コード例 #1
0
ファイル: test_relational.py プロジェクト: lehr-fa/heat
    def test_eq(self):
        result = ht.uint8([[0, 1], [0, 0]])

        self.assertTrue(
            ht.equal(ht.eq(self.a_scalar, self.a_scalar), ht.uint8([1])))
        self.assertTrue(ht.equal(ht.eq(self.a_tensor, self.a_scalar), result))
        self.assertTrue(ht.equal(ht.eq(self.a_scalar, self.a_tensor), result))
        self.assertTrue(
            ht.equal(ht.eq(self.a_tensor, self.another_tensor), result))
        self.assertTrue(ht.equal(ht.eq(self.a_tensor, self.a_vector), result))
        self.assertTrue(
            ht.equal(ht.eq(self.a_tensor, self.an_int_scalar), result))
        self.assertTrue(
            ht.equal(ht.eq(self.a_split_tensor, self.a_tensor), result))

        with self.assertRaises(ValueError):
            ht.eq(self.a_tensor, self.another_vector)
        with self.assertRaises(TypeError):
            ht.eq(self.a_tensor, self.errorneous_type)
        with self.assertRaises(TypeError):
            ht.eq("self.a_tensor", "s")
コード例 #2
0
    def test_mul(self):
        result = ht.array([[2.0, 4.0], [6.0, 8.0]])

        self.assertTrue(
            ht.equal(ht.mul(self.a_scalar, self.a_scalar), ht.array([4.0])))
        self.assertTrue(ht.equal(ht.mul(self.a_tensor, self.a_scalar), result))
        self.assertTrue(ht.equal(ht.mul(self.a_scalar, self.a_tensor), result))
        self.assertTrue(
            ht.equal(ht.mul(self.a_tensor, self.another_tensor), result))
        self.assertTrue(ht.equal(ht.mul(self.a_tensor, self.a_vector), result))
        self.assertTrue(
            ht.equal(ht.mul(self.a_tensor, self.an_int_scalar), result))
        self.assertTrue(
            ht.equal(ht.mul(self.a_split_tensor, self.a_tensor), result))

        with self.assertRaises(ValueError):
            ht.mul(self.a_tensor, self.another_vector)
        with self.assertRaises(TypeError):
            ht.mul(self.a_tensor, self.errorneous_type)
        with self.assertRaises(TypeError):
            ht.mul("T", "s")
コード例 #3
0
ファイル: test_relations.py プロジェクト: xclmj/heat
    def test_ge(self):
        T_r = ht.uint8([[0, 1], [1, 1]])

        T_inv = ht.uint8([[1, 1], [0, 0]])

        self.assertTrue(ht.equal(ht.ge(s, s), ht.uint8([1])))
        self.assertTrue(ht.equal(ht.ge(T, s), T_r))
        self.assertTrue(ht.equal(ht.ge(s, T), T_inv))
        self.assertTrue(ht.equal(ht.ge(T, T1), T_r))
        self.assertTrue(ht.equal(ht.ge(T, v), T_r))
        self.assertTrue(ht.equal(ht.ge(T, s_int), T_r))
        self.assertTrue(ht.equal(ht.ge(T_s, T), T_inv))

        with self.assertRaises(ValueError):
            ht.ge(T, v2)
        with self.assertRaises(NotImplementedError):
            ht.ge(T, Ts)
        with self.assertRaises(TypeError):
            ht.ge(T, otherType)
        with self.assertRaises(TypeError):
            ht.ge('T', 's')
コード例 #4
0
    def test_add(self):
        result = ht.array([[3.0, 4.0], [5.0, 6.0]], device=ht_device)

        self.assertTrue(
            ht.equal(ht.add(self.a_scalar, self.a_scalar), ht.float32([4.0])))
        self.assertTrue(ht.equal(ht.add(self.a_tensor, self.a_scalar), result))
        self.assertTrue(ht.equal(ht.add(self.a_scalar, self.a_tensor), result))
        self.assertTrue(
            ht.equal(ht.add(self.a_tensor, self.another_tensor), result))
        self.assertTrue(ht.equal(ht.add(self.a_tensor, self.a_vector), result))
        self.assertTrue(
            ht.equal(ht.add(self.a_tensor, self.an_int_scalar), result))
        self.assertTrue(
            ht.equal(ht.add(self.a_split_tensor, self.a_tensor), result))

        with self.assertRaises(ValueError):
            ht.add(self.a_tensor, self.another_vector)
        with self.assertRaises(TypeError):
            ht.add(self.a_tensor, self.errorneous_type)
        with self.assertRaises(TypeError):
            ht.add("T", "s")
コード例 #5
0
ファイル: test_arithmetics.py プロジェクト: sebimarkgraf/heat
    def test_cumsum(self):
        a = ht.ones((2, 4), dtype=ht.int32)
        result = ht.array([[1, 2, 3, 4], [1, 2, 3, 4]], dtype=ht.int32)

        # split = None
        cumsum = ht.cumsum(a, 1)
        self.assertTrue(ht.equal(cumsum, result))

        a = ht.ones((4, 2), dtype=ht.int64, split=0)
        result = ht.array([[1, 1], [2, 2], [3, 3], [4, 4]], dtype=ht.int64, split=0)

        cumsum = ht.cumsum(a, 0)
        self.assertTrue(ht.equal(cumsum, result))

        # 3D
        out = ht.empty((2, 2, 2), dtype=ht.float32, split=0)

        a = ht.ones((2, 2, 2), split=0)
        result = ht.array([[[1, 1], [1, 1]], [[2, 2], [2, 2]]], dtype=ht.float32, split=0)

        cumsum = ht.cumsum(a, 0, out=out)
        self.assertTrue(ht.equal(cumsum, out))
        self.assertTrue(ht.equal(cumsum, result))

        a = ht.ones((2, 2, 2), dtype=ht.int32, split=1)
        result = ht.array([[[1, 1], [2, 2]], [[1, 1], [2, 2]]], dtype=ht.float32, split=1)

        cumsum = ht.cumsum(a, 1, dtype=ht.float64)
        self.assertTrue(ht.equal(cumsum, result))

        a = ht.ones((2, 2, 2), dtype=ht.float32, split=2)
        result = ht.array([[[1, 2], [1, 2]], [[1, 2], [1, 2]]], dtype=ht.float32, split=2)

        cumsum = ht.cumsum(a, 2)
        self.assertTrue(ht.equal(cumsum, result))

        with self.assertRaises(NotImplementedError):
            ht.cumsum(ht.ones((2, 2)), axis=None)
        with self.assertRaises(TypeError):
            ht.cumsum(ht.ones((2, 2)), axis="1")
        with self.assertRaises(ValueError):
            ht.cumsum(a, 2, out=out)
        with self.assertRaises(ValueError):
            ht.cumsum(ht.ones((2, 2)), 2)
コード例 #6
0
    def test_sub(self):
        result = ht.array([[-1.0, 0.0], [1.0, 2.0]])
        minus_result = ht.array([[1.0, 0.0], [-1.0, -2.0]])

        self.assertTrue(
            ht.equal(ht.sub(self.a_scalar, self.a_scalar), ht.array(0.0)))
        self.assertTrue(ht.equal(ht.sub(self.a_tensor, self.a_scalar), result))
        self.assertTrue(
            ht.equal(ht.sub(self.a_scalar, self.a_tensor), minus_result))
        self.assertTrue(
            ht.equal(ht.sub(self.a_tensor, self.another_tensor), result))
        self.assertTrue(ht.equal(ht.sub(self.a_tensor, self.a_vector), result))
        self.assertTrue(
            ht.equal(ht.sub(self.a_tensor, self.an_int_scalar), result))
        self.assertTrue(
            ht.equal(ht.sub(self.a_split_tensor, self.a_tensor), minus_result))

        with self.assertRaises(ValueError):
            ht.sub(self.a_tensor, self.another_vector)
        with self.assertRaises(TypeError):
            ht.sub(self.a_tensor, self.erroneous_type)
        with self.assertRaises(TypeError):
            ht.sub("T", "s")
コード例 #7
0
    def test_pow(self):
        result = ht.array([[1.0, 4.0], [9.0, 16.0]])
        commutated_result = ht.array([[2.0, 4.0], [8.0, 16.0]])

        self.assertTrue(
            ht.equal(ht.pow(self.a_scalar, self.a_scalar), ht.array(4.0)))
        self.assertTrue(ht.equal(ht.pow(self.a_tensor, self.a_scalar), result))
        self.assertTrue(
            ht.equal(ht.pow(self.a_scalar, self.a_tensor), commutated_result))
        self.assertTrue(
            ht.equal(ht.pow(self.a_tensor, self.another_tensor), result))
        self.assertTrue(ht.equal(ht.pow(self.a_tensor, self.a_vector), result))
        self.assertTrue(
            ht.equal(ht.pow(self.a_tensor, self.an_int_scalar), result))
        self.assertTrue(
            ht.equal(ht.pow(self.a_split_tensor, self.a_tensor),
                     commutated_result))

        with self.assertRaises(ValueError):
            ht.pow(self.a_tensor, self.another_vector)
        with self.assertRaises(TypeError):
            ht.pow(self.a_tensor, self.erroneous_type)
        with self.assertRaises(TypeError):
            ht.pow("T", "s")
コード例 #8
0
    def test_eq(self):
        result = ht.array([[False, True], [False, False]])

        self.assertTrue(
            ht.equal(ht.eq(self.a_scalar, self.a_scalar), ht.array(True)))
        self.assertTrue(ht.equal(ht.eq(self.a_tensor, self.a_scalar), result))
        self.assertTrue(ht.equal(ht.eq(self.a_scalar, self.a_tensor), result))
        self.assertTrue(
            ht.equal(ht.eq(self.a_tensor, self.another_tensor), result))
        self.assertTrue(ht.equal(ht.eq(self.a_tensor, self.a_vector), result))
        self.assertTrue(
            ht.equal(ht.eq(self.a_tensor, self.an_int_scalar), result))
        self.assertTrue(
            ht.equal(ht.eq(self.a_split_tensor, self.a_tensor), result))

        self.assertEqual(
            ht.eq(self.a_split_tensor, self.a_tensor).dtype, ht.bool)

        with self.assertRaises(ValueError):
            ht.eq(self.a_tensor, self.another_vector)
        with self.assertRaises(TypeError):
            ht.eq(self.a_tensor, self.errorneous_type)
        with self.assertRaises(TypeError):
            ht.eq("self.a_tensor", "s")
コード例 #9
0
ファイル: test_relational.py プロジェクト: suleisl2000/heat
    def test_gt(self):
        result = ht.uint8([[0, 0], [1, 1]], device=ht_device)
        commutated_result = ht.uint8([[1, 0], [0, 0]], device=ht_device)

        self.assertTrue(
            ht.equal(ht.gt(self.a_scalar, self.a_scalar), ht.uint8([0])))
        self.assertTrue(ht.equal(ht.gt(self.a_tensor, self.a_scalar), result))
        self.assertTrue(
            ht.equal(ht.gt(self.a_scalar, self.a_tensor), commutated_result))
        self.assertTrue(
            ht.equal(ht.gt(self.a_tensor, self.another_tensor), result))
        self.assertTrue(ht.equal(ht.gt(self.a_tensor, self.a_vector), result))
        self.assertTrue(
            ht.equal(ht.gt(self.a_tensor, self.an_int_scalar), result))
        self.assertTrue(
            ht.equal(ht.gt(self.a_split_tensor, self.a_tensor),
                     commutated_result))

        with self.assertRaises(ValueError):
            ht.gt(self.a_tensor, self.another_vector)
        with self.assertRaises(TypeError):
            ht.gt(self.a_tensor, self.errorneous_type)
        with self.assertRaises(TypeError):
            ht.gt("self.a_tensor", "s")
コード例 #10
0
    def test_div(self):
        result = ht.array([[0.5, 1.0], [1.5, 2.0]])
        commutated_result = ht.array([[2.0, 1.0], [2.0 / 3.0, 0.5]])

        self.assertTrue(
            ht.equal(ht.div(self.a_scalar, self.a_scalar), ht.float32(1.0)))
        self.assertTrue(ht.equal(ht.div(self.a_tensor, self.a_scalar), result))
        self.assertTrue(
            ht.equal(ht.div(self.a_scalar, self.a_tensor), commutated_result))
        self.assertTrue(
            ht.equal(ht.div(self.a_tensor, self.another_tensor), result))
        self.assertTrue(ht.equal(ht.div(self.a_tensor, self.a_vector), result))
        self.assertTrue(
            ht.equal(ht.div(self.a_tensor, self.an_int_scalar), result))
        self.assertTrue(
            ht.equal(ht.div(self.a_split_tensor, self.a_tensor),
                     commutated_result))

        with self.assertRaises(ValueError):
            ht.div(self.a_tensor, self.another_vector)
        with self.assertRaises(TypeError):
            ht.div(self.a_tensor, self.erroneous_type)
        with self.assertRaises(TypeError):
            ht.div("T", "s")
コード例 #11
0
    def test_fill_diagonal(self):
        ref = ht.zeros((ht.MPI_WORLD.size * 2, ht.MPI_WORLD.size * 2), dtype=ht.float32, split=0)
        a = ht.eye(ht.MPI_WORLD.size * 2, dtype=ht.float32, split=0)
        a.fill_diagonal(0)
        self.assertTrue(ht.equal(a, ref))

        ref = ht.zeros((ht.MPI_WORLD.size * 2, ht.MPI_WORLD.size * 2), dtype=ht.int32, split=0)
        a = ht.eye(ht.MPI_WORLD.size * 2, dtype=ht.int32, split=0)
        a.fill_diagonal(0)
        self.assertTrue(ht.equal(a, ref))

        ref = ht.zeros((ht.MPI_WORLD.size * 2, ht.MPI_WORLD.size * 2), dtype=ht.float32, split=1)
        a = ht.eye(ht.MPI_WORLD.size * 2, dtype=ht.float32, split=1)
        a.fill_diagonal(0)
        self.assertTrue(ht.equal(a, ref))

        ref = ht.zeros((ht.MPI_WORLD.size * 2, ht.MPI_WORLD.size * 3), dtype=ht.float32, split=0)
        a = ht.eye((ht.MPI_WORLD.size * 2, ht.MPI_WORLD.size * 3), dtype=ht.float32, split=0)
        a.fill_diagonal(0)
        self.assertTrue(ht.equal(a, ref))

