コード例 #1
0
ファイル: net_work.py プロジェクト: kyriezfz/DSFD-tensorflow
    def load_weight(self):

        with self._graph.as_default():

            if cfg.MODEL.continue_train:
                #########################restore the params
                variables_restore = tf.get_collection(
                    tf.GraphKeys.MODEL_VARIABLES)
                print(variables_restore)
                variables_restore_n = [
                    v for v in variables_restore
                    if 'postprocessing' not in v.name
                ]  # Conv2d_1c_1x1 Bottleneck
                saver2 = tf.train.Saver(variables_restore)
                saver2.restore(self.sess, cfg.MODEL.pretrained_model)

            elif cfg.MODEL.pretrained_model is not None:
                #########################restore the params
                variables_restore = tf.get_collection(
                    tf.GraphKeys.MODEL_VARIABLES,
                    scope=cfg.MODEL.net_structure)
                print(variables_restore)
                #    print('......................................................')
                #    # saver2 = tf.train.Saver(variables_restore)
                variables_restore_n = [
                    v for v in variables_restore if 'GN' not in v.name
                ]  # Conv2d_1c_1x1 Bottleneck
                # print(variables_restore_n)
                saver2 = tf.train.Saver(variables_restore_n)
                saver2.restore(self.sess, cfg.MODEL.pretrained_model)
            else:
                logger.info('no pretrained model, train from sctrach')
コード例 #2
0
def balance(anns):
    res_anns = copy.deepcopy(anns)

    for ann in anns:
        label = ann[-1]
        label = np.array([label.split(' ')], dtype=np.float).reshape((-1, 2))
        bbox = np.array([
            np.min(label[:, 0]),
            np.min(label[:, 1]),
            np.max(label[:, 0]),
            np.max(label[:, 1])
        ])
        bbox_width = bbox[2] - bbox[0]
        bbox_height = bbox[3] - bbox[1]

        if bbox_width < 40 or bbox_height < 40:
            res_anns.remove(ann)

        if np.sqrt(np.square(label[37,0]-label[41,0])+np.square(label[37,1]-label[41,1]))/bbox_height<0.02 \
            or np.sqrt(np.square(label[38, 0] - label[40, 0]) + np.square(label[38, 1] - label[40, 1])) / bbox_height < 0.02 \
            or np.sqrt(np.square(label[43,0]-label[47,0])+np.square(label[43,1]-label[47,1]))/bbox_height<0.02 \
            or np.sqrt(np.square(label[44, 0] - label[46, 0]) + np.square(label[44, 1] - label[46, 1])) / bbox_height < 0.02 :
            for i in range(10):
                res_anns.append(ann)
    random.shuffle(res_anns)
    logger.info('befor balance the dataset contains %d images' % (len(anns)))
    logger.info('after balanced the datasets contains %d samples' %
                (len(res_anns)))
    return res_anns
コード例 #3
0
    def remove_enforcement(self, enforcement: Enforcement) -> None:
        application = V1alpha1Application(metadata=V1ObjectMeta(
            name=enforcement.name))

        self._application_service.delete_mixin9(application.metadata.name,
                                                cascade=False)
        logger.info(f"Application {application.metadata.name} removed")
コード例 #4
0
def get_train_data_list(im_root_path, ann_txt):
    """
    train_im_path : image folder name
    train_ann_path : coco json file name
    """
    logger.info("[x] Get data from {}".format(im_root_path))
    # data = PoseInfo(im_path, ann_path, False)
    data = data_info(im_root_path, ann_txt)
    all_samples = data.get_all_sample()

    return all_samples
コード例 #5
0
    def read_txt(self):
        with open(self.txt_file) as _f:
            txt_lines = _f.readlines()
        txt_lines.sort()
        for line in txt_lines:
            line = line.rstrip()

            _img_path = line.rsplit('| ', 1)[0]
            _label = line.rsplit('| ', 1)[-1]

            current_img_path = os.path.join(self.root_path, _img_path)
            current_img_label = _label
            self.metas.append([current_img_path, current_img_label])

