コード例 #1
0
def generate_dataset(configuration):

    url = configuration['base_url'] + configuration['api']
    loaData.writeData(url)

    name = 'Africa health facilities'
    title = 'Africa health facilities data'
    slugified_name = slugify(name).lower()
    dataset = Dataset(configuration, {})
    dataset['name'] = slugified_name
    dataset['title'] = title
    date = time.strftime("%d/%m/%Y")
    dataset['dataset_date'] = date
    dataset.add_continent_location('AF')

    rName = "sen-healthfacilities"
    resource = Resource()
    resource['name'] = rName
    resource['format'] = 'geojson'
    resource['url'] = url
    resource['description'] = configuration['base_url']
    resource['url_type'] = 'api'
    resource['resource_type'] = 'api'
    resource.set_file_to_upload(configuration['data_folder'] +
                                'sen-healthfacilities.geojson')

    dataset.add_update_resource(resource)

    return dataset
コード例 #2
0
    def test_update_in_hdx(self, configuration, post_update):
        dataset = Dataset()
        dataset['id'] = 'NOTEXIST'
        with pytest.raises(HDXError):
            dataset.update_in_hdx()
        dataset['name'] = 'LALA'
        with pytest.raises(HDXError):
            dataset.update_in_hdx()

        dataset = Dataset.read_from_hdx('TEST1')
        assert dataset['id'] == '6f36a41c-f126-4b18-aaaf-6c2ddfbc5d4d'
        assert dataset['dataset_date'] == '06/04/2016'

        dataset['dataset_date'] = '02/26/2016'
        dataset['id'] = 'TEST1'
        dataset['name'] = 'MyDataset1'
        dataset.update_in_hdx()
        assert dataset['id'] == 'TEST1'
        assert dataset['dataset_date'] == '02/26/2016'

        dataset['id'] = 'NOTEXIST'
        with pytest.raises(HDXError):
            dataset.update_in_hdx()

        del dataset['id']
        with pytest.raises(HDXError):
            dataset.update_in_hdx()

        dataset_data = copy.deepcopy(TestDataset.dataset_data)
        gallery_data = copy.deepcopy(TestDataset.gallery_data)
        dataset_data['name'] = 'MyDataset1'
        dataset_data['id'] = 'TEST1'
        dataset = Dataset(dataset_data)
        dataset.add_update_gallery(gallery_data)
        dataset.create_in_hdx()
        assert dataset['id'] == 'TEST1'
        assert dataset['dataset_date'] == '03/23/2016'
        assert len(dataset.resources) == 2
        assert len(dataset.gallery) == 1
        dataset.update_in_hdx()
        assert len(dataset.resources) == 2
        assert len(dataset.gallery) == 1
        dataset = Dataset.read_from_hdx('TEST4')
        del gallery_data[0]['id']
        dataset.add_update_gallery(gallery_data)
        dataset['id'] = 'TEST4'
        dataset.update_in_hdx()
        assert len(dataset.resources) == 2
        assert len(dataset.gallery) == 1
        dataset = Dataset.read_from_hdx('TEST4')
        resources_data = copy.deepcopy(TestDataset.resources_data)
        resource = Resource(resources_data[0])
        file = tempfile.NamedTemporaryFile(delete=False)
        resource.set_file_to_upload(file.name)
        dataset.add_update_resource(resource)
        dataset.update_in_hdx()
        os.unlink(file.name)
        assert len(dataset.resources) == 2
        assert len(dataset.gallery) == 0
コード例 #3
0
 def test_check_url_filetoupload(self, configuration):
     resource_data = copy.deepcopy(TestResource.resource_data)
     resource = Resource(resource_data)
     resource.check_url_filetoupload()
     resource.set_file_to_upload('abc')
     resource.check_url_filetoupload()
     resource['url'] = 'lala'
     with pytest.raises(HDXError):
         resource.check_url_filetoupload()
コード例 #4
0
 def test_check_url_filetoupload(self, configuration):
     resource_data = copy.deepcopy(TestResource.resource_data)
     resource = Resource(resource_data)
     resource.check_url_filetoupload()
     resource.set_file_to_upload('abc')
     resource.check_url_filetoupload()
     resource['url'] = 'lala'
     with pytest.raises(HDXError):
         resource.check_url_filetoupload()
コード例 #5
0
    def test_update_in_hdx(self, configuration, post_update):
        resource = Resource()
        resource['id'] = 'NOTEXIST'
        with pytest.raises(HDXError):
            resource.update_in_hdx()
        resource['name'] = 'LALA'
        with pytest.raises(HDXError):
            resource.update_in_hdx()