        # ToDo: uneven tensor dimensions x and y when bug in factories.eye is fixed
        ref = ht.zeros((ht.MPI_WORLD.size * 3, ht.MPI_WORLD.size * 3), dtype=ht.float32, split=1)
        a = ht.eye((ht.MPI_WORLD.size * 3, ht.MPI_WORLD.size * 3), dtype=ht.float32, split=1)
        a.fill_diagonal(0)
        self.assertTrue(ht.equal(a, ref))

        # ToDo: uneven tensor dimensions x and y when bug in factories.eye is fixed
        ref = ht.zeros((ht.MPI_WORLD.size * 4, ht.MPI_WORLD.size * 4), dtype=ht.float32, split=0)
        a = ht.eye((ht.MPI_WORLD.size * 4, ht.MPI_WORLD.size * 4), dtype=ht.float32, split=0)
        a.fill_diagonal(0)
        self.assertTrue(ht.equal(a, ref))

        a = ht.ones((ht.MPI_WORLD.size * 2,), dtype=ht.float32, split=0)
        with self.assertRaises(ValueError):
            a.fill_diagonal(0)
コード例 #12
0
ファイル: test_io.py プロジェクト: tkurze/heat
    def test_load_csv(self):
        csv_file_length = 150
        csv_file_cols = 4
        first_value = torch.tensor([5.1, 3.5, 1.4, 0.2],
                                   dtype=torch.float32,
                                   device=self.device.torch_device)
        tenth_value = torch.tensor([4.9, 3.1, 1.5, 0.1],
                                   dtype=torch.float32,
                                   device=self.device.torch_device)

        a = ht.load_csv(self.CSV_PATH, sep=";")
        self.assertEqual(len(a), csv_file_length)
        self.assertEqual(a.shape, (csv_file_length, csv_file_cols))
        self.assertTrue(torch.equal(a.larray[0], first_value))
        self.assertTrue(torch.equal(a.larray[9], tenth_value))

        a = ht.load_csv(self.CSV_PATH, sep=";", split=0)
        rank = a.comm.Get_rank()
        expected_gshape = (csv_file_length, csv_file_cols)
        self.assertEqual(a.gshape, expected_gshape)

        counts, _, _ = a.comm.counts_displs_shape(expected_gshape, 0)
        expected_lshape = (counts[rank], csv_file_cols)
        self.assertEqual(a.lshape, expected_lshape)

        if rank == 0:
            self.assertTrue(torch.equal(a.larray[0], first_value))

        a = ht.load_csv(self.CSV_PATH,
                        sep=";",
                        header_lines=9,
                        dtype=ht.float32,
                        split=0)
        expected_gshape = (csv_file_length - 9, csv_file_cols)
        counts, _, _ = a.comm.counts_displs_shape(expected_gshape, 0)
        expected_lshape = (counts[rank], csv_file_cols)

        self.assertEqual(a.gshape, expected_gshape)
        self.assertEqual(a.lshape, expected_lshape)
        self.assertEqual(a.dtype, ht.float32)
        if rank == 0:
            self.assertTrue(torch.equal(a.larray[0], tenth_value))

        a = ht.load_csv(self.CSV_PATH, sep=";", split=1)
        self.assertEqual(a.shape, (csv_file_length, csv_file_cols))
        self.assertEqual(a.lshape[0], csv_file_length)

        a = ht.load_csv(self.CSV_PATH, sep=";", split=0)
        b = ht.load(self.CSV_PATH, sep=";", split=0)
        self.assertTrue(ht.equal(a, b))

        # Test for csv where header is longer then the first process`s share of lines
        a = ht.load_csv(self.CSV_PATH, sep=";", header_lines=100, split=0)
        self.assertEqual(a.shape, (50, 4))

        with self.assertRaises(TypeError):
            ht.load_csv(12314)
        with self.assertRaises(TypeError):
            ht.load_csv(self.CSV_PATH, sep=11)
        with self.assertRaises(TypeError):
            ht.load_csv(self.CSV_PATH, header_lines="3", sep=";", split=0)
コード例 #13
0
    def test_add(self):
        # test basics
        result = ht.array([[3.0, 4.0], [5.0, 6.0]])

        self.assertTrue(
            ht.equal(ht.add(self.a_scalar, self.a_scalar), ht.float32(4.0)))
        self.assertTrue(ht.equal(ht.add(self.a_tensor, self.a_scalar), result))
        self.assertTrue(ht.equal(ht.add(self.a_scalar, self.a_tensor), result))
        self.assertTrue(
            ht.equal(ht.add(self.a_tensor, self.another_tensor), result))
        self.assertTrue(ht.equal(ht.add(self.a_tensor, self.a_vector), result))
        self.assertTrue(
            ht.equal(ht.add(self.a_tensor, self.an_int_scalar), result))
        self.assertTrue(
            ht.equal(ht.add(self.a_split_tensor, self.a_tensor), result))

        # Single element split
        a = ht.array([1], split=0)
        b = ht.array([1, 2], split=0)
        c = ht.add(a, b)
        self.assertTrue(ht.equal(c, ht.array([2, 3])))
        if c.comm.size > 1:
            if c.comm.rank < 2:
                self.assertEqual(c.larray.size()[0], 1)
            else:
                self.assertEqual(c.larray.size()[0], 0)

        # test with differently distributed DNDarrays
        a = ht.ones(10, split=0)
        b = ht.zeros(10, split=0)
        c = a[:-1] + b[1:]
        self.assertTrue((c == 1).all())
        self.assertTrue(c.lshape == a[:-1].lshape)

        c = a[1:-1] + b[1:-1]  # test unbalanced
        self.assertTrue((c == 1).all())
        self.assertTrue(c.lshape == a[1:-1].lshape)

        # test one unsplit
        a = ht.ones(10, split=None)
        b = ht.zeros(10, split=0)
        c = a[:-1] + b[1:]
        self.assertTrue((c == 1).all())
        self.assertEqual(c.lshape, b[1:].lshape)
        c = b[:-1] + a[1:]
        self.assertTrue((c == 1).all())
        self.assertEqual(c.lshape, b[:-1].lshape)

        # broadcast in split dimension
        a = ht.ones((1, 10), split=0)
        b = ht.zeros((2, 10), split=0)
        c = a + b
        self.assertTrue((c == 1).all())
        self.assertTrue(c.lshape == b.lshape)
        c = b + a
        self.assertTrue((c == 1).all())
        self.assertTrue(c.lshape == b.lshape)

        with self.assertRaises(ValueError):
            ht.add(self.a_tensor, self.another_vector)
        with self.assertRaises(TypeError):
            ht.add(self.a_tensor, self.erroneous_type)
        with self.assertRaises(TypeError):
            ht.add("T", "s")
コード例 #14
0
ファイル: test_relational.py プロジェクト: suleisl2000/heat
 def test_equal(self):
     self.assertTrue(ht.equal(self.a_tensor, self.a_tensor))
     self.assertFalse(ht.equal(self.a_tensor, self.another_tensor))
     self.assertFalse(ht.equal(self.a_tensor, self.a_scalar))
     self.assertFalse(ht.equal(self.another_tensor, self.a_scalar))
コード例 #15
0
ファイル: test_dndarray.py プロジェクト: suleisl2000/heat
    def test_resplit(self):
        # resplitting with same axis, should leave everything unchanged
        shape = (ht.MPI_WORLD.size, ht.MPI_WORLD.size)
        data = ht.zeros(shape, split=None, device=ht_device)
        data.resplit_(None)

        self.assertIsInstance(data, ht.DNDarray)
        self.assertEqual(data.shape, shape)
        self.assertEqual(data.lshape, shape)
        self.assertEqual(data.split, None)

        # resplitting with same axis, should leave everything unchanged
        shape = (ht.MPI_WORLD.size, ht.MPI_WORLD.size)
        data = ht.zeros(shape, split=1, device=ht_device)
        data.resplit_(1)

        self.assertIsInstance(data, ht.DNDarray)
        self.assertEqual(data.shape, shape)
        self.assertEqual(data.lshape, (data.comm.size, 1))
        self.assertEqual(data.split, 1)

        # splitting an unsplit tensor should result in slicing the tensor locally
        shape = (ht.MPI_WORLD.size, ht.MPI_WORLD.size)
        data = ht.zeros(shape, device=ht_device)
        data.resplit_(-1)

        self.assertIsInstance(data, ht.DNDarray)
        self.assertEqual(data.shape, shape)
        self.assertEqual(data.lshape, (data.comm.size, 1))
        self.assertEqual(data.split, 1)

        # unsplitting, aka gathering a tensor
        shape = (ht.MPI_WORLD.size + 1, ht.MPI_WORLD.size)
        data = ht.ones(shape, split=0, device=ht_device)
        data.resplit_(None)

        self.assertIsInstance(data, ht.DNDarray)
        self.assertEqual(data.shape, shape)
        self.assertEqual(data.lshape, shape)
        self.assertEqual(data.split, None)

        # assign and entirely new split axis
        shape = (ht.MPI_WORLD.size + 2, ht.MPI_WORLD.size + 1)
        data = ht.ones(shape, split=0, device=ht_device)
        data.resplit_(1)

        self.assertIsInstance(data, ht.DNDarray)
        self.assertEqual(data.shape, shape)
        self.assertEqual(data.lshape[0], ht.MPI_WORLD.size + 2)
        self.assertTrue(data.lshape[1] == 1 or data.lshape[1] == 2)
        self.assertEqual(data.split, 1)

        # test sorting order of resplit
        a_tensor = self.reference_tensor.copy()
        N = ht.MPI_WORLD.size

        # split along axis = 0
        a_tensor.resplit_(axis=0)
        local_shape = (1, N + 1, 2 * N)
        local_tensor = self.reference_tensor[ht.MPI_WORLD.rank, :, :]
        self.assertEqual(a_tensor.lshape, local_shape)
        self.assertTrue(
            (a_tensor._DNDarray__array == local_tensor._DNDarray__array).all())

        # unsplit
        a_tensor.resplit_(axis=None)
        self.assertTrue((a_tensor._DNDarray__array ==
                         self.reference_tensor._DNDarray__array).all())

        # split along axis = 1
        a_tensor.resplit_(axis=1)
        if ht.MPI_WORLD.rank == 0:
            local_shape = (N, 2, 2 * N)
            local_tensor = self.reference_tensor[:, 0:2, :]
        else:
            local_shape = (N, 1, 2 * N)
            local_tensor = self.reference_tensor[:, ht.MPI_WORLD.rank +
                                                 1:ht.MPI_WORLD.rank + 2, :]

        self.assertEqual(a_tensor.lshape, local_shape)
        self.assertTrue(
            (a_tensor._DNDarray__array == local_tensor._DNDarray__array).all())

        # unsplit
        a_tensor.resplit_(axis=None)
        self.assertTrue((a_tensor._DNDarray__array ==
                         self.reference_tensor._DNDarray__array).all())

        # split along axis = 2
        a_tensor.resplit_(axis=2)
        local_shape = (N, N + 1, 2)
        local_tensor = self.reference_tensor[:, :, 2 * ht.MPI_WORLD.rank:2 *
                                             ht.MPI_WORLD.rank + 2]

        self.assertEqual(a_tensor.lshape, local_shape)
        self.assertTrue(
            (a_tensor._DNDarray__array == local_tensor._DNDarray__array).all())

        expected = torch.ones((ht.MPI_WORLD.size, 100),
                              dtype=torch.int64,
                              device=device)
        data = ht.array(expected, split=1, device=ht_device)
        data.resplit_(None)

        self.assertTrue(torch.equal(data._DNDarray__array, expected))
        self.assertFalse(data.is_distributed())
        self.assertIsNone(data.split)
        self.assertEqual(data.dtype, ht.int64)
        self.assertEqual(data._DNDarray__array.dtype, expected.dtype)

        expected = torch.zeros((100, ht.MPI_WORLD.size),
                               dtype=torch.uint8,
                               device=device)
        data = ht.array(expected, split=0, device=ht_device)
        data.resplit_(None)

        self.assertTrue(torch.equal(data._DNDarray__array, expected))
        self.assertFalse(data.is_distributed())
        self.assertIsNone(data.split)
        self.assertEqual(data.dtype, ht.uint8)
        self.assertEqual(data._DNDarray__array.dtype, expected.dtype)

        # "in place"
        length = torch.tensor([i + 20 for i in range(2)], device=device)
        test = torch.arange(torch.prod(length),
                            dtype=torch.float64,
                            device=device).reshape([i + 20 for i in range(2)])
        a = ht.array(test, split=1)
        a.resplit_(axis=0)
        self.assertTrue(ht.equal(a, ht.array(test, split=0)))
        self.assertEqual(a.split, 0)
        self.assertEqual(a.dtype, ht.float64)
        del a

        test = torch.arange(torch.prod(length), device=device)
        a = ht.array(test, split=0)
        a.resplit_(axis=None)
        self.assertTrue(ht.equal(a, ht.array(test, split=None)))
        self.assertEqual(a.split, None)
        self.assertEqual(a.dtype, ht.int64)
        del a

        a = ht.array(test, split=None)
        a.resplit_(axis=0)
        self.assertTrue(ht.equal(a, ht.array(test, split=0)))
        self.assertEqual(a.split, 0)
        self.assertEqual(a.dtype, ht.int64)
        del a

        a = ht.array(test, split=0)
        resplit_a = ht.manipulations.resplit(a, axis=None)
        self.assertTrue(ht.equal(resplit_a, ht.array(test, split=None)))
        self.assertEqual(resplit_a.split, None)
        self.assertEqual(resplit_a.dtype, ht.int64)
        del a

        a = ht.array(test, split=None)
        resplit_a = ht.manipulations.resplit(a, axis=0)
        self.assertTrue(ht.equal(resplit_a, ht.array(test, split=0)))
        self.assertEqual(resplit_a.split, 0)
        self.assertEqual(resplit_a.dtype, ht.int64)
        del a
コード例 #16
0
ファイル: test_basics.py プロジェクト: mtar/heat
    def test_matmul(self):
        with self.assertRaises(ValueError):
            ht.matmul(ht.ones((25, 25)), ht.ones((42, 42)))

        # cases to test:
        n, m = 21, 31
        j, k = m, 45
        a_torch = torch.ones((n, m), device=self.device.torch_device)
        a_torch[0] = torch.arange(1, m + 1, device=self.device.torch_device)
        a_torch[:, -1] = torch.arange(1,
                                      n + 1,
                                      device=self.device.torch_device)
        b_torch = torch.ones((j, k), device=self.device.torch_device)
        b_torch[0] = torch.arange(1, k + 1, device=self.device.torch_device)
        b_torch[:, 0] = torch.arange(1, j + 1, device=self.device.torch_device)