            ###some change can be made here
        logger.info('the dataset contains %d images' % (len(txt_lines)))
        logger.info('the datasets contains %d samples' % (len(self.metas)))
コード例 #6
0
ファイル: SSpider.py プロジェクト: xdreamseeker/myspider
    def __analyzeUrl(self,url):
        """
        检查本url中的有用信息,包括new url,及本url信息
        :param url:
        :return:分析出的new url,本页面有效信息写入db
        """
        logger.debug("number:%s"%self.number)
        self.number +=1
        logger.info("begin analysis url:%s"%url)
        result_urls=[]
        try:
            req = urllib.request.Request(url)
            req.add_header('User-Agent','Mozilla/5.0 (X11; Linux i686; rv:8.0) Gecko/20100101 Firefox/8.0')

            response = urllib.request.urlopen(req)

            pagedata = response.read()
            chardit = chardet.detect(pagedata)['encoding']
            pagedata=pagedata.decode(chardit)
            #logger.debug("%s coding is %s"%(url,chardit))

            soup=BeautifulSoup(pagedata,"html.parser")

            for link in soup.find_all('a',attrs={"href":re.compile(r'^http://[^\s]*.smzdm.com[^\s]*')}):
                #print(link.get('href'))
                if self.__filterUrl(link.get('href')):
                    result_urls.append(link.get('href'))

            rc = re.compile(r'^http://[^\s]*.smzdm.com/p/\d+/')
            dataurl=rc.findall(url)
            #print(dataurl)
            if dataurl:
                #http://www.smzdm.com/p/6275447/
                my=soup.find('h1',attrs={"class":"article_title"})

                #post like http://post.smzdm.com/p/469942/
                if my is None:
                    my=soup.find('h1',attrs={"class":"item-name"})
                print(my.text)
                print("dataurl:"+dataurl[0])


        except Exception  as err:
            logger.error("url data error %s"%url)
            traceback.print_exc()
        return result_urls
コード例 #7
0
ファイル: net_work.py プロジェクト: kyriezfz/DSFD-tensorflow
    def train_loop(self):
        """Train faces data for a number of epoch."""

        self.build()
        self.load_weight()

        with self._graph.as_default():
            # Create a saver.
            self.saver = tf.train.Saver(tf.global_variables(),
                                        max_to_keep=None)

            # Build the summary operation from the last tower summaries.
            self.summary_op = tf.summary.merge(self.summaries)

            self.summary_writer = tf.summary.FileWriter(
                cfg.MODEL.model_path, self.sess.graph)

            min_loss_control = 1000.
            for epoch in range(cfg.TRAIN.epoch):
                self._train(self.train_ds, epoch)
                val_loss = self._val(self.val_ds, epoch)
                logger.info('**************' 'val_loss %f ' % (val_loss))

                #tmp_model_name=cfg.MODEL.model_path + \
                #               'epoch_' + str(epoch ) + \
                #               'L2_' + str(cfg.TRAIN.weight_decay_factor) + \
                #               '.ckpt'
                #logger.info('save model as %s \n'%tmp_model_name)
                #self.saver.save(self.sess, save_path=tmp_model_name)

                if 1:
                    min_loss_control = val_loss
                    low_loss_model_name = cfg.MODEL.model_path + \
                                     'epoch_' + str(epoch) + \
                                     'L2_' + str(cfg.TRAIN.weight_decay_factor)  + '.ckpt'
                    logger.info('A new low loss model  saved as %s \n' %
                                low_loss_model_name)
                    self.saver.save(self.sess, save_path=low_loss_model_name)

            self.sess.close()
コード例 #8
0
def prepare_data(image, boxes, klass, is_crowd=0):

    boxes = np.copy(boxes)
    im = image
    assert im is not None
    im = im.astype('float32')
    # assume floatbox as input
    assert boxes.dtype == np.float32, "Loader has to return floating point boxes!"

