コード例 #1
0
 def __init__(self, modelh5=None):
     if modelh5 == None:
         mpath = os.path.join(os.getcwd(), 'CNNevaluation', 'regular',
                              'regi=1', 'SPEC_Regular_8_epoch13.h5')
     else:
         mpath = modelh5
     self.model = load_model(mpath,
                             custom_objects={
                                 'FocalLoss': focal_loss,
                                 'focal_loss_fixed': focal_loss()
                             })
     optimizer = optimizers.Adadelta()
     self.model.compile(optimizer=optimizer,
                        loss=[focal_loss(alpha=0.25, gamma=2)])
コード例 #2
0
 def loadbyFolder(self, foldername):
     filename = [
         os.path.join(foldername, file) for file in os.listdir(foldername)
         if 'weights' not in file
     ]
     if len(filename) == 1:
         print('Start building model..')
         self.model = load_model(filename[0],
                                 custom_objects={
                                     'FocalLoss': focal_loss,
                                     'focal_loss_fixed': focal_loss()
                                 })
         optimizer = optimizers.Adadelta()
         self.model.compile(optimizer=optimizer,
                            loss=[focal_loss(alpha=0.25, gamma=2)])
     else:
         print('Zero or multiple files are detected!')
         assert (0)
コード例 #3
0
    def CNNForest(self, feature_type, module_type, layer_counts):
        feature_length = 200 if feature_type == 'SPEC' else 26
        input_shape = (AUDIO_LENGTH, feature_length, 1)
        dictmap = {
            'Regular': ReguBlock,
            'Residual': ResiBlock,
            'Inception': XcepBlock
        }
        Module = dictmap[module_type]
        X_input = Input(name='the_input', shape=input_shape)
        level_h1 = Module(32)(X_input)
        level_m1 = MaxPooling2D(pool_size=2, strides=None,
                                padding="valid")(level_h1)  # 池化层
        level_h2 = Module(64)(level_m1)
        level_m2 = MaxPooling2D(pool_size=2, strides=None,
                                padding="valid")(level_h2)  # 池化层
        level_h3 = Module(128)(level_m2)
        level_m3 = MaxPooling2D(pool_size=2, strides=None,
                                padding="valid")(level_h3)  # 池化层
        level_h4 = Module(256)(level_m3)
        level_m4 = MaxPooling2D(pool_size=2, strides=None,
                                padding="valid")(level_h4)  # 池化层
        level_s5 = Module(512)(level_m4)
        if feature_type == 'SPEC':
            level_s5 = MaxPooling2D(pool_size=2, strides=None,
                                    padding="valid")(level_s5)  # 池化层
        layers = [level_m1, level_m2, level_m3, level_m4, level_s5]
        output = layers[layer_counts // 2 - 1]
        flayer = GlobalAveragePooling2D()(output)
        fc2 = Dense(CLASS_NUM, use_bias=True,
                    kernel_initializer='he_normal')(flayer)  # 全连接层
        y_pred = Activation('softmax', name='Activation0')(fc2)

        model = Model(inputs=X_input, outputs=y_pred)
        optimizer = optimizers.Adadelta()
        model.compile(optimizer=optimizer,
                      loss=[focal_loss(alpha=0.25, gamma=2)])
        print('{} cnn model with the {} feature and {} layers are estabished.'.
              format(module_type, feature_type, str(layer_counts)))
        modelname = feature_type + '_' + module_type + '_' + str(layer_counts)
        return model, modelname
コード例 #4
0
three.append(spath)
spath = os.path.join(os.getcwd(),'log&&materials','20843728498872_2018_01_08_10_42_58.wav')
three.append(spath)
spath = os.path.join(os.getcwd(),'log&&materials','199481741554988_2018_10_20_00_04_25.wav')
three.append(spath)

# n1path = os.path.join(os.getcwd(),'log&&materials','noisy_sounds','199481741554988_2018_10_20_00_00_00.wav')
for spath in three:
    signal,fs = read_wav_data(spath)
    spec = GetFrequencyFeatures(signal,fs)
    img = spec.reshape(1,spec.shape[0], spec.shape[1], 1)
#2. load model
# mpath = os.path.join(os.getcwd(),'CNNevaluation','residual','resi=1','SPEC_Residual_8_epoch14.h5')
# mpath = os.path.join(os.getcwd(),'CNNdesign','spec+inception','10','SPEC_Inception_10_epoch4.h5')
    mpath = os.path.join(os.getcwd(),'CNNevaluation','regular','regi=0','spec_Regular_8_epoch12.h5')
    model = load_model(mpath,custom_objects={'FocalLoss': focal_loss,'focal_loss_fixed': focal_loss()})
    optimizer = optimizers.Adadelta()
    model.compile(optimizer=optimizer, loss=[focal_loss(alpha=0.25, gamma=2)])
#3. try to predictverbose=0
    print(np.argmax(model.predict(img)))
    print(model.predict(img,verbose=1))
# print(np.argmax(model.predict(img)[0]))
# print(model.layers[27])
# print(model.layers[28])
# print(model.layers[29])
    bowel_output = model.output[:,1]
# print(bowel_output)
    last_conv_layer = model.layers[28]
    grads = K.gradients(bowel_output, last_conv_layer.output)[0]
    pooled_grads = K.mean(grads, axis=(0, 1, 2))
    iterate = K.function([model.input], [pooled_grads, last_conv_layer.output[0]])
コード例 #5
0
 def ModelTrainingSetting(self, model):
     optimizer = optimizers.Adadelta()
     model.compile(optimizer=optimizer,
                   loss=[focal_loss(alpha=0.25, gamma=2)])