        resource = Resource.read_from_hdx('74b74ae1-df0c-4716-829f-4f939a046811')
        assert resource['id'] == 'de6549d8-268b-4dfe-adaf-a4ae5c8510d5'
        assert resource.get_file_type() == 'csv'

        resource.set_file_type('XLSX')
        resource['id'] = '74b74ae1-df0c-4716-829f-4f939a046811'
        resource['name'] = 'MyResource1'
        resource.update_in_hdx()
        assert resource['id'] == '74b74ae1-df0c-4716-829f-4f939a046811'
        assert resource['format'] == 'xlsx'
        assert resource.get_file_type() == 'xlsx'
        assert resource['url_type'] == 'api'
        assert resource['resource_type'] == 'api'
        assert resource[
                   'url'] == 'https://raw.githubusercontent.com/OCHA-DAP/hdx-python-api/master/tests/fixtures/test_data.csv'
        assert resource['state'] == 'active'

        filetoupload = join('tests', 'fixtures', 'test_data.csv')
        resource.set_file_to_upload(filetoupload)
        resource.update_in_hdx()
        assert resource['url_type'] == 'upload'
        assert resource['resource_type'] == 'file.upload'
        assert resource[
                   'url'] == 'http://test-data.humdata.org/dataset/6f36a41c-f126-4b18-aaaf-6c2ddfbc5d4d/resource/de6549d8-268b-4dfe-adaf-a4ae5c8510d5/download/test_data.csv'
        assert resource['state'] == 'active'

        resource['id'] = 'NOTEXIST'
        with pytest.raises(HDXError):
            resource.update_in_hdx()

        del resource['id']
        with pytest.raises(HDXError):
            resource.update_in_hdx()

        resource.data = dict()
        with pytest.raises(HDXError):
            resource.update_in_hdx()

        resource_data = copy.deepcopy(TestResource.resource_data)
        resource_data['name'] = 'MyResource1'
        resource_data['id'] = '74b74ae1-df0c-4716-829f-4f939a046811'
        resource = Resource(resource_data)
        resource.create_in_hdx()
        assert resource['id'] == '74b74ae1-df0c-4716-829f-4f939a046811'
        assert resource.get_file_type() == 'xlsx'
        assert resource['state'] == 'active'
コード例 #6
0
    def test_update_in_hdx(self, configuration, post_update):
        resource = Resource()
        resource['id'] = 'NOTEXIST'
        with pytest.raises(HDXError):
            resource.update_in_hdx()
        resource['name'] = 'LALA'
        with pytest.raises(HDXError):
            resource.update_in_hdx()

        resource = Resource.read_from_hdx('74b74ae1-df0c-4716-829f-4f939a046811')
        assert resource['id'] == 'de6549d8-268b-4dfe-adaf-a4ae5c8510d5'
        assert resource.get_file_type() == 'csv'

        resource.set_file_type('XLSX')
        resource['id'] = '74b74ae1-df0c-4716-829f-4f939a046811'
        resource['name'] = 'MyResource1'
        resource.update_in_hdx()
        assert resource['id'] == '74b74ae1-df0c-4716-829f-4f939a046811'
        assert resource['format'] == 'xlsx'
        assert resource.get_file_type() == 'xlsx'
        assert resource['url_type'] == 'api'
        assert resource['resource_type'] == 'api'
        assert resource[
                   'url'] == 'https://raw.githubusercontent.com/OCHA-DAP/hdx-python-api/master/tests/fixtures/test_data.csv'

        filetoupload = join('tests', 'fixtures', 'test_data.csv')
        resource.set_file_to_upload(filetoupload)
        resource.update_in_hdx()
        assert resource['url_type'] == 'upload'
        assert resource['resource_type'] == 'file.upload'
        assert resource[
                   'url'] == 'http://test-data.humdata.org/dataset/6f36a41c-f126-4b18-aaaf-6c2ddfbc5d4d/resource/de6549d8-268b-4dfe-adaf-a4ae5c8510d5/download/test_data.csv'

        resource['id'] = 'NOTEXIST'
        with pytest.raises(HDXError):
            resource.update_in_hdx()

        del resource['id']
        with pytest.raises(HDXError):
            resource.update_in_hdx()

        resource.data = dict()
        with pytest.raises(HDXError):
            resource.update_in_hdx()