    ret = {'image': im}
    # rpn anchor:
    try:
        if cfg.MODEL.MODE_FPN:
            multilevel_anchor_inputs = get_multilevel_rpn_anchor_input(
                im, boxes, is_crowd)
            for i, (anchor_labels,
                    anchor_boxes) in enumerate(multilevel_anchor_inputs):

                ret['anchor_labels_lvl{}'.format(i + 2)] = anchor_labels
                ret['anchor_boxes_lvl{}'.format(i + 2)] = anchor_boxes
        else:
            # anchor_labels, anchor_boxes
            ret['anchor_labels'], ret['anchor_boxes'] = get_rpn_anchor_input(
                im, boxes, is_crowd)

        boxes = boxes[is_crowd == 0]  # skip crowd boxes in training target
        klass = klass[is_crowd == 0]
        ret['gt_boxes'] = boxes
        ret['gt_labels'] = klass
        if not len(boxes):
            raise MalformedData("No valid gt_boxes!")
    except MalformedData as e:
        logger.info(
            "Input {} is filtered for training: {}".format('err', str(e)),
            'warn')
        return None

    return ret
コード例 #9
0
    def test_humidity(self, host):
        data = CaseLoader().load()['test case'][function_name()]
        r = requests.request(data['request']['method'],
                             url=host + data['request']['url'],
                             headers=data['request']['headers'])
        logger.info(r.status_code)
        assert r.status_code == Config.CODE_SUCCESS
        res = self.get_humidity_of_day_after_tomorrow(r)

        logger.info(f'Day after tomorrow: {res["forecast_date"]}')

        # extract relative humidity
        logger.info(f'Relative humidity: {res["min_rh"]}% - {res["max_rh"]}%')

        # assert forecast_date is the day after tomorrow
        assert res['forecast_date'] == day_after_tomorrow()
コード例 #10
0
ファイル: wrappers.py プロジェクト: chenxh06/task1
 def wrapper(*args, **kwargs):
     logger.info(f'Call [{func.__name__}], Arguments [{args}, {kwargs}]')
     return func(*args, **kwargs)
コード例 #11
0
ファイル: net_work.py プロジェクト: ikitozen/DSFD-tensorflow
    def _train(self,train_ds,_epoch):
        for step in range(cfg.TRAIN.iter_num_per_epoch):
            self.ite_num += 1



            ########show_flag check the data
            if cfg.TRAIN.vis:
                example_image,example_all_boxes,example_all_labels = next(train_ds)

                print(example_all_boxes.shape)
                for i in range(example_all_boxes.shape[0]):


                    img=example_image[i]
                    box_encode=example_all_boxes[i]
                    label=example_all_labels[i]

                    print(np.sum(label[label>0]))
                    # for j in range(label.shape[0]):
                    #     if label[j]>0:
                    #         print(box_encode[j])
                    cv2.namedWindow('img', 0)
                    cv2.imshow('img', img)
                    cv2.waitKey(0)

            else:

                start_time = time.time()
                feed_dict = {}
                for n in range(cfg.TRAIN.num_gpu):

                    examples = next(train_ds)

                    feed_dict[self.inputs[0][n]] = examples[0][n*cfg.TRAIN.batch_size:(n+1)*cfg.TRAIN.batch_size]
                    feed_dict[self.inputs[1][n]] = examples[1][n*cfg.TRAIN.batch_size:(n+1)*cfg.TRAIN.batch_size]
                    feed_dict[self.inputs[2][n]] = examples[2][n*cfg.TRAIN.batch_size:(n+1)*cfg.TRAIN.batch_size]

                feed_dict[self.inputs[3]] = cfg.TRAIN.dropout
                feed_dict[self.inputs[4]] = cfg.TRAIN.weight_decay_factor
                feed_dict[self.inputs[5]] = True

                fetch_duration = time.time() - start_time

                start_time2 = time.time()
                _, total_loss_value,reg_loss_value,cla_loss_value,l2_loss_value,lr_value = \
                    self.sess.run([*self.outputs],
                             feed_dict=feed_dict)

                duration = time.time() - start_time2
                run_duration = duration
                if self.ite_num % cfg.TRAIN.log_interval == 0:
                    num_examples_per_step = cfg.TRAIN.batch_size * cfg.TRAIN.num_gpu
                    examples_per_sec = num_examples_per_step / duration
                    sec_per_batch = duration / cfg.TRAIN.num_gpu




