: print title time.sleep(1) album = hdf5_getters.get_release(h5) album = album.replace('"', '') #eliminating commas in the album comma = album.find(',') if comma != -1: print album time.sleep(1) artist_name = hdf5_getters.get_artist_name(h5) comma = artist_name.find(',') if comma != -1: print artist_name time.sleep(1) artist_name = artist_name.replace('"', '') #eliminating double quotes duration = hdf5_getters.get_duration(h5) samp_rt = hdf5_getters.get_analysis_sample_rate(h5) artist_7digitalid = hdf5_getters.get_artist_7digitalid(h5) artist_fam = hdf5_getters.get_artist_familiarity(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_fam) == True: artist_fam = -1 artist_hotness = hdf5_getters.get_artist_hotttnesss(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_hotness) == True: artist_hotness = -1 artist_id = hdf5_getters.get_artist_id(h5) artist_lat = hdf5_getters.get_artist_latitude(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_lat) == True: artist_lat = -1 artist_loc = hdf5_getters.get_artist_location(h5) #checks artist_loc to see if it is a hyperlink if it is set as empty string artist_loc = artist_loc.replace(",", "\,") if artist_loc.startswith("<a"): artist_loc = "" if len(artist_loc) > 100: artist_loc = "" artist_lon = hdf5_getters.get_artist_longitude(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_lon) == True: artist_lon = -1 artist_mbid = hdf5_getters.get_artist_mbid(h5) artist_pmid = hdf5_getters.get_artist_playmeid(h5) audio_md5 = hdf5_getters.get_audio_md5(h5) danceability = hdf5_getters.get_danceability(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(danceability) == True: danceability = -1 end_fade_in = hdf5_getters.get_end_of_fade_in(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(end_fade_in) == True: end_fade_in = -1 energy = hdf5_getters.get_energy(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(energy) == True: energy = -1 song_key = hdf5_getters.get_key(h5) key_c = hdf5_getters.get_key_confidence(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(key_c) == True: key_c = -1 loudness = hdf5_getters.get_loudness(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(loudness) == True: loudness = -1 mode = hdf5_getters.get_mode(h5) mode_conf = hdf5_getters.get_mode_confidence(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(mode_conf) == True: mode_conf = -1 release_7digitalid = hdf5_getters.get_release_7digitalid(h5) song_hot = hdf5_getters.get_song_hotttnesss(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(song_hot) == True: song_hot = -1 song_id = hdf5_getters.get_song_id(h5) start_fade_out = hdf5_getters.get_start_of_fade_out(h5) tempo = hdf5_getters.get_tempo(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(tempo) == True: tempo = -1 time_sig = hdf5_getters.get_time_signature(h5) time_sig_c = hdf5_getters.get_time_signature_confidence(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(time_sig_c) == True: time_sig_c = -1 track_id = hdf5_getters.get_track_id(h5) track_7digitalid = hdf5_getters.get_track_7digitalid(h5) year = hdf5_getters.get_year(h5) bars_c = hdf5_getters.get_bars_confidence(h5) bars_c_avg = get_avg(bars_c) bars_c_max = get_max(bars_c) bars_c_min = get_min(bars_c) bars_c_stddev = get_stddev(bars_c) bars_c_count = get_count(bars_c) bars_c_sum = get_sum(bars_c) bars_start = hdf5_getters.get_bars_start(h5) bars_start_avg = get_avg(bars_start) bars_start_max = get_max(bars_start) bars_start_min = get_min(bars_start) bars_start_stddev = get_stddev(bars_start) bars_start_count = get_count(bars_start) bars_start_sum = get_sum(bars_start) beats_c = hdf5_getters.get_beats_confidence(h5) beats_c_avg = get_avg(beats_c) beats_c_max = get_max(beats_c) beats_c_min = get_min(beats_c) beats_c_stddev = get_stddev(beats_c) beats_c_count = get_count(beats_c) beats_c_sum = get_sum(beats_c) beats_start = hdf5_getters.get_beats_start(h5) beats_start_avg = get_avg(beats_start) beats_start_max = get_max(beats_start) beats_start_min = get_min(beats_start) beats_start_stddev = get_stddev(beats_start) beats_start_count = get_count(beats_start) beats_start_sum = get_sum(beats_start) sec_c = hdf5_getters.get_sections_confidence(h5) sec_c_avg = get_avg(sec_c) sec_c_max = get_max(sec_c) sec_c_min = get_min(sec_c) sec_c_stddev = get_stddev(sec_c) sec_c_count = get_count(sec_c) sec_c_sum = get_sum(sec_c) sec_start = hdf5_getters.get_sections_start(h5) sec_start_avg = get_avg(sec_start) sec_start_max = get_max(sec_start) sec_start_min = get_min(sec_start) sec_start_stddev = get_stddev(sec_start) sec_start_count = get_count(sec_start) sec_start_sum = get_sum(sec_start) seg_c = hdf5_getters.get_segments_confidence(h5) seg_c_avg = get_avg(seg_c) seg_c_max = get_max(seg_c) seg_c_min = get_min(seg_c) seg_c_stddev = get_stddev(seg_c) seg_c_count = get_count(seg_c) seg_c_sum = get_sum(seg_c) seg_loud_max = hdf5_getters.get_segments_loudness_max(h5) seg_loud_max_avg = get_avg(seg_loud_max) seg_loud_max_max = get_max(seg_loud_max) seg_loud_max_min = get_min(seg_loud_max) seg_loud_max_stddev = get_stddev(seg_loud_max) seg_loud_max_count = get_count(seg_loud_max) seg_loud_max_sum = get_sum(seg_loud_max) seg_loud_max_time = hdf5_getters.get_segments_loudness_max_time(h5) seg_loud_max_time_avg = get_avg(seg_loud_max_time) seg_loud_max_time_max = get_max(seg_loud_max_time) seg_loud_max_time_min = get_min(seg_loud_max_time) seg_loud_max_time_stddev = get_stddev(seg_loud_max_time) seg_loud_max_time_count = get_count(seg_loud_max_time) seg_loud_max_time_sum = get_sum(seg_loud_max_time) seg_loud_start = hdf5_getters.get_segments_loudness_start(h5) seg_loud_start_avg = get_avg(seg_loud_start) seg_loud_start_max = get_max(seg_loud_start) seg_loud_start_min = get_min(seg_loud_start) seg_loud_start_stddev = get_stddev(seg_loud_start) seg_loud_start_count = get_count(seg_loud_start) seg_loud_start_sum = get_sum(seg_loud_start) seg_pitch = hdf5_getters.get_segments_pitches(h5) pitch_size = len(seg_pitch) seg_start = hdf5_getters.get_segments_start(h5) seg_start_avg = get_avg(seg_start) seg_start_max = get_max(seg_start) seg_start_min = get_min(seg_start) seg_start_stddev = get_stddev(seg_start) seg_start_count = get_count(seg_start) seg_start_sum = get_sum(seg_start) seg_timbre = hdf5_getters.get_segments_timbre(h5) tatms_c = hdf5_getters.get_tatums_confidence(h5) tatms_c_avg = get_avg(tatms_c) tatms_c_max = get_max(tatms_c) tatms_c_min = get_min(tatms_c) tatms_c_stddev = get_stddev(tatms_c) tatms_c_count = get_count(tatms_c) tatms_c_sum = get_sum(tatms_c) tatms_start = hdf5_getters.get_tatums_start(h5) tatms_start_avg = get_avg(tatms_start) tatms_start_max = get_max(tatms_start) tatms_start_min = get_min(tatms_start) tatms_start_stddev = get_stddev(tatms_start) tatms_start_count = get_count(tatms_start) tatms_start_sum = get_sum(tatms_start) #Getting the genres genre_set = 0 #flag to see if the genre has been set or not art_trm = hdf5_getters.get_artist_terms(h5) trm_freq = hdf5_getters.get_artist_terms_freq(h5) trn_wght = hdf5_getters.get_artist_terms_weight(h5) a_mb_tags = hdf5_getters.get_artist_mbtags(h5) genre_indexes = get_genre_indexes( trm_freq) #index of the highest freq final_genre = [] genres_so_far = [] for i in range(len(genre_indexes)): genre_tmp = get_genre( art_trm, genre_indexes[i] ) #genre that corresponds to the highest freq genres_so_far = genre_dict.get_genre_in_dict( genre_tmp) #getting the genre from the dictionary if len(genres_so_far) != 0: for i in genres_so_far: final_genre.append(i) genre_set = 1 #genre was found in dictionary if genre_set == 1: col_num = [] for genre in final_genre: column = int( genre) #getting the column number of the genre col_num.append(column) genre_array = genre_columns(col_num) #genre array else: genre_array = genre_columns( -1) #the genre was not found in the dictionary transpose_pitch = seg_pitch.transpose( ) #this is to tranpose the matrix,so we can have 12 rows #arrays containing the aggregate values of the 12 rows seg_pitch_avg = [] seg_pitch_max = [] seg_pitch_min = [] seg_pitch_stddev = [] seg_pitch_count = [] seg_pitch_sum = [] i = 0 #Getting the aggregate values in the pitches array for row in transpose_pitch: seg_pitch_avg.append(get_avg(row)) seg_pitch_max.append(get_max(row)) seg_pitch_min.append(get_min(row)) seg_pitch_stddev.append(get_stddev(row)) seg_pitch_count.append(get_count(row)) seg_pitch_sum.append(get_sum(row)) i = i + 1 #extracting information from the timbre array transpose_timbre = seg_pitch.transpose( ) #tranposing matrix, to have 12 rows #arrays containing the aggregate values of the 12 rows seg_timbre_avg = [] seg_timbre_max = [] seg_timbre_min = [] seg_timbre_stddev = [] seg_timbre_count = [] seg_timbre_sum = [] i = 0 for row in transpose_timbre: seg_timbre_avg.append(get_avg(row)) seg_timbre_max.append(get_max(row)) seg_timbre_min.append(get_min(row)) seg_timbre_stddev.append(get_stddev(row)) seg_timbre_count.append(get_count(row)) seg_timbre_sum.append(get_sum(row)) i = i + 1 #Writing to the flat file writer.writerow([ title, album, artist_name, year, duration, seg_start_count, tempo ]) h5.close() count = count + 1 print count