        resource_data = copy.deepcopy(TestResource.resource_data)
        resource_data['name'] = 'MyResource1'
        resource_data['id'] = '74b74ae1-df0c-4716-829f-4f939a046811'
        resource = Resource(resource_data)
        resource.create_in_hdx()
        assert resource['id'] == '74b74ae1-df0c-4716-829f-4f939a046811'
        assert resource.get_file_type() == 'xlsx'
コード例 #7
0
 def test_add_update_delete_resources(self, configuration, post_delete):
     dataset_data = copy.deepcopy(TestDataset.dataset_data)
     resources_data = copy.deepcopy(TestDataset.resources_data)
     dataset = Dataset(dataset_data)
     dataset.add_update_resources(resources_data)
     assert len(dataset.resources) == 2
     dataset.delete_resource('NOTEXIST')
     assert len(dataset.resources) == 2
     dataset.delete_resource('de6549d8-268b-4dfe-adaf-a4ae5c8510d5')
     assert len(dataset.resources) == 1
     resources_data = copy.deepcopy(TestDataset.resources_data)
     resource = Resource(resources_data[0])
     resource.set_file_to_upload('lala')
     dataset.add_update_resource(resource)
     assert dataset.resources[1].get_file_to_upload() == 'lala'
コード例 #8
0
def generate_dataset_and_showcase(countryName, countryISO2):
    title = '%s - Demographic, Health, Education and Transport indicators' % countryName
    logger.info('Creating dataset: %s' % title)
    name = 'unhabitat-%s-indicators' % countryISO2
    slugified_name = slugify(name).lower()
    dataset = Dataset({
        'name': slugified_name,
        'title': title,
    })
    # dataset.set_dataset_date(date, dataset_end_date=)
    dataset.set_dataset_year_range(1950, 2050)
    dataset.set_expected_update_frequency('Every year')
    dataset.set_subnational(1)
    dataset.add_country_location(getCountryISO3Code(countryISO2))
    dataset.add_tags(['EDUCATION', 'POPULATION', 'HEALTH', 'TRANSPORT', 'HXL'])

    if os.path.isfile('data/indicator_data_' + countryISO2 + '.csv'):
        resource = Resource()
        resource['name'] = 'Indicators_data_%s' % countryISO2
        resource[
            'description'] = '%s - Demographic, Health, Education and Transport indicators' % countryName
        resource['format'] = 'csv'
        resource.set_file_to_upload('data/indicator_data_' + countryISO2 +
                                    '.csv')
    resource.check_required_fields(['group', 'package_id'])
    dataset.add_update_resource(resource)

    showcase_name = slugify('unhabitat-%s' % countryName +
                            ' indacators-data').lower()
    showcase = Showcase({
        'name':
        showcase_name,
        'title':
        'Explore %s' % countryName + ' indicators',
        'notes':
        'Explore %s' % countryName + ' indicators',
        'url':
        'http://urbandata.unhabitat.org/data-country/?countries=%s' %
        countryISO2 +
        '&indicators=total_length_road,rural_population,urban_population_countries,urban_slum_population_countries,population,income_gini_coefficient_countries',
        'image_url':
        'https://centre.humdata.org/wp-content/uploads/2018/09/unhabitat-showcase.png'
    })
    showcase.add_tags(['EDUCATION', 'POPULATION', 'HEALTH', 'TRANSPORT'])

    return dataset, showcase
コード例 #9
0
    def test_update_in_hdx(self, configuration, post_update):
        resource = Resource()
        resource['id'] = 'NOTEXIST'
        with pytest.raises(HDXError):
            resource.update_in_hdx()
        resource['name'] = 'LALA'
        with pytest.raises(HDXError):
            resource.update_in_hdx()

        resource = Resource.read_from_hdx('TEST1')
        assert resource['id'] == 'de6549d8-268b-4dfe-adaf-a4ae5c8510d5'
        assert resource['format'] == 'XLSX'

        resource['format'] = 'CSV'
        resource['id'] = 'TEST1'
        resource['name'] = 'MyResource1'
        resource.update_in_hdx()
        assert resource['id'] == 'TEST1'
        assert resource['format'] == 'CSV'
        assert resource['url_type'] == 'api'
        assert resource['resource_type'] == 'api'
        assert resource[
                   'url'] == 'https://raw.githubusercontent.com/OCHA-DAP/hdx-python-api/master/tests/fixtures/test_data.csv'