        # splits None None
        a = ht.ones((n, m), split=None)
        b = ht.ones((j, k), split=None)
        a[0] = ht.arange(1, m + 1)
        a[:, -1] = ht.arange(1, n + 1)
        b[0] = ht.arange(1, k + 1)
        b[:, 0] = ht.arange(1, j + 1)
        ret00 = ht.matmul(a, b)

        self.assertEqual(ht.all(ret00 == ht.array(a_torch @ b_torch)), 1)
        self.assertIsInstance(ret00, ht.DNDarray)
        self.assertEqual(ret00.shape, (n, k))
        self.assertEqual(ret00.dtype, ht.float)
        self.assertEqual(ret00.split, None)
        self.assertEqual(a.split, None)
        self.assertEqual(b.split, None)

        # splits None None
        a = ht.ones((n, m), split=None)
        b = ht.ones((j, k), split=None)
        a[0] = ht.arange(1, m + 1)
        a[:, -1] = ht.arange(1, n + 1)
        b[0] = ht.arange(1, k + 1)
        b[:, 0] = ht.arange(1, j + 1)
        ret00 = ht.matmul(a, b, allow_resplit=True)

        self.assertEqual(ht.all(ret00 == ht.array(a_torch @ b_torch)), 1)
        self.assertIsInstance(ret00, ht.DNDarray)
        self.assertEqual(ret00.shape, (n, k))
        self.assertEqual(ret00.dtype, ht.float)
        self.assertEqual(ret00.split, None)
        self.assertEqual(a.split, 0)
        self.assertEqual(b.split, None)

        if a.comm.size > 1:
            # splits 00
            a = ht.ones((n, m), split=0, dtype=ht.float64)
            b = ht.ones((j, k), split=0)
            a[0] = ht.arange(1, m + 1)
            a[:, -1] = ht.arange(1, n + 1)
            b[0] = ht.arange(1, k + 1)
            b[:, 0] = ht.arange(1, j + 1)
            ret00 = a @ b

            ret_comp00 = ht.array(a_torch @ b_torch, split=0)
            self.assertTrue(ht.equal(ret00, ret_comp00))
            self.assertIsInstance(ret00, ht.DNDarray)
            self.assertEqual(ret00.shape, (n, k))
            self.assertEqual(ret00.dtype, ht.float64)
            self.assertEqual(ret00.split, 0)

            # splits 00 (numpy)
            a = ht.array(np.ones((n, m)), split=0)
            b = ht.array(np.ones((j, k)), split=0)
            a[0] = ht.arange(1, m + 1)
            a[:, -1] = ht.arange(1, n + 1)
            b[0] = ht.arange(1, k + 1)
            b[:, 0] = ht.arange(1, j + 1)
            ret00 = a @ b

            ret_comp00 = ht.array(a_torch @ b_torch, split=0)
            self.assertTrue(ht.equal(ret00, ret_comp00))
            self.assertIsInstance(ret00, ht.DNDarray)
            self.assertEqual(ret00.shape, (n, k))
            self.assertEqual(ret00.dtype, ht.float64)
            self.assertEqual(ret00.split, 0)

            # splits 01
            a = ht.ones((n, m), split=0)
            b = ht.ones((j, k), split=1, dtype=ht.float64)
            a[0] = ht.arange(1, m + 1)
            a[:, -1] = ht.arange(1, n + 1)
            b[0] = ht.arange(1, k + 1)
            b[:, 0] = ht.arange(1, j + 1)
            ret00 = ht.matmul(a, b)

            ret_comp01 = ht.array(a_torch @ b_torch, split=0)
            self.assertTrue(ht.equal(ret00, ret_comp01))
            self.assertIsInstance(ret00, ht.DNDarray)
            self.assertEqual(ret00.shape, (n, k))
            self.assertEqual(ret00.dtype, ht.float64)
            self.assertEqual(ret00.split, 0)

            # splits 10
            a = ht.ones((n, m), split=1)
            b = ht.ones((j, k), split=0)
            a[0] = ht.arange(1, m + 1)
            a[:, -1] = ht.arange(1, n + 1)
            b[0] = ht.arange(1, k + 1)
            b[:, 0] = ht.arange(1, j + 1)
            ret00 = ht.matmul(a, b)

            ret_comp10 = ht.array(a_torch @ b_torch, split=1)
            self.assertTrue(ht.equal(ret00, ret_comp10))
            self.assertIsInstance(ret00, ht.DNDarray)
            self.assertEqual(ret00.shape, (n, k))
            self.assertEqual(ret00.dtype, ht.float)
            self.assertEqual(ret00.split, 1)

            # splits 11
            a = ht.ones((n, m), split=1)
            b = ht.ones((j, k), split=1)
            a[0] = ht.arange(1, m + 1)
            a[:, -1] = ht.arange(1, n + 1)
            b[0] = ht.arange(1, k + 1)
            b[:, 0] = ht.arange(1, j + 1)
            ret00 = ht.matmul(a, b)

            ret_comp11 = ht.array(a_torch @ b_torch, split=1)
            self.assertTrue(ht.equal(ret00, ret_comp11))
            self.assertIsInstance(ret00, ht.DNDarray)
            self.assertEqual(ret00.shape, (n, k))
            self.assertEqual(ret00.dtype, ht.float)
            self.assertEqual(ret00.split, 1)

            # splits 11 (torch)
            a = ht.array(torch.ones((n, m), device=self.device.torch_device),
                         split=1)
            b = ht.array(torch.ones((j, k), device=self.device.torch_device),
                         split=1)
            a[0] = ht.arange(1, m + 1)
            a[:, -1] = ht.arange(1, n + 1)
            b[0] = ht.arange(1, k + 1)
            b[:, 0] = ht.arange(1, j + 1)
            ret00 = ht.matmul(a, b)

            ret_comp11 = ht.array(a_torch @ b_torch, split=1)
            self.assertTrue(ht.equal(ret00, ret_comp11))
            self.assertIsInstance(ret00, ht.DNDarray)
            self.assertEqual(ret00.shape, (n, k))
            self.assertEqual(ret00.dtype, ht.float)
            self.assertEqual(ret00.split, 1)

            # splits 0 None
            a = ht.ones((n, m), split=0)
            b = ht.ones((j, k), split=None)
            a[0] = ht.arange(1, m + 1)
            a[:, -1] = ht.arange(1, n + 1)
            b[0] = ht.arange(1, k + 1)
            b[:, 0] = ht.arange(1, j + 1)
            ret00 = ht.matmul(a, b)

            ret_comp0 = ht.array(a_torch @ b_torch, split=0)
            self.assertTrue(ht.equal(ret00, ret_comp0))
            self.assertIsInstance(ret00, ht.DNDarray)
            self.assertEqual(ret00.shape, (n, k))
            self.assertEqual(ret00.dtype, ht.float)
            self.assertEqual(ret00.split, 0)

            # splits 1 None
            a = ht.ones((n, m), split=1)
            b = ht.ones((j, k), split=None)
            a[0] = ht.arange(1, m + 1)
            a[:, -1] = ht.arange(1, n + 1)
            b[0] = ht.arange(1, k + 1)
            b[:, 0] = ht.arange(1, j + 1)
            ret00 = ht.matmul(a, b)

            ret_comp1 = ht.array(a_torch @ b_torch, split=1)
            self.assertTrue(ht.equal(ret00, ret_comp1))
            self.assertIsInstance(ret00, ht.DNDarray)
            self.assertEqual(ret00.shape, (n, k))
            self.assertEqual(ret00.dtype, ht.float)
            self.assertEqual(ret00.split, 1)

            # splits None 0
            a = ht.ones((n, m), split=None)
            b = ht.ones((j, k), split=0)
            a[0] = ht.arange(1, m + 1)
            a[:, -1] = ht.arange(1, n + 1)
            b[0] = ht.arange(1, k + 1)
            b[:, 0] = ht.arange(1, j + 1)
            ret00 = ht.matmul(a, b)

            ret_comp = ht.array(a_torch @ b_torch, split=0)
            self.assertTrue(ht.equal(ret00, ret_comp))
            self.assertIsInstance(ret00, ht.DNDarray)
            self.assertEqual(ret00.shape, (n, k))
            self.assertEqual(ret00.dtype, ht.float)
            self.assertEqual(ret00.split, 0)

            # splits None 1
            a = ht.ones((n, m), split=None)
            b = ht.ones((j, k), split=1)
            a[0] = ht.arange(1, m + 1)
            a[:, -1] = ht.arange(1, n + 1)
            b[0] = ht.arange(1, k + 1)
            b[:, 0] = ht.arange(1, j + 1)
            ret00 = ht.matmul(a, b)

            ret_comp = ht.array(a_torch @ b_torch, split=1)
            self.assertTrue(ht.equal(ret00, ret_comp))
            self.assertIsInstance(ret00, ht.DNDarray)
            self.assertEqual(ret00.shape, (n, k))
            self.assertEqual(ret00.dtype, ht.float)
            self.assertEqual(ret00.split, 1)

            # vector matrix mult:
            # a -> vector
            a_torch = torch.ones((m), device=self.device.torch_device)
            b_torch = torch.ones((j, k), device=self.device.torch_device)
            b_torch[0] = torch.arange(1,
                                      k + 1,
                                      device=self.device.torch_device)
            b_torch[:, 0] = torch.arange(1,
                                         j + 1,
                                         device=self.device.torch_device)
            # splits None None
            a = ht.ones((m), split=None)
            b = ht.ones((j, k), split=None)
            b[0] = ht.arange(1, k + 1)
            b[:, 0] = ht.arange(1, j + 1)
            ret00 = ht.matmul(a, b)

            ret_comp = ht.array(a_torch @ b_torch, split=None)
            self.assertTrue(ht.equal(ret00, ret_comp))
            self.assertIsInstance(ret00, ht.DNDarray)
            self.assertEqual(ret00.shape, (k, ))
            self.assertEqual(ret00.dtype, ht.float)
            self.assertEqual(ret00.split, None)

            # splits None 0
            a = ht.ones((m), split=None)
            b = ht.ones((j, k), split=0)
            b[0] = ht.arange(1, k + 1)
            b[:, 0] = ht.arange(1, j + 1)
            ret00 = ht.matmul(a, b)

            ret_comp = ht.array(a_torch @ b_torch, split=None)
            self.assertTrue(ht.equal(ret00, ret_comp))
            self.assertIsInstance(ret00, ht.DNDarray)
            self.assertEqual(ret00.shape, (k, ))
            self.assertEqual(ret00.dtype, ht.float)
            self.assertEqual(ret00.split, 0)

            # splits None 1
            a = ht.ones((m), split=None)
            b = ht.ones((j, k), split=1)
            b[0] = ht.arange(1, k + 1)
            b[:, 0] = ht.arange(1, j + 1)
            ret00 = ht.matmul(a, b)
            ret_comp = ht.array(a_torch @ b_torch, split=0)
            self.assertTrue(ht.equal(ret00, ret_comp))
            self.assertIsInstance(ret00, ht.DNDarray)
            self.assertEqual(ret00.shape, (k, ))
            self.assertEqual(ret00.dtype, ht.float)
            self.assertEqual(ret00.split, 0)

            # splits 0 None
            a = ht.ones((m), split=None)
            b = ht.ones((j, k), split=0)
            b[0] = ht.arange(1, k + 1)
            b[:, 0] = ht.arange(1, j + 1)
            ret00 = ht.matmul(a, b)

            ret_comp = ht.array(a_torch @ b_torch, split=None)
            self.assertTrue(ht.equal(ret00, ret_comp))
            self.assertIsInstance(ret00, ht.DNDarray)
            self.assertEqual(ret00.shape, (k, ))
            self.assertEqual(ret00.dtype, ht.float)
            self.assertEqual(ret00.split, 0)

            # splits 0 0
            a = ht.ones((m), split=0)
            b = ht.ones((j, k), split=0)
            b[0] = ht.arange(1, k + 1)
            b[:, 0] = ht.arange(1, j + 1)
            ret00 = ht.matmul(a, b)

            ret_comp = ht.array(a_torch @ b_torch, split=None)
            self.assertTrue(ht.equal(ret00, ret_comp))
            self.assertIsInstance(ret00, ht.DNDarray)
            self.assertEqual(ret00.shape, (k, ))
            self.assertEqual(ret00.dtype, ht.float)
            self.assertEqual(ret00.split, 0)

            # splits 0 1
            a = ht.ones((m), split=0)
            b = ht.ones((j, k), split=1)
            b[0] = ht.arange(1, k + 1)
            b[:, 0] = ht.arange(1, j + 1)
            ret00 = ht.matmul(a, b)

            ret_comp = ht.array(a_torch @ b_torch, split=None)
            self.assertTrue(ht.equal(ret00, ret_comp))
            self.assertIsInstance(ret00, ht.DNDarray)
            self.assertEqual(ret00.shape, (k, ))
            self.assertEqual(ret00.dtype, ht.float)
            self.assertEqual(ret00.split, 0)

            # b -> vector
            a_torch = torch.ones((n, m), device=self.device.torch_device)
            a_torch[0] = torch.arange(1,
                                      m + 1,
                                      device=self.device.torch_device)
            a_torch[:, -1] = torch.arange(1,
                                          n + 1,
                                          device=self.device.torch_device)
            b_torch = torch.ones((j), device=self.device.torch_device)
            # splits None None
            a = ht.ones((n, m), split=None)
            b = ht.ones((j), split=None)
            a[0] = ht.arange(1, m + 1)
            a[:, -1] = ht.arange(1, n + 1)
            ret00 = ht.matmul(a, b)

            ret_comp = ht.array(a_torch @ b_torch, split=None)
            self.assertTrue(ht.equal(ret00, ret_comp))
            self.assertIsInstance(ret00, ht.DNDarray)
            self.assertEqual(ret00.shape, (n, ))
            self.assertEqual(ret00.dtype, ht.float)
            self.assertEqual(ret00.split, None)