def func_to_extract_features(filename): """ This function does 3 simple things: - open the song file - get artist ID and put it - close the file """ global cntnan global listfeatures cf = [] h5 = GETTERS.open_h5_file_read(filename) nanfound = 0 #Get target feature: song hotness #FEATURE 0 song_hotness = GETTERS.get_song_hotttnesss(h5) if math.isnan(song_hotness): nanfound = 1 cntnan = cntnan + 1 else: if song_hotness <= 0.2: song_hotness_class = 0 elif song_hotness <= 0.4: song_hotness_class = 1 elif song_hotness <= 0.6: song_hotness_class = 2 elif song_hotness <= 0.8: song_hotness_class = 3 else: song_hotness_class = 4 cf.append(song_hotness_class) #FEATURE 1 #Get song loudness song_loudness = GETTERS.get_loudness(h5) if math.isnan(song_loudness): nanfound = 1 cntnan = cntnan + 1 else: cf.append(song_loudness) #FEATURE 2 #Get song year song_year = GETTERS.get_year(h5) if song_year == 0: nanfound = 1 cntnan = cntnan + 1 else: cf.append(song_year) #FEATURE 3 #Get song tempo song_tempo = GETTERS.get_tempo(h5) cf.append(song_tempo) #Feature 4 #Artist familarity artist_familiarity = GETTERS.get_artist_familiarity(h5) cf.append(artist_familiarity) #Feature 5 artist_hotness = GETTERS.get_artist_hotttnesss(h5) if math.isnan(artist_hotness): nanfound = 1 cntnan = cntnan + 1 else: cf.append(artist_hotness) if nanfound == 0: strlist = list_to_csv(cf) listfeatures.append(strlist) h5.close()
def process_filelist_test(filelist=None, model=None, tmpfilename=None, npicks=None, winsize=None, finaldim=None, K=1, typecompress='picks'): """ Main function, process all files in the list (as long as their artist is in testartist) INPUT filelist - a list of song files model - h5 file containing feats and year for all train songs tmpfilename - where to save our processed features npicks - number of segments to pick per song winsize - size of each segment we pick finaldim - how many values do we keep K - param of KNN (default 1) typecompress - feature type, 'picks', 'corrcoeff' or 'cov' must be the same as in training """ # sanity check for arg in locals().values(): assert not arg is None, 'process_filelist_test, missing an argument, something still None' if os.path.isfile(tmpfilename): print 'ERROR: file', tmpfilename, 'already exists.' return if not os.path.isfile(model): print 'ERROR: model', model, 'does not exist.' return # create kdtree h5model = tables.openFile(model, mode='r') assert h5model.root.data.feats.shape[ 1] == finaldim, 'inconsistency in final dim' kd = ANN.kdtree(h5model.root.data.feats) # create outputfile output = tables.openFile(tmpfilename, mode='a') group = output.createGroup("/", 'data', 'TMP FILE FOR YEAR RECOGNITION') output.createEArray(group, 'year_real', tables.IntAtom(shape=()), (0, ), '', expectedrows=len(filelist)) output.createEArray(group, 'year_pred', tables.Float64Atom(shape=()), (0, ), '', expectedrows=len(filelist)) # random projection ndim = 12 # fixed in this dataset if typecompress == 'picks': randproj = RANDPROJ.proj_point5(ndim * winsize, finaldim) elif typecompress == 'corrcoeff' or typecompress == 'cov': randproj = RANDPROJ.proj_point5(ndim * ndim, finaldim) elif typecompress == 'avgcov': randproj = RANDPROJ.proj_point5(90, finaldim) else: assert False, 'Unknown type of compression: ' + str(typecompress) # go through files cnt_f = 0 for f in filelist: cnt_f += 1 if cnt_f % 5000 == 0: print 'TESTING FILE #' + str(cnt_f) # check file h5 = GETTERS.open_h5_file_read(f) artist_id = GETTERS.get_artist_id(h5) year = GETTERS.get_year(h5) track_id = GETTERS.get_track_id(h5) h5.close() if year <= 0: # probably useless but... continue if typecompress == 'picks': # we have a train artist with a song year, we're good bttimbre = get_bttimbre(f) if bttimbre is None: continue # we even have normal features, awesome! processed_feats = CBTF.extract_and_compress(bttimbre, npicks, winsize, finaldim, randproj=randproj) elif typecompress == 'corrcoeff': h5 = GETTERS.open_h5_file_read(f) timbres = GETTERS.get_segments_timbre(h5).T h5.close() processed_feats = CBTF.corr_and_compress(timbres, finaldim, randproj=randproj) elif typecompress == 'cov': h5 = GETTERS.open_h5_file_read(f) timbres = GETTERS.get_segments_timbre(h5).T h5.close() processed_feats = CBTF.cov_and_compress(timbres, finaldim, randproj=randproj) elif typecompress == 'avgcov': h5 = GETTERS.open_h5_file_read(f) timbres = GETTERS.get_segments_timbre(h5).T h5.close() processed_feats = CBTF.avgcov_and_compress(timbres, finaldim, randproj=randproj) else: assert False, 'Unknown type of compression: ' + str(typecompress) if processed_feats is None: continue if processed_feats.shape[0] == 0: continue # do prediction year_pred = do_prediction(processed_feats, kd, h5model, K) # add pred and ground truth to output if not year_pred is None: output.root.data.year_real.append([year]) output.root.data.year_pred.append([year_pred]) # close output and model del kd h5model.close() output.close() # done return
def func_to_extract_features(filename): """ This function does 3 simple things: - open the song file - get artist ID and put it - close the file """ global cntnan global listfeatures cf = [] h5 = GETTERS.open_h5_file_read(filename) nanfound = 0 #Get target feature: song hotness #FEATURE 0 song_hotness = GETTERS.get_song_hotttnesss(h5) if math.isnan(song_hotness): nanfound = 1 cntnan = cntnan + 1 h5.close() return 0 elif song_hotness > 0.3 and song_hotness < 0.6: h5.close() return 0 else: if song_hotness <= 0.3: hotness_class = 0 elif song_hotness >= 0.6: hotness_class = 1 cf.append(hotness_class) #FEATURE 1 #Get song loudness song_loudness = GETTERS.get_loudness(h5) if math.isnan(song_loudness): nanfound = 1 cntnan = cntnan + 1 else: #cf.append(song_loudness) pass #FEATURE 2 #Get key of the song song_key = GETTERS.get_key(h5) if math.isnan(song_key): nanfound = 1 cntnan = cntnan + 1 else: # cf.append(song_key) pass #FEATURE 3 song_duration = GETTERS.get_duration(h5) if math.isnan(song_duration): nanfound = 1 cntnan = cntnan + 1 else: # cf.append(song_duration) pass #Feature 4 #Get song tempo song_tempo = GETTERS.get_tempo(h5) if math.isnan(song_tempo): nanfound = 1 cntnan = cntnan + 1 else: # cf.append(song_tempo) pass #Feature 5: artist familarity artist_familiarity = GETTERS.get_artist_familiarity(h5) if math.isnan(artist_familiarity): nanfound = 1 cntnan = cntnan + 1 else: # cf.append(artist_familiarity) pass #Feature 6: artist_hotness artist_hotness = GETTERS.get_artist_hotttnesss(h5) if math.isnan(artist_hotness): nanfound = 1 cntnan = cntnan + 1 else: # cf.append(artist_hotness) pass #Feature 7 time signature time_signature = GETTERS.get_time_signature(h5) # cf.append(time_signature) #Feature 8 #Loudness COV loudness_segments = np.array(GETTERS.get_segments_loudness_max(h5)) loudness_cov = abs(variation(loudness_segments)) if math.isnan(loudness_cov): nanfound = 1 cntnan = cntnan + 1 else: # cf.append(loudness_cov) pass #Feature 9 #Beat COV beat_segments = np.array(GETTERS.get_beats_start(h5)) beat_cov = abs(variation(beat_segments)) if math.isnan(beat_cov): nanfound = 1 cntnan = cntnan + 1 else: # cf.append(beat_cov) pass #Feature 10 #Year song_year = GETTERS.get_year(h5) if song_year == 0: nanfound = 1 cntnan = cntnan + 1 else: # cf.append(song_year) pass title = GETTERS.get_title(h5) if title in energydict: audio_summary = energydict[title] energy = audio_summary['energy'] danceability = audio_summary['danceability'] speechiness = audio_summary['speechiness'] liveness = audio_summary['liveness'] else: stitle = re.sub(r'\([^)]*\)','', title) if stitle in energydict: audio_summary = energydict[stitle] energy = audio_summary['energy'] danceability = audio_summary['danceability'] speechiness = audio_summary['speechiness'] liveness = audio_summary['liveness'] else: energy = 0.0 danceability = 0.0 speechiness = 0.0 liveness = 0.0 # Feature 11 cf.append(energy) # Feature 12 # cf.append(danceability) # Feature 13 # cf.append(speechiness) # Feature 14 # cf.append(liveness) if nanfound == 0: strlist = list_to_csv(cf) listfeatures.append(strlist) h5.close()