        resource.set_file_to_upload('fixtures/test_data.csv')
        resource.update_in_hdx()
        assert resource['url_type'] == 'upload'
        assert resource['resource_type'] == 'file.upload'
        assert resource[
                   'url'] == 'http://test-data.humdata.org/dataset/6f36a41c-f126-4b18-aaaf-6c2ddfbc5d4d/resource/de6549d8-268b-4dfe-adaf-a4ae5c8510d5/download/test_data.csv'

        resource['id'] = 'NOTEXIST'
        with pytest.raises(HDXError):
            resource.update_in_hdx()

        del resource['id']
        with pytest.raises(HDXError):
            resource.update_in_hdx()

        resource_data = copy.deepcopy(TestResource.resource_data)
        resource_data['name'] = 'MyResource1'
        resource_data['id'] = 'TEST1'
        resource = Resource(resource_data)
        resource.create_in_hdx()
        assert resource['id'] == 'TEST1'
        assert resource['format'] == 'xlsx'
コード例 #10
0
    def test_create_in_hdx(self, configuration, post_create):
        resource = Resource()
        with pytest.raises(HDXError):
            resource.create_in_hdx()
        resource['id'] = 'TEST1'
        resource['name'] = 'LALA'
        with pytest.raises(HDXError):
            resource.create_in_hdx()

        resource_data = copy.deepcopy(TestResource.resource_data)
        resource = Resource(resource_data)
        resource.create_in_hdx()
        assert resource['id'] == 'de6549d8-268b-4dfe-adaf-a4ae5c8510d5'
        assert resource['url_type'] == 'api'
        assert resource['resource_type'] == 'api'
        assert resource[
                   'url'] == 'https://raw.githubusercontent.com/OCHA-DAP/hdx-python-api/master/tests/fixtures/test_data.csv'

        resource_data = copy.deepcopy(TestResource.resource_data)
        resource = Resource(resource_data)
        filetoupload = join('tests', 'fixtures', 'test_data.csv')
        resource.set_file_to_upload(filetoupload)
        assert resource.get_file_to_upload() == filetoupload
        resource.create_in_hdx()
        assert resource['url_type'] == 'upload'
        assert resource['resource_type'] == 'file.upload'
        assert resource[
                   'url'] == 'http://test-data.humdata.org/dataset/6f36a41c-f126-4b18-aaaf-6c2ddfbc5d4d/resource/de6549d8-268b-4dfe-adaf-a4ae5c8510d5/download/test_data.csv'

        resource_data['name'] = 'MyResource2'
        resource = Resource(resource_data)
        with pytest.raises(HDXError):
            resource.create_in_hdx()

        resource_data['name'] = 'MyResource3'
        resource = Resource(resource_data)
        with pytest.raises(HDXError):
            resource.create_in_hdx()
コード例 #11
0
def generate_dataset(configuration, countryName):
    #showedName = countryName
    if (countryName == "Ivory Coast"):
        showedName = "Cote d'Ivoire"
    name = countryName + '-healthsites'
    title = countryName + '-healthsites'
    slugified_name = slugify(name).lower()
    # dataset = Dataset(configuration, {
    # })
    dataset = Dataset({
        'name': slugified_name,
        'title': title,
    })
    # dataset['name'] = slugified_name
    # dataset['title'] = title
    #generating the datasets
    getCountryHealthSites(configuration, countryName)
    # geojson resource
    if (os.path.isfile(configuration.read()['data_folder'] + countryName +
                       '.geojson')):
        rName = countryName + '-healthsites-geojson'
        geojsonResource = Resource()
        geojsonResource['name'] = rName
        geojsonResource['format'] = 'geojson'
        geojsonResource['url'] = configuration.read()['base_url']
        geojsonResource['description'] = countryName + ' healthsites geojson'
        geojsonResource.set_file_to_upload(
            configuration.read()['data_folder'] + countryName + '.geojson')

        geojsonResource.check_required_fields(['group', 'package_id'])
        dataset.add_update_resource(geojsonResource)
    #csv resource
    if (os.path.isfile(configuration.read()['data_folder'] + countryName +
                       '.csv')):
        resource_csv = Resource()
        resource_csv['name'] = countryName + '-healthsites-csv'
        resource_csv['description'] = countryName + ' healthsites csv'
        resource_csv['format'] = 'csv'
        resource_csv.set_file_to_upload(configuration.read()['data_folder'] +
                                        countryName + '.csv')

