def test_GN_06(): conf = hearsay.Parser() conf.load_config(['nran'], ['1']) G = hearsay.C3Net(conf) G.set_parameters() A = [20000, 30000] S = [10000, 12000] D = [10000] lista = [A, S, D] G.set_parameters(spars=lista) res = G.run(interactive=True) R = hearsay.Results(G) R.load() res = R.redux_2d() assert len(res) == 2
def test_results_01(): conf = hearsay.Parser() conf.load_config(['nran'], ['1']) G = hearsay.C3Net(conf) G.set_parameters() A = [20000, 30000] S = [10000, 12000] D = [10000] lista = [A, S, D] G.set_parameters(spars=lista) res = G.run(interactive=True) R = hearsay.Results(G) R.load() res = R.show_ccns(0, True) assert isinstance(res, dict)
config = hearsay.Parser('F2b.ini') config.load_config() G = hearsay.C3Net(config) G.set_parameters(df) G.run() # 2) Leer las simulaciones ::::::::::::::::::::: dfa = pd.read_csv('F2b.csv') config = hearsay.Parser('F2b.ini') config.load_config() G = hearsay.C3Net(config) G.set_parameters(dfa) R = hearsay.Results(G) R.load() res = R.redux() ib = res['lI'] fig = plt.figure() ax = fig.add_subplot() for k, inbox in enumerate(ib): imax = max(inbox) breaks = np.array(range(imax + 1)) + 0.5 hy, hx = np.histogram(inbox, breaks, density=True) xx = breaks[:-1] + 0.5 yy = np.cumsum(hy) lbl = (f"A={R.params.iloc[k]['tau_awakening']},"