コード例 #1
0
    def validate_score_metric_for_number_of_classes(self, metric):
        """
        Check that a user's choice of scoring metric makes sense with the number of prediction classes

        Args:
            metric (str): a string of the scoring metric
        """

        # TODO test this for errors and multiclass
        # TODO make this more robust for other scoring metrics
        classes = hcai_helpers.count_unique_elements_in_column(self.dataframe, self.predicted_column)
        if classes is 2:
            # return True for testing
            return True
        elif classes > 2 and metric in ['pr_auc', 'roc_auc']:
            raise (HealthcareAIError('AUC (aka roc_auc) cannot be used for more than two classes. Please choose another'
                                     ' metric such as \'accuracy\''))
コード例 #2
0
    def validate_score_metric_for_number_of_classes(self, metric):
        """
        Check that a user's choice of scoring metric makes sense with the 
        number of prediction classes

        Args:
            metric (str): a string of the scoring metric
        """

        # TODO test this for errors and multiclass
        # TODO make this more robust for other scoring metrics
        classes = hcai_helpers.count_unique_elements_in_column(self.dataframe, self.predicted_column)
        if classes is 2:
            # return True for testing
            return True
        elif classes > 2 and metric in ['pr_auc', 'roc_auc']:
            raise (HealthcareAIError('AUC (aka roc_auc) cannot be used for more than two classes. Please choose another'
                                     ' metric such as \'accuracy\''))
コード例 #3
0
 def test_class_counter_on_many(self):
     df = hcai_datasets.load_diabetes()
     result = count_unique_elements_in_column(df, 'PatientEncounterID')
     self.assertEqual(result, 1000)
コード例 #4
0
 def test_class_counter_on_binary(self):
     df = hcai_datasets.load_diabetes()
     df.dropna(axis=0, how='any', inplace=True)
     result = count_unique_elements_in_column(df, 'ThirtyDayReadmitFLG')
     self.assertEqual(result, 2)
コード例 #5
0
 def test_class_counter_on_many(self):
     df = hcai_datasets.load_diabetes()
     result = count_unique_elements_in_column(df, 'PatientEncounterID')
     self.assertEqual(result, 1000)
コード例 #6
0
 def test_class_counter_on_binary(self):
     df = hcai_datasets.load_diabetes()
     df.dropna(axis=0, how='any', inplace=True)
     result = count_unique_elements_in_column(df, 'ThirtyDayReadmitFLG')
     self.assertEqual(result, 2)