def process_filelist_train(filelist=None,testartists=None,tmpfilename=None, npicks=None,winsize=None,finaldim=None,typecompress='picks'): """ Main function, process all files in the list (as long as their artist is not in testartist) INPUT filelist - a list of song files testartists - set of artist ID that we should not use tmpfilename - where to save our processed features npicks - number of segments to pick per song winsize - size of each segment we pick finaldim - how many values do we keep typecompress - one of 'picks' (win of btchroma), 'corrcoef' (correlation coefficients), 'cov' (covariance) """ # sanity check for arg in locals().values(): assert not arg is None,'process_filelist_train, missing an argument, something still None' if os.path.isfile(tmpfilename): print 'ERROR: file',tmpfilename,'already exists.' return # create outputfile output = tables.openFile(tmpfilename, mode='a') group = output.createGroup("/",'data','TMP FILE FOR YEAR RECOGNITION') output.createEArray(group,'feats',tables.Float64Atom(shape=()),(0,finaldim),'', expectedrows=len(filelist)) output.createEArray(group,'year',tables.IntAtom(shape=()),(0,),'', expectedrows=len(filelist)) output.createEArray(group,'track_id',tables.StringAtom(18,shape=()),(0,),'', expectedrows=len(filelist)) # random projection ndim = 12 # fixed in this dataset if typecompress == 'picks': randproj = RANDPROJ.proj_point5(ndim * winsize, finaldim) elif typecompress == 'corrcoeff' or typecompress == 'cov': randproj = RANDPROJ.proj_point5(ndim * ndim, finaldim) elif typecompress == 'avgcov': randproj = RANDPROJ.proj_point5(90, finaldim) else: assert False,'Unknown type of compression: '+str(typecompress) # iterate over files cnt_f = 0 for f in filelist: cnt_f += 1 # verbose if cnt_f % 50000 == 0: print 'training... checking file #',cnt_f # check file h5 = GETTERS.open_h5_file_read(f) artist_id = GETTERS.get_artist_id(h5) year = GETTERS.get_year(h5) track_id = GETTERS.get_track_id(h5) h5.close() if year <= 0 or artist_id in testartists: continue # we have a train artist with a song year, we're good bttimbre = get_bttimbre(f) if typecompress == 'picks': if bttimbre is None: continue # we even have normal features, awesome! processed_feats = CBTF.extract_and_compress(bttimbre,npicks,winsize,finaldim, randproj=randproj) elif typecompress == 'corrcoeff': h5 = GETTERS.open_h5_file_read(f) timbres = GETTERS.get_segments_timbre(h5).T h5.close() processed_feats = CBTF.corr_and_compress(timbres,finaldim,randproj=randproj) elif typecompress == 'cov': h5 = GETTERS.open_h5_file_read(f) timbres = GETTERS.get_segments_timbre(h5).T h5.close() processed_feats = CBTF.cov_and_compress(timbres,finaldim,randproj=randproj) elif typecompress == 'avgcov': h5 = GETTERS.open_h5_file_read(f) timbres = GETTERS.get_segments_timbre(h5).T h5.close() processed_feats = CBTF.avgcov_and_compress(timbres,finaldim,randproj=randproj) else: assert False,'Unknown type of compression: '+str(typecompress) # save them to tmp file n_p_feats = processed_feats.shape[0] output.root.data.year.append( np.array( [year] * n_p_feats ) ) output.root.data.track_id.append( np.array( [track_id] * n_p_feats ) ) output.root.data.feats.append( processed_feats ) # we're done, close output output.close() return
def process_filelist_train(filelist=None, testartists=None, tmpfilename=None, npicks=None, winsize=None, finaldim=None, typecompress='picks'): """ Main function, process all files in the list (as long as their artist is not in testartist) INPUT filelist - a list of song files testartists - set of artist ID that we should not use tmpfilename - where to save our processed features npicks - number of segments to pick per song winsize - size of each segment we pick finaldim - how many values do we keep typecompress - one of 'picks' (win of btchroma), 'corrcoef' (correlation coefficients), 'cov' (covariance) """ # sanity check for arg in locals().values(): assert not arg is None, 'process_filelist_train, missing an argument, something still None' if os.path.isfile(tmpfilename): print 'ERROR: file', tmpfilename, 'already exists.' return # create outputfile output = tables.openFile(tmpfilename, mode='a') group = output.createGroup("/", 'data', 'TMP FILE FOR YEAR RECOGNITION') output.createEArray(group, 'feats', tables.Float64Atom(shape=()), (0, finaldim), '', expectedrows=len(filelist)) output.createEArray(group, 'year', tables.IntAtom(shape=()), (0, ), '', expectedrows=len(filelist)) output.createEArray(group, 'track_id', tables.StringAtom(18, shape=()), (0, ), '', expectedrows=len(filelist)) # random projection ndim = 12 # fixed in this dataset if typecompress == 'picks': randproj = RANDPROJ.proj_point5(ndim * winsize, finaldim) elif typecompress == 'corrcoeff' or typecompress == 'cov': randproj = RANDPROJ.proj_point5(ndim * ndim, finaldim) elif typecompress == 'avgcov': randproj = RANDPROJ.proj_point5(90, finaldim) else: assert False, 'Unknown type of compression: ' + str(typecompress) # iterate over files cnt_f = 0 for f in filelist: cnt_f += 1 # verbose if cnt_f % 50000 == 0: print 'training... checking file #', cnt_f # check file h5 = GETTERS.open_h5_file_read(f) artist_id = GETTERS.get_artist_id(h5) year = GETTERS.get_year(h5) track_id = GETTERS.get_track_id(h5) h5.close() if year <= 0 or artist_id in testartists: continue # we have a train artist with a song year, we're good bttimbre = get_bttimbre(f) if typecompress == 'picks': if bttimbre is None: continue # we even have normal features, awesome! processed_feats = CBTF.extract_and_compress(bttimbre, npicks, winsize, finaldim, randproj=randproj) elif typecompress == 'corrcoeff': h5 = GETTERS.open_h5_file_read(f) timbres = GETTERS.get_segments_timbre(h5).T h5.close() processed_feats = CBTF.corr_and_compress(timbres, finaldim, randproj=randproj) elif typecompress == 'cov': h5 = GETTERS.open_h5_file_read(f) timbres = GETTERS.get_segments_timbre(h5).T h5.close() processed_feats = CBTF.cov_and_compress(timbres, finaldim, randproj=randproj) elif typecompress == 'avgcov': h5 = GETTERS.open_h5_file_read(f) timbres = GETTERS.get_segments_timbre(h5).T h5.close() processed_feats = CBTF.avgcov_and_compress(timbres, finaldim, randproj=randproj) else: assert False, 'Unknown type of compression: ' + str(typecompress) # save them to tmp file n_p_feats = processed_feats.shape[0] output.root.data.year.append(np.array([year] * n_p_feats)) output.root.data.track_id.append(np.array([track_id] * n_p_feats)) output.root.data.feats.append(processed_feats) # we're done, close output output.close() return
# This script converts the summary H5 files only 300MB to a csv file # Run only on the Master Node since h5_getters cannot open a remote(ie. HDFS) file if __name__ == "__main__": with open("fields.csv", "wb") as f: writer = csv.writer(f) # initialize the csv writer # for each track in the summary file, get the 11 fields and output to csv h5_file = hdf5_getters.open_h5_file_read("msd_summary_file.h5") for k in range(1000000): print "index!!!: ", k id = hdf5_getters.get_track_id(h5_file, k) # get track_id TRA13e39.. title = hdf5_getters.get_title(h5_file, k) # get song title artist_name = hdf5_getters.get_artist_name(h5_file, k) year = int(hdf5_getters.get_year(h5_file, k)) hotness = float(hdf5_getters.get_song_hotttnesss(h5_file, k)) artist_familiarity = float(hdf5_getters.get_artist_familiarity(h5_file, k)) f5 = int(hdf5_getters.get_key(h5_file, k)) # get key f2 = float(hdf5_getters.get_loudness(h5_file, k)) # get loudness f1 = float(hdf5_getters.get_tempo(h5_file, k)) # get tempo f4 = int(hdf5_getters.get_duration(h5_file, k)) # get duration f3 = float(hdf5_getters.get_time_signature(h5_file, k)) # get time signature # Get rid of missing info and change invalid numbers for meta data if not artist_name: artist_name = "unknown" if not artist_familiarity: artist_familiarity = 0.0
def data_to_flat_file(basedir,ext='.h5') : """This function extract the information from the tables and creates the flat file.""" count = 0; #song counter list_to_write= [] row_to_write = "" writer = csv.writer(open("metadata_wholeA.csv", "wb")) for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root,'*'+ext)) for f in files: print f #the name of the file h5 = hdf5_getters.open_h5_file_read(f) title = hdf5_getters.get_title(h5) title= title.replace('"','') comma=title.find(',') #eliminating commas in the title if comma != -1: print title time.sleep(1) album = hdf5_getters.get_release(h5) album= album.replace('"','') #eliminating commas in the album comma=album.find(',') if comma != -1: print album time.sleep(1) artist_name = hdf5_getters.get_artist_name(h5) comma=artist_name.find(',') if comma != -1: print artist_name time.sleep(1) artist_name= artist_name.replace('"','') #eliminating double quotes duration = hdf5_getters.get_duration(h5) samp_rt = hdf5_getters.get_analysis_sample_rate(h5) artist_7digitalid = hdf5_getters.get_artist_7digitalid(h5) artist_fam = hdf5_getters.get_artist_familiarity(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_fam) == True: artist_fam=-1 artist_hotness= hdf5_getters.get_artist_hotttnesss(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_hotness) == True: artist_hotness=-1 artist_id = hdf5_getters.get_artist_id(h5) artist_lat = hdf5_getters.get_artist_latitude(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_lat) == True: artist_lat=-1 artist_loc = hdf5_getters.get_artist_location(h5) #checks artist_loc to see if it is a hyperlink if it is set as empty string artist_loc = artist_loc.replace(",", "\,"); if artist_loc.startswith("<a"): artist_loc = "" if len(artist_loc) > 100: artist_loc = "" artist_lon = hdf5_getters.get_artist_longitude(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_lon) == True: artist_lon=-1 artist_mbid = hdf5_getters.get_artist_mbid(h5) artist_pmid = hdf5_getters.get_artist_playmeid(h5) audio_md5 = hdf5_getters.get_audio_md5(h5) danceability = hdf5_getters.get_danceability(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(danceability) == True: danceability=-1 end_fade_in =hdf5_getters.get_end_of_fade_in(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(end_fade_in) == True: end_fade_in=-1 energy = hdf5_getters.get_energy(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(energy) == True: energy=-1 song_key = hdf5_getters.get_key(h5) key_c = hdf5_getters.get_key_confidence(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(key_c) == True: key_c=-1 loudness = hdf5_getters.get_loudness(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(loudness) == True: loudness=-1 mode = hdf5_getters.get_mode(h5) mode_conf = hdf5_getters.get_mode_confidence(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(mode_conf) == True: mode_conf=-1 release_7digitalid = hdf5_getters.get_release_7digitalid(h5) song_hot = hdf5_getters.get_song_hotttnesss(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(song_hot) == True: song_hot=-1 song_id = hdf5_getters.get_song_id(h5) start_fade_out = hdf5_getters.get_start_of_fade_out(h5) tempo = hdf5_getters.get_tempo(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(tempo) == True: tempo=-1 time_sig = hdf5_getters.get_time_signature(h5) time_sig_c = hdf5_getters.get_time_signature_confidence(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(time_sig_c) == True: time_sig_c=-1 track_id = hdf5_getters.get_track_id(h5) track_7digitalid = hdf5_getters.get_track_7digitalid(h5) year = hdf5_getters.get_year(h5) bars_c = hdf5_getters.get_bars_confidence(h5) bars_c_avg= get_avg(bars_c) bars_c_max= get_max(bars_c) bars_c_min = get_min(bars_c) bars_c_stddev= get_stddev(bars_c) bars_c_count = get_count(bars_c) bars_c_sum = get_sum(bars_c) bars_start = hdf5_getters.get_bars_start(h5) bars_start_avg = get_avg(bars_start) bars_start_max= get_max(bars_start) bars_start_min = get_min(bars_start) bars_start_stddev= get_stddev(bars_start) bars_start_count = get_count(bars_start) bars_start_sum = get_sum(bars_start) beats_c = hdf5_getters.get_beats_confidence(h5) beats_c_avg= get_avg(beats_c) beats_c_max= get_max(beats_c) beats_c_min = get_min(beats_c) beats_c_stddev= get_stddev(beats_c) beats_c_count = get_count(beats_c) beats_c_sum = get_sum(beats_c) beats_start = hdf5_getters.get_beats_start(h5) beats_start_avg = get_avg(beats_start) beats_start_max= get_max(beats_start) beats_start_min = get_min(beats_start) beats_start_stddev= get_stddev(beats_start) beats_start_count = get_count(beats_start) beats_start_sum = get_sum(beats_start) sec_c = hdf5_getters.get_sections_confidence(h5) sec_c_avg= get_avg(sec_c) sec_c_max= get_max(sec_c) sec_c_min = get_min(sec_c) sec_c_stddev= get_stddev(sec_c) sec_c_count = get_count(sec_c) sec_c_sum = get_sum(sec_c) sec_start = hdf5_getters.get_sections_start(h5) sec_start_avg = get_avg(sec_start) sec_start_max= get_max(sec_start) sec_start_min = get_min(sec_start) sec_start_stddev= get_stddev(sec_start) sec_start_count = get_count(sec_start) sec_start_sum = get_sum(sec_start) seg_c = hdf5_getters.get_segments_confidence(h5) seg_c_avg= get_avg(seg_c) seg_c_max= get_max(seg_c) seg_c_min = get_min(seg_c) seg_c_stddev= get_stddev(seg_c) seg_c_count = get_count(seg_c) seg_c_sum = get_sum(seg_c) seg_loud_max = hdf5_getters.get_segments_loudness_max(h5) seg_loud_max_avg= get_avg(seg_loud_max) seg_loud_max_max= get_max(seg_loud_max) seg_loud_max_min = get_min(seg_loud_max) seg_loud_max_stddev= get_stddev(seg_loud_max) seg_loud_max_count = get_count(seg_loud_max) seg_loud_max_sum = get_sum(seg_loud_max) seg_loud_max_time = hdf5_getters.get_segments_loudness_max_time(h5) seg_loud_max_time_avg= get_avg(seg_loud_max_time) seg_loud_max_time_max= get_max(seg_loud_max_time) seg_loud_max_time_min = get_min(seg_loud_max_time) seg_loud_max_time_stddev= get_stddev(seg_loud_max_time) seg_loud_max_time_count = get_count(seg_loud_max_time) seg_loud_max_time_sum = get_sum(seg_loud_max_time) seg_loud_start = hdf5_getters.get_segments_loudness_start(h5) seg_loud_start_avg= get_avg(seg_loud_start) seg_loud_start_max= get_max(seg_loud_start) seg_loud_start_min = get_min(seg_loud_start) seg_loud_start_stddev= get_stddev(seg_loud_start) seg_loud_start_count = get_count(seg_loud_start) seg_loud_start_sum = get_sum(seg_loud_start) seg_pitch = hdf5_getters.get_segments_pitches(h5) pitch_size = len(seg_pitch) seg_start = hdf5_getters.get_segments_start(h5) seg_start_avg= get_avg(seg_start) seg_start_max= get_max(seg_start) seg_start_min = get_min(seg_start) seg_start_stddev= get_stddev(seg_start) seg_start_count = get_count(seg_start) seg_start_sum = get_sum(seg_start) seg_timbre = hdf5_getters.get_segments_timbre(h5) tatms_c = hdf5_getters.get_tatums_confidence(h5) tatms_c_avg= get_avg(tatms_c) tatms_c_max= get_max(tatms_c) tatms_c_min = get_min(tatms_c) tatms_c_stddev= get_stddev(tatms_c) tatms_c_count = get_count(tatms_c) tatms_c_sum = get_sum(tatms_c) tatms_start = hdf5_getters.get_tatums_start(h5) tatms_start_avg= get_avg(tatms_start) tatms_start_max= get_max(tatms_start) tatms_start_min = get_min(tatms_start) tatms_start_stddev= get_stddev(tatms_start) tatms_start_count = get_count(tatms_start) tatms_start_sum = get_sum(tatms_start) #Getting the genres genre_set = 0 #flag to see if the genre has been set or not art_trm = hdf5_getters.get_artist_terms(h5) trm_freq = hdf5_getters.get_artist_terms_freq(h5) trn_wght = hdf5_getters.get_artist_terms_weight(h5) a_mb_tags = hdf5_getters.get_artist_mbtags(h5) genre_indexes=get_genre_indexes(trm_freq) #index of the highest freq final_genre=[] genres_so_far=[] for i in range(len(genre_indexes)): genre_tmp=get_genre(art_trm,genre_indexes[i]) #genre that corresponds to the highest freq genres_so_far=genre_dict.get_genre_in_dict(genre_tmp) #getting the genre from the dictionary if len(genres_so_far) != 0: for i in genres_so_far: final_genre.append(i) genre_set=1 #genre was found in dictionary if genre_set == 1: col_num=[] for genre in final_genre: column=int(genre) #getting the column number of the genre col_num.append(column) genre_array=genre_columns(col_num) #genre array else: genre_array=genre_columns(-1) #the genre was not found in the dictionary transpose_pitch= seg_pitch.transpose() #this is to tranpose the matrix,so we can have 12 rows #arrays containing the aggregate values of the 12 rows seg_pitch_avg=[] seg_pitch_max=[] seg_pitch_min=[] seg_pitch_stddev=[] seg_pitch_count=[] seg_pitch_sum=[] i=0 #Getting the aggregate values in the pitches array for row in transpose_pitch: seg_pitch_avg.append(get_avg(row)) seg_pitch_max.append(get_max(row)) seg_pitch_min.append(get_min(row)) seg_pitch_stddev.append(get_stddev(row)) seg_pitch_count.append(get_count(row)) seg_pitch_sum.append(get_sum(row)) i=i+1 #extracting information from the timbre array transpose_timbre = seg_pitch.transpose() #tranposing matrix, to have 12 rows #arrays containing the aggregate values of the 12 rows seg_timbre_avg=[] seg_timbre_max=[] seg_timbre_min=[] seg_timbre_stddev=[] seg_timbre_count=[] seg_timbre_sum=[] i=0 for row in transpose_timbre: seg_timbre_avg.append(get_avg(row)) seg_timbre_max.append(get_max(row)) seg_timbre_min.append(get_min(row)) seg_timbre_stddev.append(get_stddev(row)) seg_timbre_count.append(get_count(row)) seg_timbre_sum.append(get_sum(row)) i=i+1 #Writing to the flat file writer.writerow([title,album,artist_name,year,duration,seg_start_count, tempo]) h5.close() count=count+1; print count;
#!/usr/bin/env python from context import * from settings.filemgmt import fileManager from settings.paths import MSD_TID_YEAR, MSD_FILES, sep from hdf5_getters import open_h5_file_read, get_year if __name__ == '__main__': hdf5Files = fileManager(MSD_FILES, 'r').split('\n') msdData = [] for file in hdf5Files: h5 = open_h5_file_read(file) title = str(file.split('/')[-1].partition('.')[0]) year = get_year(h5) if year > 1960: msdData.append( title + sep + str(year) ) h5.close() fileManager(MSD_TID_YEAR, 'w', '\n'.join(msdData))
def writeSingleHDF5FileToTxtFile(songHDF5FileName): global maximumArtistNameLen global maximumArtistTagLen global maximumSongNameLen global maximumAlbumNameLen """ This function does 3 simple things: - open the song file - get artist ID and put it - close the file """ songHDF5File = GETTERS.open_h5_file_read(songHDF5FileName) songID = GETTERS.get_song_id(songHDF5File) songName = GETTERS.get_title(songHDF5File) artistID = GETTERS.get_artist_id(songHDF5File) songAlbum = GETTERS.get_release(songHDF5File) songYear = GETTERS.get_year(songHDF5File) songTempo = GETTERS.get_tempo(songHDF5File) songDanceability = GETTERS.get_danceability(songHDF5File) songDuration = GETTERS.get_duration(songHDF5File) songEnergy = GETTERS.get_energy(songHDF5File) songKey = GETTERS.get_key(songHDF5File) songLoudness = GETTERS.get_loudness(songHDF5File) songMode = GETTERS.get_mode(songHDF5File) songTimeSignature = GETTERS.get_time_signature(songHDF5File) songsTableFile.write(songID + "\t" + songName + "\t" + artistID + "\t" + songAlbum + "\t" + str(songYear) + "\t" + str(songTempo) + "\t" + str(songDanceability) + "\t" + str(songDuration) + "\t" + str(songEnergy) + "\t" + str(songKey) + "\t" + str(songLoudness) + "\t" + str(songMode) + "\t" + str(songTimeSignature) + "\t\n") artistName = GETTERS.get_artist_name(songHDF5File) artistFamiliarity = GETTERS.get_artist_familiarity(songHDF5File) artistTagsArray = GETTERS.get_artist_mbtags(songHDF5File) artistsTableFile.write(artistID + "\t" + artistName + "\t" + str(artistFamiliarity) + "\t\n") if len(songName) > maximumSongNameLen: maximumSongNameLen = len(songName) if len(songAlbum) > maximumAlbumNameLen: maximumAlbumNameLen = len(songAlbum) if len(artistName) > maximumArtistNameLen: maximumArtistNameLen = len(artistName) for artistTag in artistTagsArray: if artistTag in allowedTagsSet: artistsTagsTableFile.write(artistID + "\t" + artistTag + "\t\n") if artistTag not in tagsSet: tagsTableFile.write(artistTag + "\t\n") tagsSet.add(artistTag) if len(artistTag) > maximumArtistTagLen: maximumArtistTagLen = len(artistTag) similarArtists = GETTERS.get_similar_artists(songHDF5File) for similarArtist in similarArtists: similarArtistsPairsList.add((artistID, similarArtist)) artistsIDsSet.add(artistID) artistsNamesSet.add(artistName) songHDF5File.close()