            # splits 0 None
            a = ht.ones((n, m), split=0)
            b = ht.ones((j), split=None)
            a[0] = ht.arange(1, m + 1)
            a[:, -1] = ht.arange(1, n + 1)
            ret00 = ht.matmul(a, b)

            ret_comp = ht.array((a_torch @ b_torch), split=None)
            self.assertTrue(ht.equal(ret00, ret_comp))
            self.assertIsInstance(ret00, ht.DNDarray)
            self.assertEqual(ret00.shape, (n, ))
            self.assertEqual(ret00.dtype, ht.float)
            self.assertEqual(ret00.split, 0)

            # splits 1 None
            a = ht.ones((n, m), split=1)
            b = ht.ones((j), split=None)
            a[0] = ht.arange(1, m + 1)
            a[:, -1] = ht.arange(1, n + 1)
            ret00 = ht.matmul(a, b)

            ret_comp = ht.array((a_torch @ b_torch), split=None)
            self.assertTrue(ht.equal(ret00, ret_comp))
            self.assertIsInstance(ret00, ht.DNDarray)
            self.assertEqual(ret00.shape, (n, ))
            self.assertEqual(ret00.dtype, ht.float)
            self.assertEqual(ret00.split, 0)

            # splits None 0
            a = ht.ones((n, m), split=None)
            b = ht.ones((j), split=0)
            a[0] = ht.arange(1, m + 1)
            a[:, -1] = ht.arange(1, n + 1)
            ret00 = ht.matmul(a, b)

            ret_comp = ht.array((a_torch @ b_torch), split=None)
            self.assertTrue(ht.equal(ret00, ret_comp))
            self.assertIsInstance(ret00, ht.DNDarray)
            self.assertEqual(ret00.shape, (n, ))
            self.assertEqual(ret00.dtype, ht.float)
            self.assertEqual(ret00.split, 0)

            # splits 0 0
            a = ht.ones((n, m), split=0)
            b = ht.ones((j), split=0)
            a[0] = ht.arange(1, m + 1)
            a[:, -1] = ht.arange(1, n + 1)
            ret00 = ht.matmul(a, b)

            ret_comp = ht.array((a_torch @ b_torch), split=None)
            self.assertTrue(ht.equal(ret00, ret_comp))
            self.assertIsInstance(ret00, ht.DNDarray)
            self.assertEqual(ret00.shape, (n, ))
            self.assertEqual(ret00.dtype, ht.float)
            self.assertEqual(ret00.split, 0)

            # splits 1 0
            a = ht.ones((n, m), split=1)
            b = ht.ones((j), split=0)
            a[0] = ht.arange(1, m + 1)
            a[:, -1] = ht.arange(1, n + 1)
            ret00 = ht.matmul(a, b)

            ret_comp = ht.array((a_torch @ b_torch), split=None)
            self.assertTrue(ht.equal(ret00, ret_comp))
            self.assertIsInstance(ret00, ht.DNDarray)
            self.assertEqual(ret00.shape, (n, ))
            self.assertEqual(ret00.dtype, ht.float)
            self.assertEqual(ret00.split, 0)

            with self.assertRaises(NotImplementedError):
                a = ht.zeros((3, 3, 3), split=2)
                b = a.copy()
                a @ b
コード例 #17
0
    def test_cdist(self):
        n = ht.communication.MPI_WORLD.size
        X = ht.ones((n * 2, 4), dtype=ht.float32, split=None)
        Y = ht.zeros((n * 2, 4), dtype=ht.float32, split=None)
        res_XX_cdist = ht.zeros((n * 2, n * 2), dtype=ht.float32, split=None)
        res_XX_rbf = ht.ones((n * 2, n * 2), dtype=ht.float32, split=None)
        res_XY_cdist = ht.ones(
            (n * 2, n * 2), dtype=ht.float32, split=None) * 2
        res_XY_rbf = ht.ones(
            (n * 2, n * 2), dtype=ht.float32, split=None) * math.exp(-1.0)

        # Case 1a: X.split == None, Y == None
        d = ht.spatial.cdist(X, quadratic_expansion=False)
        self.assertTrue(ht.equal(d, res_XX_cdist))
        self.assertEqual(d.split, None)

        d = ht.spatial.cdist(X, quadratic_expansion=True)
        self.assertTrue(ht.equal(d, res_XX_cdist))
        self.assertEqual(d.split, None)

        d = ht.spatial.rbf(X, quadratic_expansion=False)
        self.assertTrue(ht.equal(d, res_XX_rbf))
        self.assertEqual(d.split, None)

        d = ht.spatial.rbf(X, quadratic_expansion=True)
        self.assertTrue(ht.equal(d, res_XX_rbf))
        self.assertEqual(d.split, None)

        # Case 1b: X.split == None, Y != None, Y.split == None
        d = ht.spatial.cdist(X, Y, quadratic_expansion=False)
        self.assertTrue(ht.equal(d, res_XY_cdist))
        self.assertEqual(d.split, None)

        d = ht.spatial.cdist(X, Y, quadratic_expansion=True)
        self.assertTrue(ht.equal(d, res_XY_cdist))
        self.assertEqual(d.split, None)

        d = ht.spatial.rbf(X,
                           Y,
                           sigma=math.sqrt(2.0),
                           quadratic_expansion=False)
        self.assertTrue(ht.equal(d, res_XY_rbf))
        self.assertEqual(d.split, None)

        d = ht.spatial.rbf(X,
                           Y,
                           sigma=math.sqrt(2.0),
                           quadratic_expansion=True)
        self.assertTrue(ht.equal(d, res_XY_rbf))
        self.assertEqual(d.split, None)

        # Case 1c: X.split == None, Y != None, Y.split == 0
        Y = ht.zeros((n * 2, 4), dtype=ht.float32, split=0)
        res_XX_cdist = ht.zeros((n * 2, n * 2), dtype=ht.float32, split=1)
        res_XX_rbf = ht.ones((n * 2, n * 2), dtype=ht.float32, split=1)
        res_XY_cdist = ht.ones((n * 2, n * 2), dtype=ht.float32, split=1) * 2
        res_XY_rbf = ht.ones(
            (n * 2, n * 2), dtype=ht.float32, split=1) * math.exp(-1.0)

        d = ht.spatial.cdist(X, Y, quadratic_expansion=False)
        self.assertTrue(ht.equal(d, res_XY_cdist))
        self.assertEqual(d.split, 1)

        d = ht.spatial.cdist(X, Y, quadratic_expansion=True)
        self.assertTrue(ht.equal(d, res_XY_cdist))
        self.assertEqual(d.split, 1)

        d = ht.spatial.rbf(X,
                           Y,
                           sigma=math.sqrt(2.0),
                           quadratic_expansion=False)
        self.assertTrue(ht.equal(d, res_XY_rbf))
        self.assertEqual(d.split, 1)

        d = ht.spatial.rbf(X,
                           Y,
                           sigma=math.sqrt(2.0),
                           quadratic_expansion=True)
        self.assertTrue(ht.equal(d, res_XY_rbf))
        self.assertEqual(d.split, 1)

        # Case 2a: X.split == 0, Y == None
        X = ht.ones((n * 2, 4), dtype=ht.float32, split=0)
        Y = ht.zeros((n * 2, 4), dtype=ht.float32, split=None)
        res_XX_cdist = ht.zeros((n * 2, n * 2), dtype=ht.float32, split=0)
        res_XX_rbf = ht.ones((n * 2, n * 2), dtype=ht.float32, split=0)
        res_XY_cdist = ht.ones((n * 2, n * 2), dtype=ht.float32, split=0) * 2
        res_XY_rbf = ht.ones(
            (n * 2, n * 2), dtype=ht.float32, split=0) * math.exp(-1.0)

        d = ht.spatial.cdist(X, quadratic_expansion=False)
        self.assertTrue(ht.equal(d, res_XX_cdist))
        self.assertEqual(d.split, 0)

        d = ht.spatial.cdist(X, quadratic_expansion=True)
        self.assertTrue(ht.equal(d, res_XX_cdist))
        self.assertEqual(d.split, 0)

        d = ht.spatial.rbf(X, quadratic_expansion=False)
        self.assertTrue(ht.equal(d, res_XX_rbf))
        self.assertEqual(d.split, 0)

        d = ht.spatial.rbf(X, quadratic_expansion=True)
        self.assertTrue(ht.equal(d, res_XX_rbf))
        self.assertEqual(d.split, 0)

        # Case 2b: X.split == 0, Y != None, Y.split == None
        d = ht.spatial.cdist(X, Y, quadratic_expansion=False)
        self.assertTrue(ht.equal(d, res_XY_cdist))
        self.assertEqual(d.split, 0)

        d = ht.spatial.cdist(X, Y, quadratic_expansion=True)
        self.assertTrue(ht.equal(d, res_XY_cdist))
        self.assertEqual(d.split, 0)

        d = ht.spatial.rbf(X,
                           Y,
                           sigma=math.sqrt(2.0),
                           quadratic_expansion=False)
        self.assertTrue(ht.equal(d, res_XY_rbf))
        self.assertEqual(d.split, 0)

        d = ht.spatial.rbf(X,
                           Y,
                           sigma=math.sqrt(2.0),
                           quadratic_expansion=True)
        self.assertTrue(ht.equal(d, res_XY_rbf))
        self.assertEqual(d.split, 0)

        # Case 2c: X.split == 0, Y != None, Y.split == 0
        Y = ht.zeros((n * 2, 4), dtype=ht.float32, split=0)

        d = ht.spatial.cdist(X, Y, quadratic_expansion=False)
        self.assertTrue(ht.equal(d, res_XY_cdist))
        self.assertEqual(d.split, 0)

        d = ht.spatial.cdist(X, Y, quadratic_expansion=True)
        self.assertTrue(ht.equal(d, res_XY_cdist))
        self.assertEqual(d.split, 0)

        d = ht.spatial.rbf(X,
                           Y,
                           sigma=math.sqrt(2.0),
                           quadratic_expansion=False)
        self.assertTrue(ht.equal(d, res_XY_rbf))
        self.assertEqual(d.split, 0)

        d = ht.spatial.rbf(X,
                           Y,
                           sigma=math.sqrt(2.0),
                           quadratic_expansion=True)
        self.assertTrue(ht.equal(d, res_XY_rbf))
        self.assertEqual(d.split, 0)

        # Case 3 X.split == 1
        X = ht.ones((n * 2, 4), dtype=ht.float32, split=1)
        with self.assertRaises(NotImplementedError):
            ht.spatial.cdist(X)
        with self.assertRaises(NotImplementedError):
            ht.spatial.cdist(X, Y, quadratic_expansion=False)
        X = ht.ones((n * 2, 4), dtype=ht.float32, split=None)
        Y = ht.zeros((n * 2, 4), dtype=ht.float32, split=1)
        with self.assertRaises(NotImplementedError):
            ht.spatial.cdist(X, Y, quadratic_expansion=False)

        Z = ht.ones((n * 2, 6, 3), dtype=ht.float32, split=None)
        with self.assertRaises(NotImplementedError):
            ht.spatial.cdist(Z, quadratic_expansion=False)
        with self.assertRaises(NotImplementedError):
            ht.spatial.cdist(X, Z, quadratic_expansion=False)

        n = ht.communication.MPI_WORLD.size
        A = ht.ones((n * 2, 6), dtype=ht.float32, split=None)
        for i in range(n):
            A[2 * i, :] = A[2 * i, :] * (2 * i)
            A[2 * i + 1, :] = A[2 * i + 1, :] * (2 * i + 1)
        res = torch.cdist(A._DNDarray__array, A._DNDarray__array)

        A = ht.ones((n * 2, 6), dtype=ht.float32, split=0)
        for i in range(n):
            A[2 * i, :] = A[2 * i, :] * (2 * i)
            A[2 * i + 1, :] = A[2 * i + 1, :] * (2 * i + 1)
        B = A.astype(ht.int32)

        d = ht.spatial.cdist(A, B, quadratic_expansion=False)
        result = ht.array(res, dtype=ht.float64, split=0)
        self.assertTrue(ht.allclose(d, result, atol=1e-5))

        n = ht.communication.MPI_WORLD.size
        A = ht.ones((n * 2, 6), dtype=ht.float32, split=None)
        for i in range(n):
            A[2 * i, :] = A[2 * i, :] * (2 * i)
            A[2 * i + 1, :] = A[2 * i + 1, :] * (2 * i + 1)
        res = torch.cdist(A._DNDarray__array, A._DNDarray__array)

        A = ht.ones((n * 2, 6), dtype=ht.float32, split=0)
        for i in range(n):
            A[2 * i, :] = A[2 * i, :] * (2 * i)
            A[2 * i + 1, :] = A[2 * i + 1, :] * (2 * i + 1)
        B = A.astype(ht.int32)

        d = ht.spatial.cdist(A, B, quadratic_expansion=False)
        result = ht.array(res, dtype=ht.float64, split=0)
        self.assertTrue(ht.allclose(d, result, atol=1e-8))

        B = A.astype(ht.float64)
        d = ht.spatial.cdist(A, B, quadratic_expansion=False)
        result = ht.array(res, dtype=ht.float64, split=0)
        self.assertTrue(ht.allclose(d, result, atol=1e-8))

        B = A.astype(ht.int16)
        d = ht.spatial.cdist(A, B, quadratic_expansion=False)
        result = ht.array(res, dtype=ht.float32, split=0)
        self.assertTrue(ht.allclose(d, result, atol=1e-8))

        d = ht.spatial.cdist(B, quadratic_expansion=False)
        result = ht.array(res, dtype=ht.float32, split=0)
        self.assertTrue(ht.allclose(d, result, atol=1e-8))

        B = A.astype(ht.int32)
        d = ht.spatial.cdist(B, quadratic_expansion=False)
        result = ht.array(res, dtype=ht.float64, split=0)
        self.assertTrue(ht.allclose(d, result, atol=1e-8))

        B = A.astype(ht.float64)
        d = ht.spatial.cdist(B, quadratic_expansion=False)
        result = ht.array(res, dtype=ht.float64, split=0)
        self.assertTrue(ht.allclose(d, result, atol=1e-8))
コード例 #18
0
    def test_where(self):
        # cases to test
        # no x and y
        a = ht.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                     split=None,
                     device=ht_device)
        cond = a > 3
        wh = ht.where(cond)
        self.assertEqual(wh.gshape, (6, 2))
        self.assertEqual(wh.dtype, ht.int64)
        self.assertEqual(wh.split, None)
        # split
        a = ht.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                     split=1,
                     device=ht_device)
        cond = a > 3
        wh = ht.where(cond)
        self.assertEqual(wh.gshape, (6, 2))
        self.assertEqual(wh.dtype, ht.int64)
        self.assertEqual(wh.split, 0)