        resource_csv.check_required_fields(['group', 'package_id'])
        dataset.add_update_resource(resource_csv)
    # shp resource
    if (os.path.isfile(configuration.read()['data_folder'] + countryName +
                       "-shapefiles.zip")):
        resource_shp = Resource()
        resource_shp['name'] = countryName + '-healthsites-shp'
        resource_shp['format'] = 'zipped shapefile'
        resource_shp['description'] = countryName + ' healthsites shapefiles'
        resource_shp.set_file_to_upload(configuration.read()['data_folder'] +
                                        countryName + "-shapefiles.zip")

        resource_shp.check_required_fields(['group', 'package_id'])
        dataset.add_update_resource(resource_shp)

    return dataset
コード例 #12
0
ファイル: eca.py プロジェクト: ndongamadu/hdxscraper-eca
def generateDatasetBykey(key, countryName):
    metadata = yaml.load(open('config/metadata.yml', 'r'))
    title = '%s - ' % countryName + metadata[key]['title']
    name = metadata[key]['name']
    desc = metadata[key]['notes']
    slugified_name = slugify(name).lower()
    dataset = Dataset({
        'name': slugified_name,
        'title': title,
        'description': desc
    })
    dataset.set_dataset_year_range(1985, 2017)
    dataset.set_expected_update_frequency('Every year')
    dataset.set_subnational(1)
    dataset.add_country_location(countryName)
    resource = Resource()
    rName = ''
    upCountry = countryName.upper()
    if key == 'education':
        dataset.add_tag('EDUCATION')
        rName = 'UNECA %s - Education' % countryName
        resource.set_file_to_upload('data/%s-education.csv' % upCountry)
    if key == 'health':
        dataset.add_tag('health')
        rName = 'UNECA %s - Health' % countryName
        resource.set_file_to_upload('data/%s-health.csv' % upCountry)
    if key == 'population_and_migration':
        dataset.add_tags(['population', 'migration'])
        rName = 'UNECA %s - Population and Migration' % countryName
        resource.set_file_to_upload('data/%s-population_and_migration.csv' %
                                    upCountry)

    resource['name'] = rName
    resource['description'] = 'UNECA %s data' % countryName
    resource['format'] = 'csv'
    # resource.check_required_fields(['notes'])

    dataset.add_update_resource(resource)
    print("==================== %s dataset generated ====================" %
          key)

    return dataset
コード例 #13
0
def generate_dataset_and_showcase(downloader,
                                  countrydata,
                                  endpoints_metadata,
                                  folder,
                                  merge_resources=True,
                                  single_dataset=False,
                                  split_to_resources_by_column="STAT_UNIT",
                                  remove_useless_columns=True):
    """
    https://api.uis.unesco.org/sdmx/data/UNESCO,DEM_ECO/....AU.?format=csv-:-tab-true-y&locale=en&subscription-key=...

    :param downloader: Downloader object
    :param countrydata: Country datastructure from UNESCO API
    :param endpoints_metadata: Endpoint datastructure from UNESCO API
    :param folder: temporary folder
    :param merge_resources: if true, merge resources for all time periods
    :param single_dataset: if true, put all endpoints into a single dataset
    :param split_to_resources_by_column: split data into multiple resorces (csv) based on a value in the specified column
    :param remove_useless_columns:
    :return: generator yielding (dataset, showcase) tuples. It may yield None, None.
    """
    countryiso2 = countrydata['id']
    countryname = countrydata['names'][0]['value']
    logger.info("Processing %s" % countryname)

    if countryname[:4] in ['WB: ', 'SDG:', 'MDG:', 'UIS:', 'EFA:'] or countryname[:5] in ['GEMR:', 'AIMS:'] or \
            countryname[:7] in ['UNICEF:', 'UNESCO:']:
        logger.info('Ignoring %s!' % countryname)
        yield None, None
        return

    countryiso3 = Country.get_iso3_from_iso2(countryiso2)

    if countryiso3 is None:
        countryiso3, _ = Country.get_iso3_country_code_fuzzy(countryname)
        if countryiso3 is None:
            logger.exception('Cannot get iso3 code for %s!' % countryname)
            yield None, None
            return
        logger.info('Matched %s to %s!' % (countryname, countryiso3))

    earliest_year = 10000
    latest_year = 0

    if single_dataset:
        name = 'UNESCO indicators - %s' % countryname
        dataset, showcase = create_dataset_showcase(
            name,
            countryname,
            countryiso2,
            countryiso3,
            single_dataset=single_dataset)
        if dataset is None:
            return