'dance and electronica','electronic'] # relevant metadata for all EDM songs found in the MSD all_song_data = {} pitch_segs_data = [] count = 0 start_time = time.time() ''' preprocessing before actually running the dirichlet process takes much more time than running the dirichlet process on data ''' for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root, '*' + ext)) for f in files: h5 = hdf5_getters.open_h5_file_read(f) # if year unknown, throw out sample if hdf5_getters.get_year(h5) == 0: h5.close() continue if any(tag in str(hdf5_getters.get_artist_mbtags(h5)) for tag in target_genres): print 'found electronic music song at {0} seconds'.format( time.time() - start_time) count += 1 chord_changes = [0 for i in range(0, 192)] segments_pitches_old = hdf5_getters.get_segments_pitches(h5) segments_pitches_old_smoothed = [] smoothing_factor = max( 3, round( len(segments_pitches_old) * 60.0 / (hdf5_getters.get_tempo(h5) *
def get_fields(files): tracks = [] counts = {} field_counts = [] for file in files: h5 = hdf5_getters.open_h5_file_read(file) t = {} t['artist_familiarity'] = hdf5_getters.get_artist_familiarity( h5) # estimation t['artist_hotttnesss'] = hdf5_getters.get_artist_hotttnesss( h5) # estimation t['artist_name'] = hdf5_getters.get_artist_name(h5) # artist name t['release'] = hdf5_getters.get_release(h5) # album name t['title'] = hdf5_getters.get_title(h5) # title t['len_similar_artists'] = len( hdf5_getters.get_similar_artists(h5)) # number of similar artists t['analysis_sample_rate'] = hdf5_getters.get_analysis_sample_rate( h5) # sample rate of the audio used ????????? t['duration'] = hdf5_getters.get_duration(h5) # seconds t['key'] = hdf5_getters.get_key(h5) # key the song is in t['key_confidence'] = hdf5_getters.get_key_confidence( h5) # confidence measure t['loudness'] = hdf5_getters.get_loudness(h5) # overall loudness in dB t['mode_confidence'] = hdf5_getters.get_mode_confidence( h5) # confidence measure t['start_of_fade_out'] = hdf5_getters.get_start_of_fade_out( h5) # time in sec t['tempo'] = hdf5_getters.get_tempo(h5) # estimated tempo in BPM t['time_signature'] = hdf5_getters.get_time_signature( h5) # estimate of number of beats per bar, e.g. 4 t['year'] = hdf5_getters.get_year( h5) # song release year from MusicBrainz or 0 timbre = hdf5_getters.get_segments_timbre( h5) # 2D float array, texture features (MFCC+PCA-like) t['segments_timbre'] = timbre t['timbre_avg'] = timbre.mean(axis=0) # list of 12 averages cov_mat_timbre = np.cov(timbre, rowvar=False) cov_timbre = [] for i in range(len(cov_mat_timbre)): for j in range(len(cov_mat_timbre) - i): cov_timbre.append(cov_mat_timbre[i][j]) t['timbre_cov'] = cov_timbre # list of 78 covariances pitch = hdf5_getters.get_segments_pitches( h5) # 2D float array, chroma feature, one value per note t['segments_pitch'] = pitch t['pitch_avg'] = pitch.mean(axis=0) # list of 12 averages cov_mat_pitch = np.cov(pitch, rowvar=False) cov_pitch = [] for i in range(len(cov_mat_pitch)): for j in range(len(cov_mat_pitch) - i): cov_pitch.append(cov_mat_timbre[i][j]) t['pitch_cov'] = cov_pitch # list of 78 covariances # seg_pitch = hdf5_getters.get_segments_pitches(h5) # 2D float array, chroma feature, one value per note # print(seg_pitch.shape) # t['artist_latitude'] = hdf5_getters.get_artist_latitude(h5) # float, ???????????????????????????????????????? # t['artist_longitude'] = hdf5_getters.get_artist_longitude(h5) # float, ?????????????????????????????????????? # t['artist_location'] = hdf5_getters.get_artist_location(h5) # location name # t['song_hotttnesss'] = hdf5_getters.get_song_hotttnesss(h5) # estimation # t['danceability'] = hdf5_getters.get_danceability(h5) # estimation # t['end_of_fade_in'] = hdf5_getters.get_end_of_fade_in(h5) # seconds at the beginning of the song # t['energy'] = hdf5_getters.get_energy(h5) # energy from listener point of view # t['mode'] = hdf5_getters.get_mode(h5) # major or minor # t['time_signature_confidence'] = hdf5_getters.get_time_signature_confidence(h5) # confidence measure # t['artist_mbtags_count'] = len(hdf5_getters.get_artist_mbtags_count(h5)) # array int, tag counts for musicbrainz tags # bad types or non arithmatic numbers ''' # t['audio_md5'] = hdf5_getters.get_audio_md5(h5) # hash code of the audio used for the analysis by The Echo Nest # t['artist_terms_weight'] = hdf5_getters.get_artist_terms_weight(h5) # array float, echonest tags weight ????? # t['artist_terms_freq'] = hdf5_getters.get_artist_terms_freq(h5) # array float, echonest tags freqs ?????????? # t['artist_terms'] = hdf5_getters.get_artist_terms(h5) # array string, echonest tags ????????????????????????? # t['artist_id'] = hdf5_getters.get_artist_id(h5) # echonest id # t['artist_mbid'] = hdf5_getters.get_artist_mbid(h5) # musicbrainz id # t['artist_playmeid'] = hdf5_getters.get_artist_playmeid(h5) # playme id # t['artist_7digitalid'] = hdf5_getters.get_artist_7digitalid(h5) # 7digital id # t['release_7digitalid'] = hdf5_getters.get_release_7digitalid(h5) # 7digital id # t['song_id'] = hdf5_getters.get_song_id(h5) # echonest id # t['track_7digitalid'] = hdf5_getters.get_track_7digitalid(h5) # 7digital id # t['similar_artists'] = hdf5_getters.get_similar_artists(h5) # string array of sim artist ids # t['track_id'] = hdf5_getters.get_track_id(h5) # echonest track id # t['segments_start'] = hdf5_getters.get_segments_start(h5) # array floats, musical events, ~ note onsets # t['segments_confidence'] = hdf5_getters.get_segments_confidence(h5) # array floats, confidence measure # t['segments_pitches'] = hdf5_getters.get_segments_pitches(h5) # 2D float array, chroma feature, one value per note # t['segments_timbre'] = hdf5_getters.get_segments_timbre(h5) # 2D float array, texture features (MFCC+PCA-like) # t['segments_loudness_max'] = hdf5_getters.get_segments_loudness_max(h5) # float array, max dB value # t['segments_loudness_max_time'] = hdf5_getters.get_segments_loudness_max_time(h5) # float array, time of max dB value, i.e. end of attack # t['segments_loudness_start'] = hdf5_getters.get_segments_loudness_start(h5) # array float, dB value at onset # t['sections_start'] = hdf5_getters.get_sections_start(h5) # array float, largest grouping in a song, e.g. verse # t['sections_confidence'] = hdf5_getters.get_sections_confidence(h5) # array float, confidence measure # t['beats_start'] = hdf5_getters.get_beats_start(h5) # array float, result of beat tracking # t['beats_confidence'] = hdf5_getters.get_beats_confidence(h5) # array float, confidence measure # t['bars_start'] = hdf5_getters.get_bars_start(h5) # array float, beginning of bars, usually on a beat # t['bars_confidence'] = hdf5_getters.get_bars_confidence(h5) # array float, confidence measure # t['tatums_start'] = hdf5_getters.get_tatums_start(h5) # array float, smallest rythmic element # t['tatums_confidence'] = hdf5_getters.get_tatums_confidence(h5) # array float, confidence measure # t['artist_mbtags'] = hdf5_getters.get_artist_mbtags(h5) # array string, tags from musicbrainz.org ''' h5.close() for key, value in t.items(): if isinstance(value, float) and math.isnan(value): pass if type(value) is np.ndarray: if key in counts.keys(): counts[key] += 1 else: counts[key] = 1 elif value: if key in counts.keys(): counts[key] += 1 else: counts[key] = 1 elif key not in counts.keys(): counts[key] = 0 count = 0 for key, value in t.items(): if isinstance(value, float) and math.isnan(value): pass elif type(value) is np.ndarray: count += 1 elif value: count += 1 field_counts.append(count) # progress bar if num_of_tracks >= 100: i = files.index(file) + 1 scale = num_of_tracks / 100 if i % math.ceil(len(files) * .05) == 0: sys.stdout.write('\r') # the exact output you're looking for: sys.stdout.write("Loading dataframe: [%-100s] %d%%" % ('=' * int(i // scale), 1 / scale * i)) sys.stdout.flush() time.sleep(.01) tracks.append(t) print() return tracks, counts, field_counts