                    format_str = ('epoch %d: iter %d, '
                                  'total_loss=%.6f '
                                  'reg_loss=%.6f '
                                  'cla_loss=%.6f '
                                  'l2_loss=%.6f '
                                  'learning rate =%e '
                                  '(%.1f examples/sec; %.3f sec/batch) '
                                  'fetch data time = %.6f'
                                  'run time = %.6f')
                    logger.info(format_str % (_epoch,
                                              self.ite_num,
                                              total_loss_value,
                                              reg_loss_value,
                                              cla_loss_value,
                                              l2_loss_value,
                                              lr_value,
                                              examples_per_sec,
                                              sec_per_batch,
                                              fetch_duration,
                                              run_duration))

                if self.ite_num % 100 == 0:
                    summary_str = self.sess.run(self.summary_op, feed_dict=feed_dict)
                    self.summary_writer.add_summary(summary_str, self.ite_num)
コード例 #12
0
ファイル: net_work.py プロジェクト: ikitozen/DSFD-tensorflow
    def train_loop(self):
        """Train faces data for a number of epoch."""
        with tf.Graph().as_default(), tf.device('/cpu:0'):
            # Create a variable to count the number of train() calls. This equals the
            # number of batches processed * FLAGS.num_gpus.
            global_step = tf.get_variable(
                'global_step', [],
                initializer=tf.constant_initializer(0),dtype=tf.int32, trainable=False)

            # Decay the learning rate
            lr = tf.train.piecewise_constant(global_step,
                                             cfg.TRAIN.lr_decay_every_step,
                                             cfg.TRAIN.lr_value_every_step
                                             )

            keep_prob = tf.placeholder(tf.float32, name="keep_prob")
            L2_reg = tf.placeholder(tf.float32, name="L2_reg")
            training = tf.placeholder(tf.bool, name="training_flag")





            total_loss_to_show=0.
            images_place_holder_list = []
            labels_place_holder_list = []
            boxes_place_holder_list = []
            # Create an optimizer that performs gradient descent.
            #opt = tf.train.AdamOptimizer(lr)
            opt = tf.train.MomentumOptimizer(lr,momentum=0.9,use_nesterov=False)
            # Get images and labels

            weights_initializer = slim.xavier_initializer()
            biases_initializer = tf.constant_initializer(0.)
            biases_regularizer = tf.no_regularizer
            weights_regularizer = tf.contrib.layers.l2_regularizer(L2_reg)

            # Calculate the gradients for each model tower.
            tower_grads = []
            with tf.variable_scope(tf.get_variable_scope()):
                for i in range(cfg.TRAIN.num_gpu):
                    with tf.device('/gpu:%d' % i):
                        with tf.name_scope('tower_%d' % (i)) as scope:
                            with slim.arg_scope([slim.model_variable, slim.variable], device='/cpu:0'):

                                images_ = tf.placeholder(tf.float32, [None,None,None, 3], name="images")

                                boxes_ = tf.placeholder(tf.float32, [cfg.TRAIN.batch_size,None,4],name="input_boxes")
                                labels_ = tf.placeholder(tf.int64, [cfg.TRAIN.batch_size,None], name="input_labels")
                                ###total anchor

                                images_place_holder_list.append(images_)
                                labels_place_holder_list.append(labels_)
                                boxes_place_holder_list.append(boxes_)

                                with slim.arg_scope([slim.conv2d, slim.conv2d_in_plane, \
                                                     slim.conv2d_transpose, slim.separable_conv2d,
                                                     slim.fully_connected],
                                                    weights_regularizer=weights_regularizer,
                                                    biases_regularizer=biases_regularizer,
                                                    weights_initializer=weights_initializer,
                                                    biases_initializer=biases_initializer):
                                   reg_loss,cla_loss,l2_loss = self.tower_loss(
                                        scope, images_, labels_,boxes_, L2_reg, training)

                                    ##use muti gpu ,large batch
                                   if i == cfg.TRAIN.num_gpu - 1:
                                       total_loss = tf.add_n([ reg_loss,cla_loss,l2_loss])
                                   else:
                                       total_loss = tf.add_n([ reg_loss,cla_loss])
                                total_loss_to_show+=total_loss
                                # Reuse variables for the next tower.
                                tf.get_variable_scope().reuse_variables()