        # not split cond
        a = ht.array([[0.0, 1.0, 2.0], [0.0, 2.0, 4.0], [0.0, 3.0, 6.0]],
                     split=None,
                     device=ht_device)
        res = ht.array([[0.0, 1.0, 2.0], [0.0, 2.0, -1.0], [0.0, 3.0, -1.0]],
                       split=None,
                       device=ht_device)
        wh = ht.where(a < 4.0, a, -1.0)
        self.assertTrue(
            ht.equal(
                a[ht.nonzero(a < 4)],
                ht.array([0.0, 1.0, 2.0, 0.0, 2.0, 0.0, 3.0],
                         device=ht_device),
            ))
        self.assertTrue(ht.equal(wh, res))
        self.assertEqual(wh.gshape, (3, 3))
        self.assertEqual(wh.dtype, ht.float)

        # split cond
        a = ht.array([[0.0, 1.0, 2.0], [0.0, 2.0, 4.0], [0.0, 3.0, 6.0]],
                     split=0,
                     device=ht_device)
        res = ht.array([[0.0, 1.0, 2.0], [0.0, 2.0, -1.0], [0.0, 3.0, -1.0]],
                       split=0,
                       device=ht_device)
        wh = ht.where(a < 4.0, a, -1)
        self.assertTrue(ht.all(wh[ht.nonzero(a >= 4)], -1))
        self.assertTrue(ht.equal(wh, res))
        self.assertEqual(wh.gshape, (3, 3))
        self.assertEqual(wh.dtype, ht.float)
        self.assertEqual(wh.split, 0)

        a = ht.array([[0.0, 1.0, 2.0], [0.0, 2.0, 4.0], [0.0, 3.0, 6.0]],
                     split=1,
                     device=ht_device)
        res = ht.array([[0.0, 1.0, 2.0], [0.0, 2.0, -1.0], [0.0, 3.0, -1.0]],
                       split=1,
                       device=ht_device)
        wh = ht.where(a < 4.0, a, -1)
        self.assertTrue(ht.equal(wh, res))
        self.assertEqual(wh.gshape, (3, 3))
        self.assertEqual(wh.dtype, ht.float)
        self.assertEqual(wh.split, 1)

        with self.assertRaises(TypeError):
            ht.where(cond, a)

        with self.assertRaises(NotImplementedError):
            ht.where(
                cond,
                ht.ones((3, 3), split=0, device=ht_device),
                ht.ones((3, 3), split=1, device=ht_device),
            )
コード例 #19
0
ファイル: test_relations.py プロジェクト: xclmj/heat
 def test_equal(self):
     self.assertTrue(ht.equal(T, T))
     self.assertFalse(ht.equal(T, T1))
     self.assertFalse(ht.equal(T, s))
     self.assertFalse(ht.equal(T1, s))
コード例 #20
0
    def test_sort(self):
        size = ht.MPI_WORLD.size
        rank = ht.MPI_WORLD.rank
        tensor = torch.arange(size, device=device).repeat(size).reshape(size, size)

        data = ht.array(tensor, split=None, device=ht_device)
        result, result_indices = ht.sort(data, axis=0, descending=True)
        expected, exp_indices = torch.sort(tensor, dim=0, descending=True)
        self.assertTrue(torch.equal(result._DNDarray__array, expected))
        self.assertTrue(torch.equal(result_indices._DNDarray__array, exp_indices))

        result, result_indices = ht.sort(data, axis=1, descending=True)
        expected, exp_indices = torch.sort(tensor, dim=1, descending=True)
        self.assertTrue(torch.equal(result._DNDarray__array, expected))
        self.assertTrue(torch.equal(result_indices._DNDarray__array, exp_indices))

        data = ht.array(tensor, split=0, device=ht_device)

        exp_axis_zero = torch.arange(size, device=device).reshape(1, size)
        exp_indices = torch.tensor([[rank] * size], device=device)
        result, result_indices = ht.sort(data, descending=True, axis=0)
        self.assertTrue(torch.equal(result._DNDarray__array, exp_axis_zero))
        self.assertTrue(torch.equal(result_indices._DNDarray__array, exp_indices))

        exp_axis_one, exp_indices = (
            torch.arange(size, device=device).reshape(1, size).sort(dim=1, descending=True)
        )
        result, result_indices = ht.sort(data, descending=True, axis=1)
        self.assertTrue(torch.equal(result._DNDarray__array, exp_axis_one))
        self.assertTrue(torch.equal(result_indices._DNDarray__array, exp_indices))

        result1 = ht.sort(data, axis=1, descending=True)
        result2 = ht.sort(data, descending=True)
        self.assertTrue(ht.equal(result1[0], result2[0]))
        self.assertTrue(ht.equal(result1[1], result2[1]))

        data = ht.array(tensor, split=1, device=ht_device)

        exp_axis_zero = torch.tensor(rank, device=device).repeat(size).reshape(size, 1)
        indices_axis_zero = torch.arange(size, dtype=torch.int64, device=device).reshape(size, 1)
        result, result_indices = ht.sort(data, axis=0, descending=True)
        self.assertTrue(torch.equal(result._DNDarray__array, exp_axis_zero))
        # comparison value is only true on CPU
        if result_indices._DNDarray__array.is_cuda is False:
            self.assertTrue(torch.equal(result_indices._DNDarray__array, indices_axis_zero))

        exp_axis_one = torch.tensor(size - rank - 1, device=device).repeat(size).reshape(size, 1)
        result, result_indices = ht.sort(data, descending=True, axis=1)
        self.assertTrue(torch.equal(result._DNDarray__array, exp_axis_one))
        self.assertTrue(torch.equal(result_indices._DNDarray__array, exp_axis_one))

        tensor = torch.tensor(
            [
                [[2, 8, 5], [7, 2, 3]],
                [[6, 5, 2], [1, 8, 7]],
                [[9, 3, 0], [1, 2, 4]],
                [[8, 4, 7], [0, 8, 9]],
            ],
            dtype=torch.int32,
            device=device,
        )

        data = ht.array(tensor, split=0, device=ht_device)
        exp_axis_zero = torch.tensor([[2, 3, 0], [0, 2, 3]], dtype=torch.int32, device=device)
        if torch.cuda.is_available() and data.device == ht.gpu and size < 4:
            indices_axis_zero = torch.tensor(
                [[0, 2, 2], [3, 2, 0]], dtype=torch.int32, device=device
            )
        else:
            indices_axis_zero = torch.tensor(
                [[0, 2, 2], [3, 0, 0]], dtype=torch.int32, device=device
            )
        result, result_indices = ht.sort(data, axis=0)
        first = result[0]._DNDarray__array
        first_indices = result_indices[0]._DNDarray__array
        if rank == 0:
            self.assertTrue(torch.equal(first, exp_axis_zero))
            self.assertTrue(torch.equal(first_indices, indices_axis_zero))

        data = ht.array(tensor, split=1, device=ht_device)
        exp_axis_one = torch.tensor([[2, 2, 3]], dtype=torch.int32, device=device)
        indices_axis_one = torch.tensor([[0, 1, 1]], dtype=torch.int32, device=device)
        result, result_indices = ht.sort(data, axis=1)
        first = result[0]._DNDarray__array[:1]
        first_indices = result_indices[0]._DNDarray__array[:1]
        if rank == 0:
            self.assertTrue(torch.equal(first, exp_axis_one))
            self.assertTrue(torch.equal(first_indices, indices_axis_one))

        data = ht.array(tensor, split=2, device=ht_device)
        exp_axis_two = torch.tensor([[2], [2]], dtype=torch.int32, device=device)
        indices_axis_two = torch.tensor([[0], [1]], dtype=torch.int32, device=device)
        result, result_indices = ht.sort(data, axis=2)
        first = result[0]._DNDarray__array[:, :1]
        first_indices = result_indices[0]._DNDarray__array[:, :1]
        if rank == 0:
            self.assertTrue(torch.equal(first, exp_axis_two))
            self.assertTrue(torch.equal(first_indices, indices_axis_two))
        #
        out = ht.empty_like(data, device=ht_device)
        indices = ht.sort(data, axis=2, out=out)
        self.assertTrue(ht.equal(out, result))
        self.assertTrue(ht.equal(indices, result_indices))

        with self.assertRaises(ValueError):
            ht.sort(data, axis=3)
        with self.assertRaises(TypeError):
            ht.sort(data, axis="1")

        rank = ht.MPI_WORLD.rank
        data = ht.random.randn(100, 1, split=0, device=ht_device)
        result, _ = ht.sort(data, axis=0)
        counts, _, _ = ht.get_comm().counts_displs_shape(data.gshape, axis=0)
        for i, c in enumerate(counts):
            for idx in range(c - 1):
                if rank == i:
                    self.assertTrue(
                        torch.lt(
                            result._DNDarray__array[idx], result._DNDarray__array[idx + 1]
                        ).all()
                    )
コード例 #21
0
ファイル: test_tiling.py プロジェクト: hixio-mh/heat
        def test_properties(self):
            # ---- m = n ------------- properties ------ s0 -----------
            m_eq_n_s0 = ht.random.randn(47, 47, split=0)
            # m_eq_n_s0.create_square_diag_tiles(tiles_per_proc=1)
            m_eq_n_s0_t1 = ht.tiling.SquareDiagTiles(m_eq_n_s0, tiles_per_proc=1)
            m_eq_n_s0_t2 = ht.tiling.SquareDiagTiles(m_eq_n_s0, tiles_per_proc=2)
            # arr
            self.assertTrue(ht.equal(m_eq_n_s0_t1.arr, m_eq_n_s0))
            self.assertTrue(ht.equal(m_eq_n_s0_t2.arr, m_eq_n_s0))
            # lshape_map
            self.assertTrue(torch.equal(m_eq_n_s0_t1.lshape_map, m_eq_n_s0.create_lshape_map()))
            self.assertTrue(torch.equal(m_eq_n_s0_t2.lshape_map, m_eq_n_s0.create_lshape_map()))

            if m_eq_n_s0.comm.size == 3:
                # col_inds
                self.assertEqual(m_eq_n_s0_t1.col_indices, [0, 16, 32])
                self.assertEqual(m_eq_n_s0_t2.col_indices, [0, 8, 16, 24, 32, 40])
                # row inds
                self.assertEqual(m_eq_n_s0_t1.row_indices, [0, 16, 32])
                self.assertEqual(m_eq_n_s0_t2.row_indices, [0, 8, 16, 24, 32, 40])
                # tile cols per proc
                self.assertEqual(m_eq_n_s0_t1.tile_columns_per_process, [3, 3, 3])
                self.assertEqual(m_eq_n_s0_t2.tile_columns_per_process, [6, 6, 6])
                # tile rows per proc
                self.assertEqual(m_eq_n_s0_t1.tile_rows_per_process, [1, 1, 1])
                self.assertEqual(m_eq_n_s0_t2.tile_rows_per_process, [2, 2, 2])
            # last diag pr
            self.assertEqual(m_eq_n_s0_t1.last_diagonal_process, m_eq_n_s0.comm.size - 1)
            self.assertEqual(m_eq_n_s0_t2.last_diagonal_process, m_eq_n_s0.comm.size - 1)
            # tile cols
            self.assertEqual(m_eq_n_s0_t1.tile_columns, m_eq_n_s0.comm.size)
            self.assertEqual(m_eq_n_s0_t2.tile_columns, m_eq_n_s0.comm.size * 2)
            # tile rows
            self.assertEqual(m_eq_n_s0_t1.tile_rows, m_eq_n_s0.comm.size)
            self.assertEqual(m_eq_n_s0_t2.tile_rows, m_eq_n_s0.comm.size * 2)

            # ---- m = n ------------- properties ------ s1 -----------
            m_eq_n_s1 = ht.random.randn(47, 47, split=1)
            m_eq_n_s1_t1 = ht.core.tiling.SquareDiagTiles(m_eq_n_s1, tiles_per_proc=1)
            m_eq_n_s1_t2 = ht.core.tiling.SquareDiagTiles(m_eq_n_s1, tiles_per_proc=2)
            # lshape_map
            self.assertTrue(torch.equal(m_eq_n_s1_t1.lshape_map, m_eq_n_s1.create_lshape_map()))
            self.assertTrue(torch.equal(m_eq_n_s1_t2.lshape_map, m_eq_n_s1.create_lshape_map()))

            if m_eq_n_s1.comm.size == 3:
                # col_inds
                self.assertEqual(m_eq_n_s1_t1.col_indices, [0, 16, 32])
                self.assertEqual(m_eq_n_s1_t2.col_indices, [0, 8, 16, 24, 32, 40])
                # row inds
                self.assertEqual(m_eq_n_s1_t1.row_indices, [0, 16, 32])
                self.assertEqual(m_eq_n_s1_t2.row_indices, [0, 8, 16, 24, 32, 40])
                # tile cols per proc
                self.assertEqual(m_eq_n_s1_t1.tile_columns_per_process, [1, 1, 1])
                self.assertEqual(m_eq_n_s1_t2.tile_columns_per_process, [2, 2, 2])
                # tile rows per proc
                self.assertEqual(m_eq_n_s1_t1.tile_rows_per_process, [3, 3, 3])
                self.assertEqual(m_eq_n_s1_t2.tile_rows_per_process, [6, 6, 6])
            # last diag pr
            self.assertEqual(m_eq_n_s1_t1.last_diagonal_process, m_eq_n_s1.comm.size - 1)
            self.assertEqual(m_eq_n_s1_t2.last_diagonal_process, m_eq_n_s1.comm.size - 1)
            # tile cols
            self.assertEqual(m_eq_n_s1_t1.tile_columns, m_eq_n_s1.comm.size)
            self.assertEqual(m_eq_n_s1_t2.tile_columns, m_eq_n_s1.comm.size * 2)
            # tile rows
            self.assertEqual(m_eq_n_s1_t1.tile_rows, m_eq_n_s1.comm.size)
            self.assertEqual(m_eq_n_s1_t2.tile_rows, m_eq_n_s1.comm.size * 2)