song_id = hdf5_getters.get_song_id(h5, songidx=row).decode('UTF-8') # artist = hdf5_getters.get_artist_name(h5,songidx=row).decode('UTF-8') # title= hdf5_getters.get_title(h5,songidx=row)#.decode('UTF-8') # artist = "".join(c for c in unicodedata.normalize('NFD', str(artist.decode("utf8"))) if unicodedata.category(c) != "Mn") # title = "".join(c for c in unicodedata.normalize('NFD', str(title.decode("utf8"))) if unicodedata.category(c) != "Mn") #single number features danceability = hdf5_getters.get_danceability(h5, songidx=row) duration = hdf5_getters.get_duration(h5, songidx=row) energy = hdf5_getters.get_energy(h5, songidx=row) loudness = hdf5_getters.get_loudness(h5, songidx=row) musicalKey = hdf5_getters.get_key(h5, songidx=row) mode = hdf5_getters.get_mode(h5, songidx=row) tempo = hdf5_getters.get_tempo(h5, songidx=row) time_signature = hdf5_getters.get_time_signature(h5, songidx=row) year = hdf5_getters.get_year(h5, songidx=row) song_hottness = hdf5_getters.get_song_hotttnesss(h5, songidx=row) end_of_fade_in = hdf5_getters.get_end_of_fade_in(h5, songidx=row) start_of_fade_out = hdf5_getters.get_start_of_fade_out(h5, songidx=row) #timestamp features #take last element and divide by length to get beats/unit time, segments/unit_time bars_start = hdf5_getters.get_bars_start(h5, songidx=row) beats_start = hdf5_getters.get_beats_start(h5, songidx=row) sections_start = hdf5_getters.get_sections_start(h5, songidx=row) tatums_start = hdf5_getters.get_tatums_start(h5, songidx=row) segments_start = hdf5_getters.get_segments_start(h5, songidx=row) if len(bars_start) == 0: bars_start = 0. else: bars_start = bars_start[-1] / len(bars_start) if len(beats_start) == 0: beats_start = 0. else: beats_start = beats_start[-1] / len(beats_start)
if name.endswith(".h5"): if process_completion % 10000 == 0: print "done :", process_completion/10000.0, "%" process_completion += 1 else: process_completion += 1 tempPath = os.path.abspath(os.path.join(root,name)) h5file = hdf5_getters.open_h5_file_read(tempPath) #data extract 1 track_id_str = hdf5_getters.get_track_id(h5file) song_id_str = hdf5_getters.get_song_id(h5file) album_name_str = unicodedata.normalize('NFKD', unicode(hdf5_getters.get_release(h5file),encoding='ASCII',errors='ignore')) album_name_str = str(album_name_str).replace(","," ").replace("'","").replace("-"," ").replace("("," ").replace(")"," ").replace("/"," ").replace("\\"," ") year_str = str(hdf5_getters.get_year(h5file)) counter += 1 file_io_counter += 1 if file_io_counter % 100 == 0: if counter == 1: my_array_data_extract_1 = numpy.array([track_id_str, song_id_str, album_name_str, year_str]) else : my_array_data_extract_1 = numpy.vstack((my_array_data_extract_1,numpy.array([track_id_str, song_id_str, album_name_str, year_str]))) f_handle = file('msd_data_extract_1.bin','a') numpy.savetxt(f_handle, my_array_data_extract_1, delimiter='|',fmt='%s') f_handle.close() del my_array_data_extract_1 counter = 0
def getData(starting_point): starting = starting_point * 10000 files = glob.glob('/mnt/snap/data/*/*/*/*.h5') file_one_round = files[starting:starting + 10000] artist_ids = [] song_beats_persecond = [] song_duration = [] song_end_fade_in = [] song_start_fade_out = [] song_key = [] song_loudness = [] song_segments_loudness_max = [] song_segments_loudness_min = [] song_segments_loudness_med = [] song_segments_loudness_time_max = [] song_segments_loudness_time_min = [] song_segments_loudness_time_med = [] song_mode = [] song_sections_start = [] song_pitches = [] song_timbre = [] song_tempo = [] song_time_signature = [] song_title = [] artist_name = [] year = [] idx = np.triu_indices(12) #count = 1 for f in file_one_round: h5 = HDF5.open_h5_file_read(f) songYear = g.get_year(h5) if songYear < 1990: continue artist_id = g.get_artist_id(h5) song_beat = (g.get_beats_start(h5)).tolist() songDuration = g.get_duration(h5) song_beat_persecond = float(len(song_beat)) / songDuration song_end_fadein = g.get_end_of_fade_in(h5) song_start_fadeout = g.get_start_of_fade_out(h5) songKey = g.get_key(h5) songLoudness = g.get_loudness(h5) song_loudness_max = (g.get_segments_loudness_max(h5)) // 10 song_loudness_antilog = np.power(10, song_loudness_max) song_segmentsLoudness_max = np.amax(song_loudness_antilog) song_segmentsLoudness_min = np.amin(song_loudness_antilog) song_segmentsLoudness_med = np.median(song_loudness_antilog) song_segmentsLoudness_max_time = ( g.get_segments_loudness_max_time(h5)).tolist() song_loudness_time = np.multiply(song_loudness_antilog, song_segmentsLoudness_max_time) song_segmentsLoudnessTime_max = np.amax(song_loudness_time) song_segmentsLoudnessTime_min = np.amin(song_loudness_time) song_segmentsLoudnessTime_med = np.median(song_loudness_time) songMode = g.get_mode(h5) song_sectionsStart = (g.get_sections_start(h5)).tolist() songPitches = g.get_segments_pitches(h5) songPitches_cov = np.cov(songPitches, rowvar=False) songPitches_mean = np.mean(songPitches, axis=0) #print(songPitches_cov.shape) songTimbre = g.get_segments_timbre(h5) songTimbre_cov = np.cov(songTimbre, rowvar=False) songTimbre_mean = np.mean(songTimbre, axis=0) #print(songTimbre_cov.shape) songTempo = g.get_tempo(h5) songTime_signature = g.get_time_signature(h5) songTitle = g.get_title(h5) artistName = g.get_artist_name(h5) artist_ids.append(artist_id) song_beats_persecond.append(song_beat_persecond) song_duration.append(songDuration) song_end_fade_in.append(song_end_fadein) song_start_fade_out.append(song_start_fadeout) song_key.append(songKey) song_loudness.append(songLoudness) song_segments_loudness_max.append(song_segmentsLoudness_max) song_segments_loudness_min.append(song_segmentsLoudness_min) song_segments_loudness_med.append(song_segmentsLoudness_med) song_segments_loudness_time_max.append(song_segmentsLoudnessTime_max) song_segments_loudness_time_min.append(song_segmentsLoudnessTime_min) song_segments_loudness_time_med.append(song_segmentsLoudnessTime_med) song_mode.append(songMode) song_sections_start.append(song_sectionsStart) pitches_mean_cov = (songPitches_cov[idx]).tolist() pitches_mean_cov.extend((songPitches_mean).tolist()) song_pitches.append(pitches_mean_cov) timbre_mean_cov = (songTimbre_cov[idx]).tolist() timbre_mean_cov.extend((songTimbre_mean).tolist()) song_timbre.append(timbre_mean_cov) song_tempo.append(songTempo) song_time_signature.append(songTime_signature) song_title.append(songTitle) artist_name.append(artistName) year.append(songYear) #print(count) #count = count + 1 h5.close() #def createDictsFrom2DArray(dictionary, colName, featureList): # for i in range(0,12): # dictionary[colName+str(i)] = featureList[i] #i = 1 #for t in itertools.izip_longest(*featureList): # dictionary[colName+str(i)] = t # i = i + 1 # return dictionary data = collections.OrderedDict() data['year'] = year data['artist_name'] = artist_name data['artist_id'] = artist_ids data['song_title'] = song_title data['song_beats_persecond'] = song_beats_persecond data['song_duration'] = song_duration data['song_end_fade_in'] = song_end_fade_in data['song_start_fade_out'] = song_start_fade_out data['song_key'] = song_key data['song_loudness'] = song_loudness data['song_loudness_max'] = song_segments_loudness_max data['song_loudness_min'] = song_segments_loudness_min data['song_loudness_med'] = song_segments_loudness_med data['song_loudness_time_max'] = song_segments_loudness_time_max data['song_loudness_time_min'] = song_segments_loudness_time_min data['song_loudness_time_med'] = song_segments_loudness_time_med data['song_mode'] = song_mode data['song_tempo'] = song_tempo data['song_time_signature'] = song_time_signature data = createDictsFrom1DArray(data, 'pitches', song_pitches) data = createDictsFrom1DArray(data, 'timbre', song_timbre) data = createDictsFrom1DArray(data, 'sections_start', song_sections_start) df = pd.DataFrame(data) print('before return ' + str(starting_point)) return df
cursor.execute("INSERT INTO artist_genres VALUES ('" + artist_id + "','" + term + "')") for tag in mbtags: tag = tag.replace("'","") cursor.execute("SELECT * FROM artist_genres WHERE artist_id='" + artist_id + "' AND genre ='" + tag + "'") if cursor.rowcount != 1: cursor.execute("INSERT INTO artist_genres VALUES ('" + artist_id + "','" + tag + "')") ''' Store track tuples ''' track_id = h.get_track_id(h5,0) track_title = h.get_title(h5,0) track_title = track_title.replace("'","") track_album = h.get_release(h5,0) track_album = track_album.replace("'","") track_duration = str(h.get_duration(h5,0)) track_year = str(h.get_year(h5,0)) cursor.execute("SELECT * FROM track WHERE track_id = '" + track_id + "'") rs = cursor.fetchall() if cursor.rowcount != 1: cursor.execute("INSERT INTO track VALUES ('" + track_id + "','" + track_title + "','" + artist_id + "','" + artist_name + "','" + track_album + "'," + track_duration + "," + track_year + ");") ''' Store track_analysis tuples ''' print ("Track ID: " + h.get_track_id(h5,0)) track_tempo = str(h.get_tempo(h5,0)) track_key = str(h.get_key(h5,0)) track_danceability = str(h.get_danceability(h5,0)) if track_danceability == "nan": track_danceability = "0.0" track_hottness = str(h.get_song_hotttnesss(h5,0)) if track_hottness == "nan":