                                ##when use batchnorm, updates operations only from the
                                ## final tower. Ideally, we should grab the updates from all towers
                                # but these stats accumulate extremely fast so we can ignore the
                                #  other stats from the other towers without significant detriment.
                                bn_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope=scope)

                                # Retain the summaries from the final tower.
                                summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)
                                # Calculate the gradients for the batch of data on this CIFAR tower.
                                grads = opt.compute_gradients(total_loss)

                                # Keep track of the gradients across all towers.
                                tower_grads.append(grads)
            # We must calculate the mean of each gradient. Note that this is the
            # synchronization point across all towers.
            grads = self.average_gradients(tower_grads)

            # Add a summary to track the learning rate.
            summaries.append(tf.summary.scalar('learning_rate', lr))
            summaries.append(tf.summary.scalar('total_loss', total_loss_to_show))
            summaries.append(tf.summary.scalar('loc_loss', reg_loss))
            summaries.append(tf.summary.scalar('cla_loss', cla_loss))
            summaries.append(tf.summary.scalar('l2_loss', l2_loss))

            # Add histograms for gradients.
            for grad, var in grads:
                if grad is not None:
                    summaries.append(tf.summary.histogram(var.op.name + '/gradients', grad))

            # Apply the gradients to adjust the shared variables.
            apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

            # Add histograms for trainable variables.
            for var in tf.trainable_variables():
                summaries.append(tf.summary.histogram(var.op.name, var))

            if False:
                # Track the moving averages of all trainable variables.
                variable_averages = tf.train.ExponentialMovingAverage(
                    0.9, global_step)
                variables_averages_op = variable_averages.apply(tf.trainable_variables())
                # Group all updates to into a single train op.
                train_op = tf.group(apply_gradient_op, variables_averages_op, *bn_update_ops)
            else:
                train_op = tf.group(apply_gradient_op, *bn_update_ops)

            self.inputs=[images_place_holder_list,boxes_place_holder_list,labels_place_holder_list,keep_prob,L2_reg,training]
            self.outputs=[train_op,total_loss_to_show,reg_loss,cla_loss,l2_loss,lr ]
            self.val_outputs=[grads,total_loss_to_show,reg_loss,cla_loss,l2_loss,lr ]
            # Create a saver.
            self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=None)

            # Build the summary operation from the last tower summaries.
            self.summary_op = tf.summary.merge(summaries)

            # Build an initialization operation to run below.
            init = tf.global_variables_initializer()


            # Start running operations on the Graph. allow_soft_placement must be set to
            # True to build towers on GPU, as some of the ops do not have GPU
            # implementations.

            tf_config = tf.ConfigProto(
                allow_soft_placement=True,
                log_device_placement=False)
            tf_config.gpu_options.allow_growth = True
            self.sess = tf.Session(config=tf_config)
            self.sess.run(init)

            if cfg.MODEL.continue_train:
                #########################restore the params
                variables_restore = tf.get_collection(tf.GraphKeys.MODEL_VARIABLES)
                print(variables_restore)
                variables_restore_n = [v for v in variables_restore if
                                       'postprocessing' not in v.name]  # Conv2d_1c_1x1 Bottleneck
                saver2 = tf.train.Saver(variables_restore)
                saver2.restore(self.sess, cfg.MODEL.pretrained_model)

            elif cfg.MODEL.pretrained_model is not None:
                #########################restore the params
                variables_restore = tf.get_collection(tf.GraphKeys.MODEL_VARIABLES,scope=cfg.MODEL.net_structure)
                print(variables_restore)
            #    print('......................................................')
            #    # saver2 = tf.train.Saver(variables_restore)
                variables_restore_n = [v for v in variables_restore if
                                       'GN' not in v.name]  # Conv2d_1c_1x1 Bottleneck
                # print(variables_restore_n)
                saver2 = tf.train.Saver(variables_restore_n)
                saver2.restore(self.sess, cfg.MODEL.pretrained_model)

            # self.coord = tf.train.Coordinator()
            # Start the queue runners.
            # self.threads = tf.train.start_queue_runners(sess=self.sess, coord=self.coord)

            self.summary_writer = tf.summary.FileWriter(cfg.MODEL.model_path, self.sess.graph)

            train_ds=self.make_data(self.train_data_set,is_training=True)
            val_ds=self.make_data(self.val_data_set,is_training=False)