            # ---- m > n ------------- properties ------ s0 -----------
            m_gr_n_s0 = ht.random.randn(38, 128, split=0)
            m_gr_n_s0_t1 = ht.core.tiling.SquareDiagTiles(m_gr_n_s0, tiles_per_proc=1)
            m_gr_n_s0_t2 = ht.core.tiling.SquareDiagTiles(m_gr_n_s0, tiles_per_proc=2)
            if m_eq_n_s1.comm.size == 3:
                # col_inds
                self.assertEqual(m_gr_n_s0_t1.col_indices, [0, 13, 26])
                self.assertEqual(m_gr_n_s0_t2.col_indices, [0, 7, 13, 20, 26, 32])
                # row inds
                self.assertEqual(m_gr_n_s0_t1.row_indices, [0, 13, 26])
                self.assertEqual(m_gr_n_s0_t2.row_indices, [0, 7, 13, 20, 26, 32])
                # tile cols per proc
                self.assertEqual(m_gr_n_s0_t1.tile_columns_per_process, [3, 3, 3])
                self.assertEqual(m_gr_n_s0_t2.tile_columns_per_process, [6, 6, 6])
                # tile rows per proc
                self.assertEqual(m_gr_n_s0_t1.tile_rows_per_process, [1, 1, 1])
                self.assertEqual(m_gr_n_s0_t2.tile_rows_per_process, [2, 2, 2])
            # last diag pr
            self.assertEqual(m_gr_n_s0_t1.last_diagonal_process, m_eq_n_s1.comm.size - 1)
            self.assertEqual(m_gr_n_s0_t2.last_diagonal_process, m_eq_n_s1.comm.size - 1)
            # tile cols
            self.assertEqual(m_gr_n_s0_t1.tile_columns, m_eq_n_s1.comm.size)
            self.assertEqual(m_gr_n_s0_t2.tile_columns, m_eq_n_s1.comm.size * 2)
            # tile rows
            self.assertEqual(m_gr_n_s0_t1.tile_rows, m_eq_n_s1.comm.size)
            self.assertEqual(m_gr_n_s0_t2.tile_rows, m_eq_n_s1.comm.size * 2)

            # ---- m > n ------------- properties ------ s1 -----------
            m_gr_n_s1 = ht.random.randn(38, 128, split=1)
            m_gr_n_s1_t1 = ht.core.tiling.SquareDiagTiles(m_gr_n_s1, tiles_per_proc=1)
            m_gr_n_s1_t2 = ht.core.tiling.SquareDiagTiles(m_gr_n_s1, tiles_per_proc=2)
            if m_eq_n_s1.comm.size == 3:
                # col_inds
                self.assertEqual(m_gr_n_s1_t1.col_indices, [0, 38, 43, 86, 128, 171])
                self.assertEqual(m_gr_n_s1_t2.col_indices, [0, 19, 38, 43, 86, 128, 171])
                # row inds
                self.assertEqual(m_gr_n_s1_t1.row_indices, [0])
                self.assertEqual(m_gr_n_s1_t2.row_indices, [0, 19])
                # tile cols per proc
                self.assertEqual(m_gr_n_s1_t1.tile_columns_per_process, [2, 1, 1])
                self.assertEqual(m_gr_n_s1_t2.tile_columns_per_process, [3, 1, 1])
                # tile rows per proc
                self.assertEqual(m_gr_n_s1_t1.tile_rows_per_process, [1, 1, 1])
                self.assertEqual(m_gr_n_s1_t2.tile_rows_per_process, [2, 2, 2])
                # last diag pr
                self.assertEqual(m_gr_n_s1_t1.last_diagonal_process, 0)
                self.assertEqual(m_gr_n_s1_t2.last_diagonal_process, 0)
                # tile cols
                self.assertEqual(m_gr_n_s1_t1.tile_columns, 6)
                self.assertEqual(m_gr_n_s1_t2.tile_columns, 7)
                # tile rows
                self.assertEqual(m_gr_n_s1_t1.tile_rows, 1)
                self.assertEqual(m_gr_n_s1_t2.tile_rows, 2)

            # ---- m < n ------------- properties ------ s0 -----------
            m_ls_n_s0 = ht.random.randn(323, 49, split=0)
            m_ls_n_s0_t1 = ht.core.tiling.SquareDiagTiles(m_ls_n_s0, tiles_per_proc=1)
            m_ls_n_s0_t2 = ht.core.tiling.SquareDiagTiles(m_ls_n_s0, tiles_per_proc=2)
            if m_eq_n_s1.comm.size == 3:
                # col_inds
                self.assertEqual(m_ls_n_s0_t1.col_indices, [0])
                self.assertEqual(m_ls_n_s0_t2.col_indices, [0, 25])
                # row inds
                self.assertEqual(m_ls_n_s0_t1.row_indices, [0, 49, 109, 216])
                self.assertEqual(m_ls_n_s0_t2.row_indices, [0, 25, 49, 110, 163, 216, 270])
                # tile cols per proc
                self.assertEqual(m_ls_n_s0_t1.tile_columns_per_process, [1])
                self.assertEqual(m_ls_n_s0_t2.tile_columns_per_process, [2])
                # tile rows per proc
                self.assertEqual(m_ls_n_s0_t1.tile_rows_per_process, [2, 1, 1])
                self.assertEqual(m_ls_n_s0_t2.tile_rows_per_process, [3, 2, 2])
                # last diag pr
                self.assertEqual(m_ls_n_s0_t1.last_diagonal_process, 0)
                self.assertEqual(m_ls_n_s0_t2.last_diagonal_process, 0)
                # tile cols
                self.assertEqual(m_ls_n_s0_t1.tile_columns, 1)
                self.assertEqual(m_ls_n_s0_t2.tile_columns, 2)
                # tile rows
                self.assertEqual(m_ls_n_s0_t1.tile_rows, 4)
                self.assertEqual(m_ls_n_s0_t2.tile_rows, 7)

            # ---- m < n ------------- properties ------ s1 -----------
            m_ls_n_s1 = ht.random.randn(323, 49, split=1)
            m_ls_n_s1_t1 = ht.core.tiling.SquareDiagTiles(m_ls_n_s1, tiles_per_proc=1)
            m_ls_n_s1_t2 = ht.core.tiling.SquareDiagTiles(m_ls_n_s1, tiles_per_proc=2)
            if m_eq_n_s1.comm.size == 3:
                # col_inds
                self.assertEqual(m_ls_n_s1_t1.col_indices, [0, 17, 33])
                self.assertEqual(m_ls_n_s1_t2.col_indices, [0, 9, 17, 25, 33, 41])
                # row inds
                self.assertEqual(m_ls_n_s1_t1.row_indices, [0, 17, 33, 49])
                self.assertEqual(m_ls_n_s1_t2.row_indices, [0, 9, 17, 25, 33, 41, 49])
                # tile cols per proc
                self.assertEqual(m_ls_n_s1_t1.tile_columns_per_process, [1, 1, 1])
                self.assertEqual(m_ls_n_s1_t2.tile_columns_per_process, [2, 2, 2])
                # tile rows per proc
                self.assertEqual(m_ls_n_s1_t1.tile_rows_per_process, [4, 4, 4])
                self.assertEqual(m_ls_n_s1_t2.tile_rows_per_process, [7, 7, 7])
                # last diag pr
                self.assertEqual(m_ls_n_s1_t1.last_diagonal_process, 2)
                self.assertEqual(m_ls_n_s1_t2.last_diagonal_process, 2)
                # tile cols
                self.assertEqual(m_ls_n_s1_t1.tile_columns, 3)
                self.assertEqual(m_ls_n_s1_t2.tile_columns, 6)
                # tile rows
                self.assertEqual(m_ls_n_s1_t1.tile_rows, 4)
                self.assertEqual(m_ls_n_s1_t2.tile_rows, 7)
コード例 #22
0
    def test_dot(self):
        # ONLY TESTING CORRECTNESS! ALL CALLS IN DOT ARE PREVIOUSLY TESTED
        # cases to test:
        data2d = np.ones((10, 10))
        data3d = np.ones((10, 10, 10))
        data1d = np.arange(10)

        a1d = ht.array(data1d, dtype=ht.float32, split=0, device=ht_device)
        b1d = ht.array(data1d, dtype=ht.float32, split=0, device=ht_device)

        # 2 1D arrays,
        self.assertEqual(ht.dot(a1d, b1d), np.dot(data1d, data1d))
        ret = []
        self.assertEqual(ht.dot(a1d, b1d, out=ret), np.dot(data1d, data1d))

        a1d = ht.array(data1d, dtype=ht.float32, split=None, device=ht_device)
        b1d = ht.array(data1d, dtype=ht.float32, split=0, device=ht_device)
        self.assertEqual(ht.dot(a1d, b1d), np.dot(data1d, data1d))

        a1d = ht.array(data1d, dtype=ht.float32, split=None, device=ht_device)
        b1d = ht.array(data1d, dtype=ht.float32, split=None, device=ht_device)
        self.assertEqual(ht.dot(a1d, b1d), np.dot(data1d, data1d))

        a1d = ht.array(data1d, dtype=ht.float32, split=0, device=ht_device)
        b1d = ht.array(data1d, dtype=ht.float32, split=0, device=ht_device)
        self.assertEqual(ht.dot(a1d, b1d), np.dot(data1d, data1d))
        # 2 1D arrays,

        a2d = ht.array(data2d, split=1, device=ht_device)
        b2d = ht.array(data2d, split=1, device=ht_device)
        # 2 2D arrays,
        res = ht.dot(a2d, b2d) - ht.array(np.dot(data2d, data2d),
                                          device=ht_device)
        self.assertEqual(ht.equal(res, ht.zeros(res.shape, device=ht_device)),
                         1)
        ret = ht.array(data2d, split=1, device=ht_device)
        ht.dot(a2d, b2d, out=ret)
        # print(ht.dot(a2d, b2d, out=ret))
        res = ret - ht.array(np.dot(data2d, data2d), device=ht_device)
        self.assertEqual(ht.equal(res, ht.zeros(res.shape, device=ht_device)),
                         1)

        const1 = 5
        const2 = 6
        # a is const
        res = ht.dot(const1, b2d) - ht.array(np.dot(const1, data2d),
                                             device=ht_device)
        ret = 0
        ht.dot(const1, b2d, out=ret)
        self.assertEqual(ht.equal(res, ht.zeros(res.shape, device=ht_device)),
                         1)

        # b is const
        res = ht.dot(a2d, const2) - ht.array(np.dot(data2d, const2),
                                             device=ht_device)
        self.assertEqual(ht.equal(res, ht.zeros(res.shape, device=ht_device)),
                         1)
        # a and b and const
        self.assertEqual(ht.dot(const2, const1), 5 * 6)

        with self.assertRaises(NotImplementedError):
            ht.dot(ht.array(data3d, device=ht_device),
                   ht.array(data1d, device=ht_device))
コード例 #23
0
    def test_diag(self):
        size = ht.MPI_WORLD.size
        rank = ht.MPI_WORLD.rank

        data = torch.arange(size * 2, device=device)
        a = ht.array(data, device=ht_device)
        res = ht.diag(a)
        self.assertTrue(torch.equal(res._DNDarray__array, torch.diag(data)))

        res = ht.diag(a, offset=size)
        self.assertTrue(torch.equal(res._DNDarray__array, torch.diag(data, diagonal=size)))

        res = ht.diag(a, offset=-size)
        self.assertTrue(torch.equal(res._DNDarray__array, torch.diag(data, diagonal=-size)))

        a = ht.array(data, split=0, device=ht_device)
        res = ht.diag(a)
        self.assertEqual(res.split, a.split)
        self.assertEqual(res.shape, (size * 2, size * 2))
        self.assertEqual(res.lshape[res.split], 2)
        exp = torch.diag(data)
        for i in range(rank * 2, (rank + 1) * 2):
            self.assertTrue(torch.equal(res[i, i]._DNDarray__array, exp[i, i]))

        res = ht.diag(a, offset=size)
        self.assertEqual(res.split, a.split)
        self.assertEqual(res.shape, (size * 3, size * 3))
        self.assertEqual(res.lshape[res.split], 3)
        exp = torch.diag(data, diagonal=size)
        for i in range(rank * 3, min((rank + 1) * 3, a.shape[0])):
            self.assertTrue(torch.equal(res[i, i + size]._DNDarray__array, exp[i, i + size]))

        res = ht.diag(a, offset=-size)
        self.assertEqual(res.split, a.split)
        self.assertEqual(res.shape, (size * 3, size * 3))
        self.assertEqual(res.lshape[res.split], 3)
        exp = torch.diag(data, diagonal=-size)
        for i in range(max(size, rank * 3), (rank + 1) * 3):
            self.assertTrue(torch.equal(res[i, i - size]._DNDarray__array, exp[i, i - size]))

        self.assertTrue(ht.equal(ht.diag(ht.diag(a)), a))

        a = ht.random.rand(15, 20, 5, split=1, device=ht_device)
        res_1 = ht.diag(a)
        res_2 = ht.diagonal(a)
        self.assertTrue(ht.equal(res_1, res_2))

        with self.assertRaises(ValueError):
            ht.diag(data)

        with self.assertRaises(ValueError):
            ht.diag(a, offset=None)

        a = ht.arange(size, device=ht_device)
        with self.assertRaises(ValueError):
            ht.diag(a, offset="3")

        a = ht.empty([], device=ht_device)
        with self.assertRaises(ValueError):
            ht.diag(a)

        if rank == 0:
            data = torch.ones(size, dtype=torch.int32, device=device)
        else:
            data = torch.empty(0, dtype=torch.int32, device=device)
        a = ht.array(data, is_split=0, device=ht_device)
        res = ht.diag(a)
        self.assertTrue(
            torch.equal(
                res[rank, rank]._DNDarray__array, torch.tensor(1, dtype=torch.int32, device=device)
            )
        )

        self.assert_func_equal_for_tensor(
            np.arange(23),
            heat_func=ht.diag,
            numpy_func=np.diag,
            heat_args={"offset": 2},
            numpy_args={"k": 2},
        )

        self.assert_func_equal(
            (27,),
            heat_func=ht.diag,
            numpy_func=np.diag,
            heat_args={"offset": -3},
            numpy_args={"k": -3},
        )
コード例 #24
0
    def test_conjugate(self):
        a = ht.array([1.0, 1.0j, 1 + 1j, -2 + 2j, 3 - 3j])
        conj = ht.conjugate(a)
        res = ht.array(
            [1 - 0j, -1j, 1 - 1j, -2 - 2j, 3 + 3j], dtype=ht.complex64, device=self.device
        )

        self.assertIs(conj.device, self.device)
        self.assertIs(conj.dtype, ht.complex64)
        self.assertEqual(conj.shape, (5,))
        # equal on complex numbers does not work on PyTorch
        self.assertTrue(ht.equal(ht.real(conj), ht.real(res)))
        self.assertTrue(ht.equal(ht.imag(conj), ht.imag(res)))

        a = ht.array([[1.0, 1.0j], [1 + 1j, -2 + 2j], [3 - 3j, -4 - 4j]], split=0)
        conj = ht.conjugate(a)
        res = ht.array(
            [[1 - 0j, -1j], [1 - 1j, -2 - 2j], [3 + 3j, -4 + 4j]],
            dtype=ht.complex64,
            device=self.device,
            split=0,
        )

        self.assertIs(conj.device, self.device)
        self.assertIs(conj.dtype, ht.complex64)
        self.assertEqual(conj.shape, (3, 2))
        # equal on complex numbers does not work on PyTorch
        self.assertTrue(ht.equal(ht.real(conj), ht.real(res)))
        self.assertTrue(ht.equal(ht.imag(conj), ht.imag(res)))

        a = ht.array(
            [[1.0, 1.0j], [1 + 1j, -2 + 2j], [3 - 3j, -4 - 4j]], dtype=ht.complex128, split=1
        )
        conj = ht.conjugate(a)
        res = ht.array(
            [[1 - 0j, -1j], [1 - 1j, -2 - 2j], [3 + 3j, -4 + 4j]],
            dtype=ht.complex128,
            device=self.device,
            split=1,
        )

        self.assertIs(conj.device, self.device)
        self.assertIs(conj.dtype, ht.complex128)
        self.assertEqual(conj.shape, (3, 2))
        # equal on complex numbers does not work on PyTorch
        self.assertTrue(ht.equal(ht.real(conj), ht.real(res)))
        self.assertTrue(ht.equal(ht.imag(conj), ht.imag(res)))

