def compute_predictions(): global data_y_gt, y_test_delta_gt, y_delta_test_1, y_delta_test_step, y_delta_pred, yy_test_step, yy_pred, yy_test_1 # orijinal locations of camera dsRawData = tdl.load_data(params["dataset"][id], params["im_type"], params["n_output"]) dir_list = dsRawData[0] data_y_gt = dsRawData[1] data_y_gt = data_y_gt * cm_mul * cm_mul dsSplits = tdl.split_data(dir_list, id, data_y_gt, params["test_size"], params["val_size"]) tmp_X_train, y_train_delta_gt = dsSplits[0] tmp_X_test, y_test_delta_gt = dsSplits[is_test] # location differences with orijinal, step_size=1 setted this means only looking consequtive locations X_test, y_delta_test_1, overlaps_test = tdl.prepare_data(1, tmp_X_test, y_test_delta_gt) # location differences with step_size=step{10} data augmented with stplits X_test_aug, y_delta_test_step, overlaps_test_step = tdl.prepare_data(step, tmp_X_test, y_test_delta_gt) # location prediction over augmented data y_delta_pred = pred.predict_location.predict(X_test_aug, params) y_delta_pred = np.asarray(y_delta_pred) y_delta_pred = y_delta_pred * cm_mul # camera location restored from augmented data yy_test_step = utils.up_sample(overlaps_test_step, y_delta_test_step, step) yy_test_step = yy_test_step.reshape(len(yy_test_step), params['n_output']) yy_test_step = np.vstack([y_test_delta_gt[0, :], yy_test_step]) yy_test_step = np.cumsum(yy_test_step, axis=0) # camera location restored from predicted data yy_pred = utils.up_sample(overlaps_test_step, y_delta_pred, step) yy_pred = yy_pred.reshape(len(yy_pred), params['n_output']) yy_pred = np.vstack([y_test_delta_gt[0, :], yy_pred]) yy_pred = np.cumsum(yy_pred, axis=0) # camera location restored from differences data q = np.squeeze(np.asarray(y_delta_test_1)) w = np.squeeze(np.asarray(y_test_delta_gt))[0, :] yy_test_1 = np.vstack((w, q)) yy_test_1 = np.array(np.cumsum(yy_test_1, axis=0)) #save generated data model_saver.save_pred(ext_raw_data, data_y_gt,params) model_saver.save_pred(ext_y_pred, yy_pred,params) model_saver.save_pred(ext_y_delta_pred, y_delta_pred,params) model_saver.save_pred(ext_y_delta_test_step, y_delta_test_step,params) model_saver.save_pred(ext_yy_test, yy_test_1,params) model_saver.save_pred(ext_yy_test_aug, yy_test_step,params) model_saver.save_pred(ext_y_test_gt, y_test_delta_gt,params)
import helper.tum_dataset_loader as tdl from helper import config, model_saver, utils from plot import plot_data import numpy as np params= config.get_params() id=4 #data will be loaded according to this id params['shufle_data']=0 params['im_type']="depth" params['step_size']=[10] step=params['step_size'][0] #orijinal locations of camera dsRawData=tdl.load_data(params["dataset"][id],params["im_type"]) dir_list=dsRawData[0] data_y_gt=dsRawData[1] dsSplits=tdl.split_data(dir_list,id, data_y_gt,params["test_size"],params["val_size"]) tmp_X_train,y_train_delta_gt=dsSplits[0] tmp_X_test,y_test_delta_gt=dsSplits[1] tmp_X_val,y_val_delta_gt=dsSplits[2] plot_data.plot_orijinal_y(y_train_delta_gt,y_test_delta_gt,y_val_delta_gt) print("ok")