    for endpoint in sorted(endpoints_metadata):
        time.sleep(0.2)
        indicator, structure_url, more_info_url, dimensions = endpoints_metadata[
            endpoint]
        structure_url = structure_url % countryiso2
        response = load_safely(downloader,
                               '%s%s' % (structure_url, dataurl_suffix))
        json = response.json()
        if not single_dataset:
            name = 'UNESCO %s - %s' % (json["structure"]["name"], countryname)
            dataset, showcase = create_dataset_showcase(
                name,
                countryname,
                countryiso2,
                countryiso3,
                single_dataset=single_dataset)
            if dataset is None:
                continue
        observations = json['structure']['dimensions']['observation']
        time_periods = dict()
        for observation in observations:
            if observation['id'] == 'TIME_PERIOD':
                for value in observation['values']:
                    time_periods[int(value['id'])] = value['actualObs']
        if len(time_periods) == 0:
            logger.warning('No time periods for endpoint %s for country %s!' %
                           (indicator, countryname))
            continue

        earliest_year = min(earliest_year, *time_periods.keys())
        latest_year = max(latest_year, *time_periods.keys())

        csv_url = '%sformat=csv' % structure_url

        description = more_info_url
        if description != ' ':
            description = '[Info on %s](%s)' % (indicator, description)
        description = 'To save, right click download button & click Save Link/Target As  \n%s' % description

        df = None
        for start_year, end_year in chunk_years(time_periods):
            if merge_resources:
                df1 = download_df(downloader, csv_url, start_year, end_year)
                if df1 is not None:
                    df = df1 if df is None else df.append(df1)
            else:
                url_years = '&startPeriod=%d&endPeriod=%d' % (start_year,
                                                              end_year)
                resource = {
                    'name': '%s (%d-%d)' % (indicator, start_year, end_year),
                    'description': description,
                    'format': 'csv',
                    'url':
                    downloader.get_full_url('%s%s' % (csv_url, url_years))
                }
                dataset.add_update_resource(resource)

        if df is not None:
            stat = {
                x["id"]: x["name"]
                for d in dimensions if d["id"] == "STAT_UNIT"
                for x in d["values"]
            }
            for value, df_part in split_df_by_column(
                    process_df(df), split_to_resources_by_column):
                file_csv = join(
                    folder,
                    ("UNESCO_%s_%s.csv" %
                     (countryiso3, endpoint +
                      ("" if value is None else "_" + value))).replace(
                          " ",
                          "-").replace(":", "-").replace("/", "-").replace(
                              ",", "-").replace("(", "-").replace(")", "-"))
                if remove_useless_columns:
                    df_part = remove_useless_columns_from_df(df_part)
                df_part["country-iso3"] = countryiso3
                df_part.iloc[
                    0,
                    df_part.columns.get_loc("country-iso3")] = "#country+iso3"
                df_part["Indicator name"] = value
                df_part.iloc[0, df_part.columns.get_loc("Indicator name"
                                                        )] = "#indicator+name"
                df_part = postprocess_df(df_part)
                df_part.to_csv(file_csv, index=False)
                description_part = stat.get(
                    value, 'Info on %s%s' %
                    ("" if value is None else value + " in ", indicator))
                resource = Resource({
                    'name': value,
                    'description': description_part
                })
                resource.set_file_type('csv')
                resource.set_file_to_upload(file_csv)
                dataset.add_update_resource(resource)

        if not single_dataset:
            if dataset is None or len(dataset.get_resources()) == 0:
                logger.error('No resources created for country %s, %s!' %
                             (countryname, endpoint))
            else:
                dataset.set_dataset_year_range(min(time_periods.keys()),
                                               max(time_periods.keys()))
                yield dataset, showcase

    if single_dataset:
        if dataset is None or len(dataset.get_resources()) == 0:
            logger.error('No resources created for country %s!' %
                         (countryname))
        else:
            dataset.set_dataset_year_range(earliest_year, latest_year)
            yield dataset, showcase
コード例 #14
0
def generate_joint_dataset_and_showcase(wfpfood_url, downloader, folder,
                                        countriesdata):
    """Generate single joint datasets and showcases containing data for all countries.
    """
    title = 'Global Food Prices Database (WFP)'
    logger.info('Creating joint dataset: %s' % title)
    slugified_name = 'wfp-food-prices'

    df = joint_dataframe(wfpfood_url, downloader, countriesdata)