        # Not complex
        a = ht.ones((4, 4))
        conj = ht.conj(a)
        res = ht.ones((4, 4))

        self.assertIs(conj.device, self.device)
        self.assertIs(conj.dtype, ht.float32)
        self.assertEqual(conj.shape, (4, 4))
        self.assertTrue(ht.equal(conj, res))

        # DNDarray method
        a = ht.array([1 + 1j, 1 - 1j])
        conj = a.conj()
        res = ht.array([1 - 1j, 1 + 1j])

        self.assertIs(conj.device, self.device)
        self.assertTrue(ht.equal(conj, res))
コード例 #25
0
    def test_diff(self):
        ht_array = ht.random.rand(20, 20, 20, split=None)
        arb_slice = [0] * 3
        for dim in range(0, 3):  # loop over 3 dimensions
            arb_slice[dim] = slice(None)
            tup_arb = tuple(arb_slice)
            np_array = ht_array[tup_arb].numpy()
            for ax in range(dim + 1):  # loop over the possible axis values
                for sp in range(dim +
                                1):  # loop over the possible split values
                    lp_array = ht.manipulations.resplit(ht_array[tup_arb], sp)
                    # loop to 3 for the number of times to do the diff
                    for nl in range(1, 4):
                        # only generating the number once and then
                        ht_diff = ht.diff(lp_array, n=nl, axis=ax)
                        np_diff = ht.array(np.diff(np_array, n=nl, axis=ax))

                        self.assertTrue(ht.equal(ht_diff, np_diff))
                        self.assertEqual(ht_diff.split, sp)
                        self.assertEqual(ht_diff.dtype, lp_array.dtype)

                        # test prepend/append. Note heat's intuitive casting vs. numpy's safe casting
                        append_shape = lp_array.gshape[:ax] + (
                            1, ) + lp_array.gshape[ax + 1:]
                        ht_append = ht.ones(append_shape,
                                            dtype=lp_array.dtype,
                                            split=lp_array.split)

                        ht_diff_pend = ht.diff(lp_array,
                                               n=nl,
                                               axis=ax,
                                               prepend=0,
                                               append=ht_append)
                        np_append = np.ones(
                            append_shape,
                            dtype=lp_array.larray.cpu().numpy().dtype)
                        np_diff_pend = ht.array(
                            np.diff(np_array,
                                    n=nl,
                                    axis=ax,
                                    prepend=0,
                                    append=np_append))
                        self.assertTrue(ht.equal(ht_diff_pend, np_diff_pend))
                        self.assertEqual(ht_diff_pend.split, sp)
                        self.assertEqual(ht_diff_pend.dtype, ht.float64)

        np_array = ht_array.numpy()
        ht_diff = ht.diff(ht_array, n=2)
        np_diff = ht.array(np.diff(np_array, n=2))
        self.assertTrue(ht.equal(ht_diff, np_diff))
        self.assertEqual(ht_diff.split, None)
        self.assertEqual(ht_diff.dtype, ht_array.dtype)

        ht_array = ht.random.rand(20, 20, 20, split=1, dtype=ht.float64)
        np_array = ht_array.copy().numpy()
        ht_diff = ht.diff(ht_array, n=2)
        np_diff = ht.array(np.diff(np_array, n=2))
        self.assertTrue(ht.equal(ht_diff, np_diff))
        self.assertEqual(ht_diff.split, 1)
        self.assertEqual(ht_diff.dtype, ht_array.dtype)

        # raises
        with self.assertRaises(ValueError):
            ht.diff(ht_array, n=-2)
        with self.assertRaises(TypeError):
            ht.diff(ht_array, axis="string")
        with self.assertRaises(TypeError):
            ht.diff("string", axis=2)
        t_prepend = torch.zeros(ht_array.gshape)
        with self.assertRaises(TypeError):
            ht.diff(ht_array, prepend=t_prepend)
        append_wrong_shape = ht.ones(ht_array.gshape)
        with self.assertRaises(ValueError):
            ht.diff(ht_array, axis=0, append=append_wrong_shape)
コード例 #26
0
    def test_rand(self):
        # int64 tests

        # Resetting seed works
        seed = 12345
        ht.random.seed(seed)
        a = ht.random.rand(2, 5, 7, 3, split=0)
        self.assertEqual(a.dtype, ht.float32)
        self.assertEqual(a.larray.dtype, torch.float32)
        b = ht.random.rand(2, 5, 7, 3, split=0)
        self.assertFalse(ht.equal(a, b))
        ht.random.seed(seed)
        c = ht.random.rand(2, 5, 7, 3, dtype=ht.float32, split=0)
        self.assertTrue(ht.equal(a, c))

        # Random numbers with overflow
        ht.random.set_state(("Threefry", seed, 0xFFFFFFFFFFFFFFF0))
        a = ht.random.rand(2, 3, 4, 5, split=0)
        ht.random.set_state(("Threefry", seed, 0x10000000000000000))
        b = ht.random.rand(2, 44, split=0)
        a = a.numpy().flatten()
        b = b.numpy().flatten()
        self.assertEqual(a.dtype, np.float32)
        self.assertTrue(np.array_equal(a[32:], b))

        # Check that random numbers don't repeat after first overflow
        seed = 12345
        ht.random.set_state(("Threefry", seed, 0x100000000))
        a = ht.random.rand(2, 44)
        ht.random.seed(seed)
        b = ht.random.rand(2, 44)
        self.assertFalse(ht.equal(a, b))

        # Check that we start from beginning after 128 bit overflow
        ht.random.seed(seed)
        a = ht.random.rand(2, 34, split=0)
        ht.random.set_state(
            ("Threefry", seed, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0))
        b = ht.random.rand(2, 50, split=0)
        a = a.numpy().flatten()
        b = b.numpy().flatten()
        self.assertTrue(np.array_equal(a, b[32:]))

        # different split axis with resetting seed
        ht.random.seed(seed)
        a = ht.random.rand(3, 5, 2, 9, split=3)
        ht.random.seed(seed)
        c = ht.random.rand(3, 5, 2, 9, split=3)
        self.assertTrue(ht.equal(a, c))

        # Random values are in correct order
        ht.random.seed(seed)
        a = ht.random.rand(2, 50, split=0)
        ht.random.seed(seed)
        b = ht.random.rand(100, split=None)
        a = a.numpy().flatten()
        b = b.larray.cpu().numpy()
        self.assertTrue(np.array_equal(a, b))

        # On different shape and split the same random values are used
        ht.random.seed(seed)
        a = ht.random.rand(3, 5, 2, 9, split=3)
        ht.random.seed(seed)
        b = ht.random.rand(30, 9, split=1)
        a = np.sort(a.numpy().flatten())
        b = np.sort(b.numpy().flatten())
        self.assertTrue(np.array_equal(a, b))

        # One large array does not have two similar values
        a = ht.random.rand(11, 15, 3, 7, split=2)
        a = a.numpy()
        _, counts = np.unique(a, return_counts=True)
        # Assert that no value appears more than once
        self.assertTrue((counts == 1).all())

        # Two large arrays that were created after each other don't share any values
        b = ht.random.rand(14,
                           7,
                           3,
                           12,
                           18,
                           42,
                           split=5,
                           comm=ht.MPI_WORLD,
                           dtype=ht.float64)
        c = np.concatenate((a.flatten(), b.numpy().flatten()))
        _, counts = np.unique(c, return_counts=True)
        self.assertTrue((counts == 1).all())

        # Values should be spread evenly across the range [0, 1)
        mean = np.mean(c)
        median = np.median(c)
        std = np.std(c)
        self.assertTrue(0.49 < mean < 0.51)
        self.assertTrue(0.49 < median < 0.51)
        self.assertTrue(std < 0.3)
        self.assertTrue(((0 <= c) & (c < 1)).all())

        # No arguments work correctly
        ht.random.seed(seed)
        a = ht.random.rand()
        ht.random.seed(seed)
        b = ht.random.rand(1)
        self.assertTrue(ht.equal(a, b))

        # Too big arrays cant be created
        with self.assertRaises(ValueError):
            ht.random.randn(0x7FFFFFFFFFFFFFFF)
        with self.assertRaises(ValueError):
            ht.random.rand(3, 2, -2, 5, split=1)
        with self.assertRaises(ValueError):
            ht.random.randn(12, 43, dtype=ht.int32, split=0)

        # 32 Bit tests
        ht.random.seed(9876)
        shape = (13, 43, 13, 23)
        a = ht.random.rand(*shape, dtype=ht.float32, split=0)
        self.assertEqual(a.dtype, ht.float32)
        self.assertEqual(a.larray.dtype, torch.float32)

        ht.random.seed(9876)
        b = ht.random.rand(np.prod(shape), dtype=ht.float32)
        a = a.numpy().flatten()
        b = b.larray.cpu().numpy()
        self.assertTrue(np.array_equal(a, b))
        self.assertEqual(a.dtype, np.float32)

        a = ht.random.rand(21, 16, 17, 21, dtype=ht.float32, split=2)
        b = ht.random.rand(15, 11, 19, 31, dtype=ht.float32, split=0)
        a = a.numpy().flatten()
        b = b.numpy().flatten()
        c = np.concatenate((a, b))

        # Values should be spread evenly across the range [0, 1)
        mean = np.mean(c)
        median = np.median(c)
        std = np.std(c)
        self.assertTrue(0.49 < mean < 0.51)
        self.assertTrue(0.49 < median < 0.51)
        self.assertTrue(std < 0.3)
        self.assertTrue(((0 <= c) & (c < 1)).all())

        ht.random.seed(11111)
        a = ht.random.rand(12, 32, 44, split=1, dtype=ht.float32).numpy()
        # Overflow reached
        ht.random.set_state(("Threefry", 11111, 0x10000000000000000))
        b = ht.random.rand(12, 32, 44, split=1, dtype=ht.float32).numpy()
        self.assertTrue(np.array_equal(a, b))

        ht.random.set_state(("Threefry", 11111, 0x100000000))
        c = ht.random.rand(12, 32, 44, split=1, dtype=ht.float32).numpy()
        self.assertFalse(np.array_equal(a, c))
        self.assertFalse(np.array_equal(b, c))
コード例 #27
0
    def test_randint(self):
        # Checked that the random values are in the correct range
        a = ht.random.randint(low=0, high=10, size=(10, 10), dtype=ht.int64)
        self.assertEqual(a.dtype, ht.int64)
        a = a.numpy()
        self.assertTrue(((0 <= a) & (a < 10)).all())

        a = ht.random.randint(low=100000,
                              high=150000,
                              size=(31, 25, 11),
                              dtype=ht.int64,
                              split=2)
        a = a.numpy()
        self.assertTrue(((100000 <= a) & (a < 150000)).all())

        # For the range [0, 1) only the value 0 is allowed
        a = ht.random.randint(1, size=(10, ), split=0, dtype=ht.int64)
        b = ht.zeros((10, ), dtype=ht.int64, split=0)
        self.assertTrue(ht.equal(a, b))

        # size parameter allows int arguments
        a = ht.random.randint(1, size=10, split=0, dtype=ht.int64)
        self.assertTrue(ht.equal(a, b))

        # size is None
        a = ht.random.randint(0, 10)
        self.assertEqual(a.shape, ())

        # Two arrays with the same seed and same number of elements have the same random values
        ht.random.seed(13579)
        shape = (15, 13, 9, 21, 65)
        a = ht.random.randint(15, 100, size=shape, split=0, dtype=ht.int64)
        a = a.numpy().flatten()

        ht.random.seed(13579)
        elements = np.prod(shape)
        b = ht.random.randint(low=15,
                              high=100,
                              size=(elements, ),
                              dtype=ht.int64)
        b = b.numpy()
        self.assertTrue(np.array_equal(a, b))

        # Two arrays with the same seed and shape have identical values
        ht.random.seed(13579)
        a = ht.random.randint(10000, size=shape, split=2, dtype=ht.int64)
        a = a.numpy()

        ht.random.seed(13579)
        b = ht.random.randint(low=0,
                              high=10000,
                              size=shape,
                              split=2,
                              dtype=ht.int64)
        b = b.numpy()

        ht.random.seed(13579)
        c = ht.random.randint(low=0, high=10000, dtype=ht.int64)
        self.assertTrue(np.equal(b[0, 0, 0, 0, 0], c))

        self.assertTrue(np.array_equal(a, b))
        mean = np.mean(a)
        median = np.median(a)
        std = np.std(a)

        # Mean and median should be in the center while the std is very high due to an even distribution
        self.assertTrue(4900 < mean < 5100)
        self.assertTrue(4900 < median < 5100)
        self.assertTrue(std < 2900)

        with self.assertRaises(ValueError):
            ht.random.randint(5, 5, size=(10, 10), split=0)
        with self.assertRaises(ValueError):
            ht.random.randint(low=0, high=10, size=(3, -4))
        with self.assertRaises(ValueError):
            ht.random.randint(low=0, high=10, size=(15, ), dtype=ht.float32)