def convert_to_csv(): i = 0 data = [] target = [] count = 0 with open('data_timbre.csv', 'w+') as f: with open('target_timbre.csv', 'w+') as f2: writer = csv.writer(f) target_writer = csv.writer(f2) for root, dirs, files in os.walk(msd_subset_data_path): files = glob.glob(os.path.join(root,'*.h5')) for f in sorted(files): try: # Opening is very prone to causing exceptions, we'll just skip file if exception is thrown h5 = getter.open_h5_file_read(f) year = getter.get_year(h5) if year: count +=1 analysis_file = open('current_analysis_status.txt','a') update = "Currently at file name: " + str(f) + " and at number " + str(count) + "\n" analysis_file.write(update) print update analysis_file.close() target.append([year]) row = [] timbre = getter.get_segments_timbre(h5) segstarts = getter.get_segments_start(h5) btstarts = getter.get_beats_start(h5) duration = getter.get_duration(h5) end_of_fade_in = getter.get_end_of_fade_in(h5) key = getter.get_key(h5) key_confidence = getter.get_key_confidence(h5) loudness = getter.get_loudness(h5) start_of_fade_out = getter.get_start_of_fade_out(h5) tempo = getter.get_tempo(h5) time_signature = getter.get_time_signature(h5) time_signature_confidence = getter.get_time_signature_confidence(h5) h5.close() # VERY IMPORTANT segstarts = np.array(segstarts).flatten() btstarts = np.array(btstarts).flatten() bttimbre = align_feats(timbre.T, segstarts, btstarts, duration, end_of_fade_in, key, key_confidence, loudness, start_of_fade_out, tempo, time_signature, time_signature_confidence) if bttimbre is None: continue # Skip this track, some features broken npicks, winsize, finaldim = 12, 12, 144 # Calculated by 12 * 12. 12 is fixed as number of dimensions. processed_feats = extract_and_compress(bttimbre, npicks, winsize, finaldim) n_p_feats = processed_feats.shape[0] if processed_feats is None: continue # Skip this track, some features broken row = processed_feats.flatten() if len(row) != 12*144: # 12 dimensions * 144 features per dimension continue # Not enough features year_row = np.array([year]) if row.any() and year_row.any(): writer.writerow(row) target_writer.writerow(year_row) i+=1 else: h5.close() except Exception: pass print 'Finished!' analysis_file = open('current_analysis_status.txt','a') analysis_file.write('Done!') analysis_file.close() return
# Get danceability danceability = hdf5_getters.get_danceability(h5) # Get duration duration = hdf5_getters.get_duration(h5) # Get energy #*****useless... column is filled with 0's? energy = hdf5_getters.get_energy(h5) # Get loudness loudness = hdf5_getters.get_loudness(h5) # Get year year = hdf5_getters.get_year(h5) # Get tempo tempo = hdf5_getters.get_tempo(h5) ######################################################### # Get analysis sample rate analysis_rate = hdf5_getters.get_analysis_sample_rate(h5) # Get end of fade in end_of_fade_in = hdf5_getters.get_end_of_fade_in(h5) # Get key key = hdf5_getters.get_key(h5)
def classify(h5): output_array={} # duration duration=hdf5_getters.get_duration(h5) output_array["duration"]=duration ### ADDED VALUE TO ARRAY # number of bars bars=hdf5_getters.get_bars_start(h5) num_bars=len(bars) output_array["num_bars"]=num_bars ### ADDED VALUE TO ARRAY # mean and variance in bar length bar_length=numpy.ediff1d(bars) variance_bar_length=numpy.var(bar_length) output_array["variance_bar_length"]=variance_bar_length ### ADDED VALUE TO ARRAY # number of beats beats=hdf5_getters.get_beats_start(h5) num_beats=len(beats) output_array["num_beats"]=num_beats ### ADDED VALUE TO ARRAY # mean and variance in beats length beats_length=numpy.ediff1d(beats) variance_beats_length=numpy.var(bar_length) output_array["variance_beats_length"]=variance_beats_length ### ADDED VALUE TO ARRAY # danceability danceability=hdf5_getters.get_danceability(h5) output_array["danceability"]=danceability ### ADDED VALUE TO ARRAY # end of fade in end_of_fade_in=hdf5_getters.get_end_of_fade_in(h5) output_array["end_of_fade_in"]=end_of_fade_in ### ADDED VALUE TO ARRAY # energy energy=hdf5_getters.get_energy(h5) output_array["energy"]=energy ### ADDED VALUE TO ARRAY # key key=hdf5_getters.get_key(h5) output_array["key"]=int(key) ### ADDED VALUE TO ARRAY # loudness loudness=hdf5_getters.get_loudness(h5) output_array["loudness"]=loudness ### ADDED VALUE TO ARRAY # mode mode=hdf5_getters.get_mode(h5) output_array["mode"]=int(mode) ### ADDED VALUE TO ARRAY # number sections sections=hdf5_getters.get_sections_start(h5) num_sections=len(sections) output_array["num_sections"]=num_sections ### ADDED VALUE TO ARRAY # mean and variance in sections length sections_length=numpy.ediff1d(sections) variance_sections_length=numpy.var(sections) output_array["variance_sections_length"]=variance_sections_length ### ADDED VALUE TO ARRAY # number segments segments=hdf5_getters.get_segments_start(h5) num_segments=len(segments) output_array["num_segments"]=num_segments ### ADDED VALUE TO ARRAY # mean and variance in segments length segments_length=numpy.ediff1d(segments) variance_segments_length=numpy.var(segments) output_array["variance_segments_length"]=variance_segments_length ### ADDED VALUE TO ARRAY # segment loudness max segment_loudness_max_array=hdf5_getters.get_segments_loudness_max(h5) segment_loudness_max_time_array=hdf5_getters.get_segments_loudness_max_time(h5) segment_loudness_max_index=0 for i in range(len(segment_loudness_max_array)): if segment_loudness_max_array[i]>segment_loudness_max_array[segment_loudness_max_index]: segment_loudness_max_index=i segment_loudness_max=segment_loudness_max_array[segment_loudness_max_index] segment_loudness_max_time=segment_loudness_max_time_array[segment_loudness_max_index] output_array["segment_loudness_max"]=segment_loudness_max ### ADDED VALUE TO ARRAY output_array["segment_loudness_time"]=segment_loudness_max_time ### ADDED VALUE TO ARRAY # POSSIBLE TODO: use average function instead and weight by segment length # segment loudness mean (start) segment_loudness_array=hdf5_getters.get_segments_loudness_start(h5) segment_loudness_mean=numpy.mean(segment_loudness_array) output_array["segment_loudness_mean"]=segment_loudness_mean ### ADDED VALUE TO ARRAY # segment loudness variance (start) segment_loudness_variance=numpy.var(segment_loudness_array) output_array["segment_loudness_variance"]=segment_loudness_variance ### ADDED VALUE TO ARRAY # segment pitches segment_pitches_array=hdf5_getters.get_segments_pitches(h5) segment_pitches_mean=numpy.mean(segment_pitches_array,axis=0).tolist() output_array["segment_pitches_mean"]=segment_pitches_mean # segment pitches variance (start) segment_pitches_variance=numpy.var(segment_pitches_array,axis=0).tolist() output_array["segment_pitches_variance"]=segment_pitches_variance # segment timbres segment_timbres_array=hdf5_getters.get_segments_timbre(h5) segment_timbres_mean=numpy.mean(segment_timbres_array,axis=0).tolist() output_array["segment_timbres_mean"]=segment_timbres_mean # segment timbres variance (start) segment_timbres_variance=numpy.var(segment_timbres_array,axis=0).tolist() output_array["segment_timbres_variance"]=segment_timbres_variance # hotttnesss hottness=hdf5_getters.get_song_hotttnesss(h5,0) output_array["hottness"]=hottness ### ADDED VALUE TO ARRAY # duration-start of fade out start_of_fade_out=hdf5_getters.get_start_of_fade_out(h5) fade_out=duration-start_of_fade_out output_array["fade_out"]=fade_out ### ADDED VALUE TO ARRAY # tatums tatums=hdf5_getters.get_tatums_start(h5) num_tatums=len(tatums) output_array["num_tatums"]=num_tatums ### ADDED VALUE TO ARRAY # mean and variance in tatums length tatums_length=numpy.ediff1d(tatums) variance_tatums_length=numpy.var(tatums_length) output_array["variance_tatums_length"]=variance_tatums_length ### ADDED VALUE TO ARRAY # tempo tempo=hdf5_getters.get_tempo(h5) output_array["tempo"]=tempo ### ADDED VALUE TO ARRAY # time signature time_signature=hdf5_getters.get_time_signature(h5) output_array["time_signature"]=int(time_signature) ### ADDED VALUE TO ARRAY # year year=hdf5_getters.get_year(h5) output_array["year"]=int(year) ### ADDED VALUE TO ARRAY # artist terms artist_terms=hdf5_getters.get_artist_terms(h5,0) output_array["artist_terms"]=artist_terms.tolist() artist_terms_freq=hdf5_getters.get_artist_terms_freq(h5,0) output_array["artist_terms_freq"]=artist_terms_freq.tolist() artist_name=hdf5_getters.get_artist_name(h5,0) output_array["artist_name"]=artist_name artist_id=hdf5_getters.get_artist_id(h5,0) output_array["artist_id"]=artist_id # title title=hdf5_getters.get_title(h5,0) output_array["title"]=title return output_array