            ######

            min_loss_control=1000.
            for epoch in range(cfg.TRAIN.epoch):
                self._train(train_ds,epoch)
                val_loss=self._val(val_ds,epoch)
                logger.info('**************'
                           'val_loss %f '%(val_loss))

                #tmp_model_name=cfg.MODEL.model_path + \
                #               'epoch_' + str(epoch ) + \
                #               'L2_' + str(cfg.TRAIN.weight_decay_factor) + \
                #               '.ckpt'
                #logger.info('save model as %s \n'%tmp_model_name)
                #self.saver.save(self.sess, save_path=tmp_model_name)

                if 1:
                    min_loss_control=val_loss
                    low_loss_model_name = cfg.MODEL.model_path + \
                                     'epoch_' + str(epoch) + \
                                     'L2_' + str(cfg.TRAIN.weight_decay_factor)  + '.ckpt'
                    logger.info('A new low loss model  saved as %s \n' % low_loss_model_name)
                    self.saver.save(self.sess, save_path=low_loss_model_name)

            self.sess.close()
コード例 #13
0
ファイル: net_work.py プロジェクト: 610265158/frcnn
    def _train(self,train_ds,_epoch):
        for step in range(cfg.TRAIN.iter_num_per_epoch):
            self.ite_num += 1



            ########show_flag check the data
            if cfg.TRAIN.vis:
                examples = next(train_ds)

                print(examples)
                example_image=examples['image']
                # for i in range(cfg.TRAIN.batch_size):
                #     example = examples[i]
                #     images=example['image']
                #
                #
                #     print(example)
                #     # print(example_image.shape)
                #     # print(example_label.shape)
                #     # print(example_matche.shape)
                cv2.namedWindow('img', 0)
                cv2.imshow('img', example_image)
                cv2.waitKey(0)
            else:

                start_time = time.time()
                feed_dict = {}
                for n in range(cfg.TRAIN.num_gpu):

                    examples = next(train_ds)

                    feed_dict[self.inputs[0][n]] = examples['image']
                    feed_dict[self.inputs[1][n]] = examples['gt_boxes']
                    feed_dict[self.inputs[2][n]] = examples['gt_labels']


                    for k in range(len(cfg.FPN.ANCHOR_STRIDES)):
                        feed_dict[self.inputs[3][n][2*k]]=examples['anchor_labels_lvl{}'.format(k + 2)]
                        feed_dict[self.inputs[3][n][2*k+1]] = examples['anchor_boxes_lvl{}'.format(k + 2)]
                        #print(examples['anchor_labels_lvl{}'.format(k + 2)].shape)


                feed_dict[self.inputs[4]] = cfg.TRAIN.dropout
                feed_dict[self.inputs[5]] = cfg.TRAIN.weight_decay_factor
                feed_dict[self.inputs[6]] = True

                fetch_duration = time.time() - start_time

                start_time = time.time()
                _, total_loss_value,loss_value,l2_loss_value,lr_value = \
                    self.sess.run([*self.outputs],
                             feed_dict=feed_dict)

                duration = time.time() - start_time
                run_duration = duration - fetch_duration
                if self.ite_num % cfg.TRAIN.log_interval == 0:
                    num_examples_per_step = cfg.TRAIN.batch_size * cfg.TRAIN.num_gpu
                    examples_per_sec = num_examples_per_step / duration
                    sec_per_batch = duration / cfg.TRAIN.num_gpu



                    logger.info(loss_value)
                    format_str = ('epoch %d: iter %d, '
                                  'total_loss=%.6f '
                                  'l2_loss=%.6f '
                                  'learning rate =%e '
                                  '(%.1f examples/sec; %.3f sec/batch) '
                                  'fetch data time = %.6f'
                                  'run time = %.6f')
                    logger.info(format_str % (_epoch,
                                              self.ite_num,
                                              total_loss_value,
                                              l2_loss_value,
                                              lr_value,
                                              examples_per_sec,
                                              sec_per_batch,
                                              fetch_duration,
                                              run_duration))