        # int32 tests
        ht.random.seed(4545)
        a = ht.random.randint(50, 1000, size=(13, 45), dtype=ht.int32, split=0)
        ht.random.set_state(("Threefry", 4545, 0x10000000000000000))
        b = ht.random.randint(50, 1000, size=(13, 45), dtype=ht.int32, split=0)

        self.assertEqual(a.dtype, ht.int32)
        self.assertEqual(a.larray.dtype, torch.int32)
        self.assertEqual(b.dtype, ht.int32)
        a = a.numpy()
        b = b.numpy()
        self.assertEqual(a.dtype, np.int32)
        self.assertTrue(np.array_equal(a, b))
        self.assertTrue(((50 <= a) & (a < 1000)).all())
        self.assertTrue(((50 <= b) & (b < 1000)).all())

        c = ht.random.randint(50, 1000, size=(13, 45), dtype=ht.int32, split=0)
        c = c.numpy()
        self.assertFalse(np.array_equal(a, c))
        self.assertFalse(np.array_equal(b, c))
        self.assertTrue(((50 <= c) & (c < 1000)).all())

        ht.random.seed(0xFFFFFFF)
        a = ht.random.randint(10000,
                              size=(123, 42, 13, 21),
                              split=3,
                              dtype=ht.int32,
                              comm=ht.MPI_WORLD)
        a = a.numpy()
        mean = np.mean(a)
        median = np.median(a)
        std = np.std(a)

        # Mean and median should be in the center while the std is very high due to an even distribution
        self.assertTrue(4900 < mean < 5100)
        self.assertTrue(4900 < median < 5100)
        self.assertTrue(std < 2900)

        # test aliases
        ht.random.seed(234)
        a = ht.random.randint(10, 50)
        ht.random.seed(234)
        b = ht.random.random_integer(10, 50)
        self.assertTrue(ht.equal(a, b))
コード例 #28
0
    def test_equal(self):
        self.assertTrue(ht.equal(self.a_tensor, self.a_tensor))
        self.assertFalse(ht.equal(self.a_tensor[1:], self.a_tensor))
        self.assertFalse(ht.equal(self.a_split_tensor[1:], self.a_tensor[1:]))
        self.assertFalse(ht.equal(self.a_tensor[1:], self.a_split_tensor[1:]))
        self.assertFalse(ht.equal(self.a_tensor, self.another_tensor))
        self.assertFalse(ht.equal(self.a_tensor, self.a_scalar))
        self.assertFalse(ht.equal(self.a_scalar, self.a_tensor))
        self.assertFalse(ht.equal(self.a_scalar, self.a_tensor[0, 0]))
        self.assertFalse(ht.equal(self.a_tensor[0, 0], self.a_scalar))
        self.assertFalse(ht.equal(self.another_tensor, self.a_scalar))
        self.assertTrue(
            ht.equal(self.split_ones_tensor[:, 0], self.split_ones_tensor[:,
                                                                          1]))
        self.assertTrue(
            ht.equal(self.split_ones_tensor[:, 1], self.split_ones_tensor[:,
                                                                          0]))
        self.assertFalse(ht.equal(self.a_tensor, self.a_split_tensor))
        self.assertFalse(ht.equal(self.a_split_tensor, self.a_tensor))

        arr = ht.array([[1, 2], [3, 4]], comm=ht.MPI_SELF)
        with self.assertRaises(NotImplementedError):
            ht.equal(self.a_tensor, arr)
        with self.assertRaises(ValueError):
            ht.equal(self.a_split_tensor, self.a_split_tensor.resplit(1))
コード例 #29
0
    def test_diagonal(self):
        size = ht.MPI_WORLD.size
        rank = ht.MPI_WORLD.rank

        data = torch.arange(size, device=device).repeat(size).reshape(size, size)
        a = ht.array(data, device=ht_device)
        res = ht.diagonal(a)
        self.assertTrue(torch.equal(res._DNDarray__array, torch.arange(size, device=device)))
        self.assertEqual(res.split, None)

        a = ht.array(data, split=0, device=ht_device)
        res = ht.diagonal(a)
        self.assertTrue(torch.equal(res._DNDarray__array, torch.tensor([rank], device=device)))
        self.assertEqual(res.split, 0)

        a = ht.array(data, split=1, device=ht_device)
        res2 = ht.diagonal(a, dim1=1, dim2=0)
        self.assertTrue(ht.equal(res, res2))

        res = ht.diagonal(a)
        self.assertTrue(torch.equal(res._DNDarray__array, torch.tensor([rank], device=device)))
        self.assertEqual(res.split, 0)

        a = ht.array(data, split=0, device=ht_device)
        res2 = ht.diagonal(a, dim1=1, dim2=0)
        self.assertTrue(ht.equal(res, res2))

        data = torch.arange(size + 1, device=device).repeat(size + 1).reshape(size + 1, size + 1)
        a = ht.array(data, device=ht_device)
        res = ht.diagonal(a, offset=0)
        self.assertTrue(torch.equal(res._DNDarray__array, torch.arange(size + 1, device=device)))
        res = ht.diagonal(a, offset=1)
        self.assertTrue(torch.equal(res._DNDarray__array, torch.arange(1, size + 1, device=device)))
        res = ht.diagonal(a, offset=-1)
        self.assertTrue(torch.equal(res._DNDarray__array, torch.arange(0, size, device=device)))

        a = ht.array(data, split=0, device=ht_device)
        res = ht.diagonal(a, offset=1)
        res.balance_()
        self.assertTrue(torch.equal(res._DNDarray__array, torch.tensor([rank + 1], device=device)))
        res = ht.diagonal(a, offset=-1)
        res.balance_()
        self.assertTrue(torch.equal(res._DNDarray__array, torch.tensor([rank], device=device)))

        a = ht.array(data, split=1, device=ht_device)
        res = ht.diagonal(a, offset=1)
        res.balance_()
        self.assertTrue(torch.equal(res._DNDarray__array, torch.tensor([rank + 1], device=device)))
        res = ht.diagonal(a, offset=-1)
        res.balance_()
        self.assertTrue(torch.equal(res._DNDarray__array, torch.tensor([rank], device=device)))

        data = (
            torch.arange(size * 2 + 10, device=device)
            .repeat(size * 2 + 10)
            .reshape(size * 2 + 10, size * 2 + 10)
        )
        a = ht.array(data, device=ht_device)
        res = ht.diagonal(a, offset=10)
        self.assertTrue(
            torch.equal(res._DNDarray__array, torch.arange(10, 10 + size * 2, device=device))
        )
        res = ht.diagonal(a, offset=-10)
        self.assertTrue(torch.equal(res._DNDarray__array, torch.arange(0, size * 2, device=device)))

        a = ht.array(data, split=0, device=ht_device)
        res = ht.diagonal(a, offset=10)
        res.balance_()
        self.assertTrue(
            torch.equal(
                res._DNDarray__array, torch.tensor([10 + rank * 2, 11 + rank * 2], device=device)
            )
        )
        res = ht.diagonal(a, offset=-10)
        res.balance_()
        self.assertTrue(
            torch.equal(res._DNDarray__array, torch.tensor([rank * 2, 1 + rank * 2], device=device))
        )

        a = ht.array(data, split=1, device=ht_device)
        res = ht.diagonal(a, offset=10)
        res.balance_()
        self.assertTrue(
            torch.equal(
                res._DNDarray__array, torch.tensor([10 + rank * 2, 11 + rank * 2], device=device)
            )
        )
        res = ht.diagonal(a, offset=-10)
        res.balance_()
        self.assertTrue(
            torch.equal(res._DNDarray__array, torch.tensor([rank * 2, 1 + rank * 2], device=device))
        )

        data = (
            torch.arange(size + 1, device=device)
            .repeat((size + 1) * (size + 1))
            .reshape(size + 1, size + 1, size + 1)
        )
        a = ht.array(data, device=ht_device)
        res = ht.diagonal(a)
        self.assertTrue(
            torch.equal(
                res._DNDarray__array,
                torch.arange(size + 1, device=device)
                .repeat(size + 1)
                .reshape(size + 1, size + 1)
                .t(),
            )
        )
        res = ht.diagonal(a, offset=1)
        self.assertTrue(
            torch.equal(
                res._DNDarray__array,
                torch.arange(size + 1, device=device).repeat(size).reshape(size, size + 1).t(),
            )
        )
        res = ht.diagonal(a, offset=-1)
        self.assertTrue(
            torch.equal(
                res._DNDarray__array,
                torch.arange(size + 1, device=device).repeat(size).reshape(size, size + 1).t(),
            )
        )

        res = ht.diagonal(a, dim1=1, dim2=2)
        self.assertTrue(
            torch.equal(
                res._DNDarray__array,
                torch.arange(size + 1, device=device).repeat(size + 1).reshape(size + 1, size + 1),
            )
        )
        res = ht.diagonal(a, offset=1, dim1=1, dim2=2)
        self.assertTrue(
            torch.equal(
                res._DNDarray__array,
                torch.arange(1, size + 1, device=device).repeat(size + 1).reshape(size + 1, size),
            )
        )
        res = ht.diagonal(a, offset=-1, dim1=1, dim2=2)
        self.assertTrue(
            torch.equal(
                res._DNDarray__array,
                torch.arange(size, device=device).repeat(size + 1).reshape(size + 1, size),
            )
        )

        res = ht.diagonal(a, dim1=0, dim2=2)
        self.assertTrue(
            torch.equal(
                res._DNDarray__array,
                torch.arange(size + 1, device=device).repeat(size + 1).reshape(size + 1, size + 1),
            )
        )

        a = ht.array(data, split=0, device=ht_device)
        res = ht.diagonal(a, offset=1, dim1=0, dim2=1)
        res.balance_()
        self.assertTrue(
            torch.equal(
                res._DNDarray__array, torch.arange(size + 1, device=device).reshape(size + 1, 1)
            )
        )
        self.assertEqual(res.split, 1)

        res = ht.diagonal(a, offset=-1, dim1=0, dim2=1)
        res.balance_()
        self.assertTrue(
            torch.equal(
                res._DNDarray__array, torch.arange(size + 1, device=device).reshape(size + 1, 1)
            )
        )
        self.assertEqual(res.split, 1)

        res = ht.diagonal(a, offset=size + 1, dim1=0, dim2=1)
        res.balance_()
        self.assertTrue(
            torch.equal(
                res._DNDarray__array, torch.empty((size + 1, 0), dtype=torch.int64, device=device)
            )
        )
        self.assertTrue(res.shape[res.split] == 0)

        with self.assertRaises(ValueError):
            ht.diagonal(a, offset=None)

        with self.assertRaises(ValueError):
            ht.diagonal(a, dim1=1, dim2=1)

        with self.assertRaises(ValueError):
            ht.diagonal(a, dim1=1, dim2=-2)

        with self.assertRaises(ValueError):
            ht.diagonal(data)

        self.assert_func_equal(
            (5, 5, 5),
            heat_func=ht.diagonal,
            numpy_func=np.diagonal,
            heat_args={"dim1": 0, "dim2": 2},
            numpy_args={"axis1": 0, "axis2": 2},
        )

        self.assert_func_equal(
            (5, 4, 3, 2),
            heat_func=ht.diagonal,
            numpy_func=np.diagonal,
            heat_args={"dim1": 1, "dim2": 2},
            numpy_args={"axis1": 1, "axis2": 2},
        )

        self.assert_func_equal(
            (4, 6, 3),
            heat_func=ht.diagonal,
            numpy_func=np.diagonal,
            heat_args={"dim1": 0, "dim2": 1},
            numpy_args={"axis1": 0, "axis2": 1},
        )
コード例 #30
0
    def test_randn(self):
        # Test that the random values have the correct distribution
        ht.random.seed(54321)
        shape = (5, 10, 13, 23, 15, 20)
        a = ht.random.randn(*shape, split=0, dtype=ht.float64)
        self.assertEqual(a.dtype, ht.float64)
        a = a.numpy()
        mean = np.mean(a)
        median = np.median(a)
        std = np.std(a)
        self.assertTrue(-0.01 < mean < 0.01)
        self.assertTrue(-0.01 < median < 0.01)
        self.assertTrue(0.99 < std < 1.01)

        # Compare to a second array with a different shape but same number of elements and same seed
        ht.random.seed(54321)
        elements = np.prod(shape)
        b = ht.random.randn(elements, split=0, dtype=ht.float64)
        b = b.numpy()
        a = a.flatten()
        self.assertTrue(np.allclose(a, b))

        # Creating the same array two times without resetting seed results in different elements
        c = ht.random.randn(elements, split=0, dtype=ht.float64)
        c = c.numpy()
        self.assertEqual(c.shape, b.shape)
        self.assertFalse(np.allclose(b, c))

        # All the created values should be different
        d = np.concatenate((b, c))
        _, counts = np.unique(d, return_counts=True)
        self.assertTrue((counts == 1).all())

        # Two arrays are the same for same seed and split-axis != 0
        ht.random.seed(12345)
        a = ht.random.randn(*shape, split=5, dtype=ht.float64)
        ht.random.seed(12345)
        b = ht.random.randn(*shape, split=5, dtype=ht.float64)
        self.assertTrue(ht.equal(a, b))
        a = a.numpy()
        b = b.numpy()
        self.assertTrue(np.allclose(a, b))

        # Tests with float32
        ht.random.seed(54321)
        a = ht.random.randn(30, 30, 30, dtype=ht.float32, split=2)
        self.assertEqual(a.dtype, ht.float32)
        self.assertEqual(a.larray[0, 0, 0].dtype, torch.float32)
        a = a.numpy()
        self.assertEqual(a.dtype, np.float32)
        mean = np.mean(a)
        median = np.median(a)
        std = np.std(a)
        self.assertTrue(-0.01 < mean < 0.01)
        self.assertTrue(-0.01 < median < 0.01)
        self.assertTrue(0.99 < std < 1.01)

        ht.random.set_state(("Threefry", 54321, 0x10000000000000000))
        b = ht.random.randn(30, 30, 30, dtype=ht.float32, split=2).numpy()
        self.assertTrue(np.allclose(a, b))

        c = ht.random.randn(30, 30, 30, dtype=ht.float32, split=2).numpy()
        self.assertFalse(np.allclose(a, c))
        self.assertFalse(np.allclose(b, c))