from helper.shapenet.shapenetMapper import desc_to_id from deformations.FFD import get_template_ffd from deformations.meshDeformation import get_thresholded_template_mesh from mayavi import mlab import numpy as np from graphicUtils.visualizer.mayaviVisualizer import visualize_mesh, visualize_point_cloud ds = get_template_ffd("/media/saurabh/e56e40fb-030d-4f7f-9e63-42ed5f7f6c711/preprocessing_new", desc_to_id("pistol"), edge_length_threshold=None, n_samples=16384) key = "1f646ff59cabdddcd810dcd63f342aca" with ds: b = np.array(ds[key]['b']) p = np.array(ds[key]['p']) mesh_dataset = get_thresholded_template_mesh("/media/saurabh/e56e40fb-030d-4f7f-9e63-42ed5f7f6c711/preprocessing_new", desc_to_id("pistol"), None) with mesh_dataset: f = np.array(mesh_dataset[key]['faces']) v_orignal = np.array(mesh_dataset[key]['vertices']) # print(b) # visualize_mesh(v_orignal, f) # mlab.show() visualize_mesh(np.matmul(b, p), f) mlab.show()
import argparse import configparser from helper.shapenet.shapenetMapper import desc_to_id from graphicUtils.mesh.meshGenerator import generateMeshData parser = argparse.ArgumentParser(description="Generate mesh data") parser.add_argument('configFile', help='Config file path') args = parser.parse_args() config = configparser.ConfigParser() config.read(args.configFile) cat_id = desc_to_id(config['data']['category']) generateMeshData(cat_id, config.get("pathConfiguration", "inputPath"), config.get("pathConfiguration", "outputPath"))
from templateManager.templateMesh import get_template_mesh from helper.shapenet.shapenetMapper import desc_to_id import numpy as np id = desc_to_id("pistol") print(id) mesh = get_template_mesh("/media/saurabh/e56e40fb-030d-4f7f-9e63-42ed5f7f6c71/preprocessing", id) with mesh: a, b = mesh['2137b954f778282ac24d00518a3dd6ec']['faces'], mesh['2137b954f778282ac24d00518a3dd6ec']['vertices'] print(np.array(a)) print(np.array(b))
from datasetSplitter.shapenet.shapenetTrainTestSplitter import Splitter from helper.shapenet.shapenetMapper import desc_to_id source_path = "/data/Training_Data/ShapeNetCore.v1" destination_path = "/data/output" cat_id = desc_to_id("car") splitter = Splitter(destination_path, source_path, cat_id, 0.8, 0.1, 0.1, replace=False) print(splitter.train_set)
from deformations.meshDeformation import get_thresholded_template_mesh from mayavi import mlab import numpy as np from graphicUtils.visualizer.mayaviVisualizer import visualize_mesh, visualize_point_cloud from deformations.FFD import calculate_ffd def permute_xyz(x, y, z, order='xyz'): _dim = {'x': 0, 'y': 1, 'z': 2} data = (x, y, z) return tuple(data[_dim[k]] for k in order) ds = get_template_ffd( "/media/saurabh/e56e40fb-030d-4f7f-9e63-42ed5f7f6c711/preprocessing_new", desc_to_id("pistol"), edge_length_threshold=None) key = "1f646ff59cabdddcd810dcd63f342aca" with ds: b = np.array(ds[key]['b']) p = np.array(ds[key]['p']) mesh_dataset = get_thresholded_template_mesh( "/media/saurabh/e56e40fb-030d-4f7f-9e63-42ed5f7f6c711/preprocessing_new", desc_to_id("pistol"), None) with mesh_dataset: f = np.array(mesh_dataset[key]['faces']) v_orignal = np.array(mesh_dataset[key]['vertices'])
def cat_id(self): return desc_to_id(self.model_parameters["cat_desc"])
from helper.shapenet.shapenetMapper import desc_to_id from helper.shapenet.datareader.reader import DataReader path = "/data/Training Data/ShapeNetCore.v1" category = "plane" data_reader = DataReader(path) print(data_reader.list_archived_data(desc_to_id(category)))