    if len(df) <= 1:
        logger.warning('Dataset "%s" is empty' % title)
        return None, None

    dataset = Dataset({'name': slugified_name, 'title': title})
    dataset.set_maintainer(
        "9957c0e9-cd38-40f1-900b-22c91276154b")  # Orest Dubay
    #    dataset.set_maintainer("154de241-38d6-47d3-a77f-0a9848a61df3")
    dataset.set_organization("3ecac442-7fed-448d-8f78-b385ef6f84e7")

    maxmonth = (100 * df.mp_year + df.mp_month).max() % 100
    dataset.set_dataset_date("%04d-01-01" % df.mp_year.min(),
                             "%04d-%02d-15" % (df.mp_year.max(), maxmonth),
                             "%Y-%m-%d")
    dataset.set_expected_update_frequency("weekly")
    dataset.add_country_locations(sorted(df.adm0_name.unique()))
    dataset.add_tags(tags)

    file_csv = join(folder, "WFPVAM_FoodPrices.csv")
    df.to_csv(file_csv, index=False)
    resource = Resource({
        'name':
        title,
        'description':
        "Word Food Programme – Food Prices  Data Source: WFP Vulnerability Analysis and Mapping (VAM)."
    })
    resource.set_file_type('csv')  # set the file type to eg. csv
    resource.set_file_to_upload(file_csv)
    dataset.add_update_resource(resource)

    showcase = Showcase({
        'name':
        '%s-showcase' % slugified_name,
        'title':
        'Global Food Prices',
        'notes':
        "Interactive data visualisation of WFP's Food Market Prices dataset",
        'url':
        "https://data.humdata.org/organization/wfp#interactive-data",
        'image_url':
        "https://docs.humdata.org/wp-content/uploads/wfp_food_prices_data_viz.gif"
    })
    showcase.add_tags(tags)

    dataset.update_from_yaml()
    dataset['notes'] = dataset[
        'notes'] % 'Global Food Prices data from the World Food Programme covering'
    dataset.create_in_hdx()
    showcase.create_in_hdx()
    showcase.add_dataset(dataset)
    dataset.get_resource().create_datastore_from_yaml_schema(
        yaml_path="wfp_food_prices.yml", path=file_csv)
    logger.info('Finished joint dataset')

    return dataset, showcase
コード例 #15
0
def generate_dataset_and_showcase(wfpfood_url, downloader, folder, countrydata,
                                  shortcuts):
    """Generate datasets and showcases for each country.
    """
    title = '%s - Food Prices' % countrydata['name']
    logger.info('Creating dataset: %s' % title)
    name = 'WFP food prices for %s' % countrydata[
        'name']  #  Example name which should be unique so can include organisation name and country
    slugified_name = slugify(name).lower()

    df = read_dataframe(wfpfood_url, downloader, countrydata)

    if len(df) <= 1:
        logger.warning('Dataset "%s" is empty' % title)
        return None, None

    dataset = Dataset({
        'name': slugified_name,
        'title': title,
        "dataset_preview": "resource_id"
    })
    dataset.set_maintainer(
        "9957c0e9-cd38-40f1-900b-22c91276154b")  # Orest Dubay
    #    dataset.set_maintainer("154de241-38d6-47d3-a77f-0a9848a61df3")
    dataset.set_organization("3ecac442-7fed-448d-8f78-b385ef6f84e7")

    dataset.set_dataset_date(df.loc[1:].date.min(), df.loc[1:].date.max(),
                             "%Y-%m-%d")
    dataset.set_expected_update_frequency("weekly")
    dataset.add_country_location(countrydata["name"])
    dataset.set_subnational(True)
    dataset.add_tags(tags)
    dataset.add_tag('hxl')

    file_csv = join(
        folder,
        "WFP_food_prices_%s.csv" % countrydata["name"].replace(" ", "-"))
    df.to_csv(file_csv, index=False)
    resource = Resource({
        'name': title,
        "dataset_preview_enabled": "False",
        'description': "Food prices data with HXL tags"
    })
    resource.set_file_type('csv')  # set the file type to eg. csv
    resource.set_file_to_upload(file_csv)
    dataset.add_update_resource(resource)

    df1 = quickchart_dataframe(df, shortcuts)
    file_csv = join(
        folder, "WFP_food_median_prices_%s.csv" %
        countrydata["name"].replace(" ", "-"))
    df1.to_csv(file_csv, index=False)
    resource = Resource({
        'name':
        '%s - Food Median Prices' % countrydata['name'],
        "dataset_preview_enabled":
        "True",
        'description':
        """Food median prices data with HXL tags.
Median of all prices for a given commodity observed on different markets is shown, together with the market where
it was observed. Data are shortened in multiple ways:

- Rather that prices on all markets, only median price across all markets is shown, together with the market
  where it has been observed.
- Only food commodities are displayed (non-food commodities like fuel and wages are not shown).
- Only data after %s are shown. Missing data are interpolated.
- Column with shorter commodity names "cmnshort" are available to be used as chart labels.
- Units are adapted and prices are rescaled in order to yield comparable values (so that they
  can be displayed and compared in a single chart). Scaling factor is present in scaling column.
  Label with full commodity name and a unit (with scale if applicable) is in column "label".  

This reduces the amount of data and allows to make cleaner charts.
""" % (df1.loc[1:].date.min())
    })
    resource.set_file_type('csv')  # set the file type to eg. csv
    resource.set_file_to_upload(file_csv)
    dataset.add_update_resource(resource)

    showcase = Showcase({
        'name':
        '%s-showcase' % slugified_name,
        'title':
        title + " showcase",
        'notes':
        countrydata["name"] +
        " food prices data from World Food Programme displayed through VAM Economic Explorer",
        'url':
        "http://dataviz.vam.wfp.org/economic_explorer/prices?adm0=" +
        countrydata["code"],
        'image_url':
        "http://dataviz.vam.wfp.org/_images/home/economic_2-4.jpg"
    })
    showcase.add_tags(tags)
    return dataset, showcase
コード例 #16
0
    def test_create_in_hdx(self, configuration, post_create):
        dataset = Dataset()
        with pytest.raises(HDXError):
            dataset.create_in_hdx()
        dataset['id'] = 'TEST1'
        dataset['name'] = 'LALA'
        with pytest.raises(HDXError):
            dataset.create_in_hdx()

        dataset_data = copy.deepcopy(TestDataset.dataset_data)
        dataset = Dataset(dataset_data)
        dataset.create_in_hdx()
        assert dataset['id'] == '6f36a41c-f126-4b18-aaaf-6c2ddfbc5d4d'
        assert len(dataset.resources) == 2
        assert len(dataset.gallery) == 0

        dataset_data['name'] = 'MyDataset2'
        dataset = Dataset(dataset_data)
        with pytest.raises(HDXError):
            dataset.create_in_hdx()

        dataset_data['name'] = 'MyDataset3'
        dataset = Dataset(dataset_data)
        with pytest.raises(HDXError):
            dataset.create_in_hdx()

        dataset_data = copy.deepcopy(TestDataset.dataset_data)
        gallery_data = copy.deepcopy(TestDataset.gallery_data)
        dataset_data['gallery'] = gallery_data
        with pytest.raises(HDXError):
            dataset = Dataset(dataset_data)
        del dataset_data['gallery']
        dataset = Dataset(dataset_data)
        del gallery_data[0]['id']
        dataset.add_update_gallery(gallery_data)
        dataset.create_in_hdx()
        assert dataset['id'] == '6f36a41c-f126-4b18-aaaf-6c2ddfbc5d4d'
        assert len(dataset.resources) == 2
        assert len(dataset.gallery) == 1

        dataset_data = copy.deepcopy(TestDataset.dataset_data)
        resources_data = copy.deepcopy(TestDataset.resources_data)
        dataset_data['resources'] = resources_data
        with pytest.raises(HDXError):
            dataset = Dataset(dataset_data)
        del dataset_data['resources']
        dataset = Dataset(dataset_data)
        del resources_data[0]['id']
        del resources_data[1]['id']
        dataset.add_update_resources(resources_data)
        dataset.create_in_hdx()
        assert dataset['id'] == '6f36a41c-f126-4b18-aaaf-6c2ddfbc5d4d'
        assert len(dataset.resources) == 2
        assert len(dataset.gallery) == 0
        dataset_data = copy.deepcopy(TestDataset.dataset_data)
        dataset = Dataset(dataset_data)
        resource = Resource(resources_data[0])
        file = tempfile.NamedTemporaryFile(delete=False)
        resource.set_file_to_upload(file.name)
        dataset.add_update_resource(resource)
        dataset.create_in_hdx()
        os.unlink(file.name)
        assert len(dataset.resources) == 2
        assert len(dataset.gallery) == 0