def main(): dataset_dir = sys.argv[1] global feat Create_BoW(dataset_dir) Size_BoW = Index_BoW(Bag_Words) count = Frequency(Size_BoW, dataset_dir) Size_BoW = Prune(count) Lablify() print "Forming Dataset..." listing1 = os.listdir(dataset_dir) for a in listing1: listing2 = os.listdir(dataset_dir+a+'/') for b in listing2: listing3 = os.listdir(dataset_dir+a+'/'+b+'/') for c in listing3: listing4 = os.listdir(dataset_dir+a+'/'+b+'/'+c+'/') for d in listing4: h5 = hdf5_getters.open_h5_file_read(dataset_dir+a+'/'+b+'/'+c+'/'+d) feat = [] temp = hdf5_getters.get_artist_hotttnesss(h5) if (math.isnan(temp) or temp==0.0): h5.close() continue feat.append(temp) temp = hdf5_getters.get_artist_familiarity(h5) if (math.isnan(temp) or temp==0.0): h5.close() continue feat.append(temp) temp = hdf5_getters.get_bars_confidence(h5) if temp.size == 0: h5.close() continue MeanVar(temp) temp = hdf5_getters.get_beats_confidence(h5) if temp.size == 0: h5.close() continue mm = np.mean(temp) vv = np.var(temp) if mm==0.0 and vv==0.0: h5.close() continue feat.append(mm) feat.append(vv) feat.append(hdf5_getters.get_duration(h5)) temp = hdf5_getters.get_end_of_fade_in(h5) if (math.isnan(temp)): h5.close() continue feat.append(temp) feat.append(hdf5_getters.get_key(h5)) temp = hdf5_getters.get_key_confidence(h5) if (math.isnan(temp)): h5.close() continue feat.append(temp) temp = hdf5_getters.get_loudness(h5) if (math.isnan(temp)): h5.close() continue feat.append(temp) feat.append(hdf5_getters.get_mode(h5)) temp = hdf5_getters.get_mode_confidence(h5) if (math.isnan(temp)): h5.close() continue feat.append(temp) temp = hdf5_getters.get_sections_confidence(h5) if temp.size == 0: h5.close() continue MeanVar(temp) temp = hdf5_getters.get_segments_confidence(h5) if temp.size == 0: h5.close() continue MeanVar(temp) temp = hdf5_getters.get_segments_loudness_max(h5) if temp.size == 0: h5.close() continue MeanVar(temp) temp = hdf5_getters.get_segments_loudness_max_time(h5) if temp.size == 0: h5.close() continue MeanVar(temp) temp = hdf5_getters.get_segments_pitches(h5) if temp.size == 0: h5.close() continue MeanVar(temp) temp = hdf5_getters.get_segments_timbre(h5) if temp.size == 0: h5.close() continue MeanVar(temp) temp = hdf5_getters.get_start_of_fade_out(h5) if (math.isnan(temp)): h5.close() continue feat.append(temp) temp = hdf5_getters.get_tatums_confidence(h5) if temp.size == 0: h5.close() continue MeanVar(temp) temp = hdf5_getters.get_tempo(h5) if (math.isnan(temp)): h5.close() continue feat.append(temp) feat.append(hdf5_getters.get_time_signature(h5)) temp = hdf5_getters.get_time_signature_confidence(h5) if (math.isnan(temp)): h5.close() continue feat.append(temp) temp = hdf5_getters.get_year(h5) if temp == 0: h5.close() continue feat.append(temp) temp = hdf5_getters.get_artist_terms(h5) if temp.size == 0: h5.close() continue temp_ = hdf5_getters.get_artist_terms_weight(h5) if temp_.size == 0: continue for j in Final_BoW: if j in temp: x = np.where(temp==j) x = x[0][0] feat.append(temp_[x]) else: x = 0.0 feat.append(x) temp = hdf5_getters.get_song_hotttnesss(h5) if (math.isnan(temp) or temp==0.0): h5.close() continue hott = 0 if temp >=0.75: hott = 1 elif temp >=0.40 and temp <0.75: hott = 2 else: hott = 3 feat.append(hott) h5.close() count = 1 f=open('MSD_DATASET.txt', 'a') outstring='' cnt = 0 feat_size = len(feat) for i in feat: cnt+=1 outstring+=str(i) if (cnt!=feat_size): outstring+=',' outstring+='\n' f.write(outstring) f.close()
score = row[4] all_chart_info[(artist,title)] = score; """ print "Done loading chart info" song_list = [] j = 0 for i in range(0, numSongs): j += 1 #print track = {} #Handle each one year = h5get.get_year(h5, i) if year < 1980 or year > 2010: continue; song = Song() #song.year = year #song.hotness = h5get.get_song_hotttnesss(h5, i) #print "Hotness: ", song.hotness; #if math.isnan(song.hotness): # song.hotness = 0.0; song.artist = h5get.get_artist_name(h5, i) song.name = h5get.get_title(h5, i) #track['track'] = str(song.artist) + " " + str(song.name) #track['hotness'] = float(song.hotness)
def func_to_extract_features(filename): """ This function does 3 simple things: - open the song file - get artist ID and put it - close the file """ global cntnan global cntdanceability global listfeatures global listhotness global listyear global listloudness global listkey global listmode global listduration cf = [] h5 = GETTERS.open_h5_file_read(filename) nanfound = 0 #Get target feature: song hotness #FEATURE 0 song_hotness = GETTERS.get_song_hotttnesss(h5) if math.isnan(song_hotness): nanfound = 1 cntnan = cntnan + 1 else: cf.append(song_hotness) #FEATURE 1 #Get song loudness song_loudness = GETTERS.get_loudness(h5) if math.isnan(song_loudness): nanfound = 1 cntnan = cntnan + 1 else: cf.append(song_loudness) #FEATURE 2 #Get key of the song song_key = GETTERS.get_key(h5) if math.isnan(song_key): nanfound = 1 cntnan = cntnan + 1 else: cf.append(song_key) #FEATURE 3 #Get duration of the song song_duration = GETTERS.get_duration(h5) if math.isnan(song_duration): nanfound = 1 cntnan = cntnan + 1 else: cf.append(song_duration) #FEATURE 4-15 #Get Average Pitch Class across all segments #Get the pitches (12 pitches histogram for each segment) pitches = GETTERS.get_segments_pitches(h5) M = np.mat(pitches) meanpitches = M.mean(axis=0) pitches_arr = np.asarray(meanpitches) pitches_list = [] for i in range(0,12): pitches_list.append(pitches_arr[0][i]) cf.append(pitches_list) #FEATURE 16, 27 #Get Average Timbre Class across all segments timbres = GETTERS.get_segments_timbre(h5) M = np.mat(timbres) meantimbres = M.mean(axis=0) timbre_arr = np.asarray(meantimbres) timbre_list = [] for i in range(0,12): timbre_list.append(timbre_arr[0][i]) cf.append(timbre_list) #FEATURE 28 #Get song year song_year = GETTERS.get_year(h5) if song_year == 0: nanfound = 1 cntnan = cntnan + 1 else: cf.append(song_year) #FEATURE 29 #Get song tempo song_tempo = GETTERS.get_tempo(h5) cf.append(song_tempo) #Feature 30 #Get max loudness for each segment max_loudness_arr = GETTERS.get_segments_loudness_max(h5) start_loudness_arr = GETTERS.get_segments_loudness_start(h5) if nanfound == 0: cf.append(max(max_loudness_arr)-min(start_loudness_arr)) #Feature 31 artist_familiarity = GETTERS.get_artist_familiarity(h5) cf.append(artist_familiarity) #Feature 32 song_title = GETTERS.get_title(h5) cf.append(song_title) #Featture 33 artist_name = GETTERS.get_artist_name(h5) cf.append(artist_name) #Feature 34 #location = GETTERS.get_artist_location(h5) #cf.append(location) #Tags artist_mbtags = GETTERS.get_artist_mbtags(h5) if not artist_mbtags.size: genre = "Unknown" else: artist_mbcount = np.array(GETTERS.get_artist_mbtags_count(h5)) index_max = artist_mbcount.argmax(axis=0) genre = artist_mbtags[index_max] if genre == 'espa\xc3\xb1ol': genre = "Unknown" cf.append(genre) if nanfound == 0: strlist = list_to_csv(cf) listfeatures.append(strlist) mydict.setdefault(artist_name,[]).append(song_hotness) h5.close()
def main(): outputFile = open('songs.csv', 'w') writer = csv.writer(outputFile) csvRowString = "song_number,artist_familiarity,artist_hotttnesss,artist_id,artist_mbid,artist_playmeid,artist_7digitalid,artist_latitude,artist_longitude,artist_location,artist_name,release,release_7digitalid,song_id,song_hotttnesss,title,track_7digitalid,analysis_sample_rate,audio_md5,danceability,duration,end_of_fade_in,energy,key,key_confidence,loudness,mode,mode_confidence,start_of_fade_out,tempo,time_signature,time_signature_confidence,track_id,year" outputFile.write(csvRowString + "\n") csvRowString = "" ################################################# #Set the basedir here, the root directory from which the search #for files stored in a (hierarchical data structure) will originate basedir = "." # "." As the default means the current directory ext = ".H5" #Set the extension here. H5 is the extension for HDF5 files. ################################################# #FOR LOOP songCount = 0 for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root, '*' + ext)) for f in files: print(f) songH5File = hdf5_getters.open_h5_file_read(f) values = [ songCount, hdf5_getters.get_artist_familiarity(songH5File), hdf5_getters.get_artist_hotttnesss(songH5File), hdf5_getters.get_artist_id(songH5File), hdf5_getters.get_artist_mbid(songH5File), hdf5_getters.get_artist_playmeid(songH5File), hdf5_getters.get_artist_7digitalid(songH5File), hdf5_getters.get_artist_latitude(songH5File), hdf5_getters.get_artist_longitude(songH5File), hdf5_getters.get_artist_location(songH5File), hdf5_getters.get_artist_name(songH5File), hdf5_getters.get_release(songH5File), hdf5_getters.get_release_7digitalid(songH5File), hdf5_getters.get_song_id(songH5File), hdf5_getters.get_song_hotttnesss(songH5File), hdf5_getters.get_title(songH5File), hdf5_getters.get_track_7digitalid(songH5File), hdf5_getters.get_analysis_sample_rate(songH5File), hdf5_getters.get_audio_md5(songH5File), hdf5_getters.get_danceability(songH5File), hdf5_getters.get_duration(songH5File), hdf5_getters.get_end_of_fade_in(songH5File), hdf5_getters.get_energy(songH5File), hdf5_getters.get_key(songH5File), hdf5_getters.get_key_confidence(songH5File), hdf5_getters.get_loudness(songH5File), hdf5_getters.get_mode(songH5File), hdf5_getters.get_mode_confidence(songH5File), hdf5_getters.get_start_of_fade_out(songH5File), hdf5_getters.get_tempo(songH5File), hdf5_getters.get_time_signature(songH5File), hdf5_getters.get_time_signature_confidence(songH5File), hdf5_getters.get_track_id(songH5File), hdf5_getters.get_year(songH5File) ] songH5File.close() songCount = songCount + 1 writer.writerow(values) outputFile.close()