コード例 #1
0
def make_linear_eq(x="", rhs=None, var_coeffs=True):
    """
    Generates linear equation in one variable, and its solution.

    x : charector for the variable to be solved for. defaults to random selection
        from the global list `alpha`.
                            OR
        a list of possible charectors. A random selection will be made from them.

    rhs : value to set for the right-hand side. If not given, the 
          right-hand side will be a randomly generated linear expression

    var_coeffs : sets whether we want variables as coefficients in the problem.
                 defaults to True. Set to False if you want a problem with strictly
                 numerical coefficients.
    """
    if not x:
        x = random.choice(alpha)
    elif isinstance(x, list):
        x = random.choice(x)

    exclude = [x.upper(), x.lower()]
    x = sympy.Symbol(x)
    c1, c2, c3, c4 = get_coefficients(4,
                                      var_coeffs=var_coeffs,
                                      reduce=False,
                                      exclude=exclude)
    lhs = c1 * x + c2
    rhs = c3 * x + c4
    e = sympy.Eq(lhs, rhs)
    sols = [render(ex, x) for ex in sympy.solve(e, x)]
    return "Solve for $%s$ : %s" % (x, render(e)), sols
コード例 #2
0
ファイル: algebra.py プロジェクト: al8/examgen
def make_linear_eq(x="", rhs = None, var_coeffs=True):
    """
    Generates linear equation in one variable, and its solution.

    x : charector for the variable to be solved for. defaults to random selection
        from the global list `alpha`.
                            OR
        a list of possible charectors. A random selection will be made from them.

    rhs : value to set for the right-hand side. If not given, the 
          right-hand side will be a randomly generated linear expression

    var_coeffs : sets whether we want variables as coefficients in the problem.
                 defaults to True. Set to False if you want a problem with strictly
                 numerical coefficients.
    """
    if not x:
        x = random.choice(alpha)
    elif isinstance(x, list):
        x = random.choice(x)

    exclude = [x.upper(), x.lower()]
    x = sympy.Symbol(x)
    c1, c2, c3, c4 = get_coefficients(4, var_coeffs=var_coeffs, reduce=False, 
                                      exclude = exclude)
    lhs = c1*x + c2
    rhs = c3*x + c4
    e = sympy.Eq(lhs, rhs)
    sols = [render(ex, x) for ex in sympy.solve(e, x)]
    return "Solve for $%s$ : %s" % (x, render(e)), sols
コード例 #3
0
ファイル: algebra.py プロジェクト: muffins1234/puzzle_app
def make_quadratic_eq(target, var="x", rhs=None, integer=[0, 1]):
    """
    Generates quadratic equation problem expression and
    set of solutions

    x : charector for the variable to be solved for. defaults to "x".
                            OR
        a list of possible charectors. A random selection will be made from them.
    
    rhs : value to set for the right-hand side. If not given, the 
          right-hand side will be a randomly generated polynomial expression
          of degree <= 2, in the same variable.

    integer : determines whether generated problem will have integer roots or
              not. Default is a random selection.
    """
    if isinstance(var, str):
        var = sympy.Symbol(var)
    elif isinstance(var, list):
        var = sympy.Symbol(random.choice(var))
    if isinstance(integer, list):
        integer = random.choice(integer)
    if integer:
        r1 = random.choice(digits_nozero)
        r2 = target - r1
        #r2 = random.choice(digits_nozero)
        lhs = (var - r1) * (var - r2)
        lhs = lhs.expand()
        rhs = 0
    else:
        c1, c2, c3 = get_coefficients(3)
        lhs = c1 * var**2 + c2 * var + c3

    if rhs == None:
        c4, c5, c6 = get_coefficients(3, first_nonzero=False)
        rhs = c4 * var**2 + c5 * var + c6

    e = sympy.Eq(lhs, rhs)
    pvar = str(var)
    sols = ', '.join(
        [pvar + " = " + sympy.latex(ex) for ex in sympy.solve(e, var)])
    sols = "$$" + sols + "$$"
    if len(sols) == 0:
        return make_quadratic_eq()
    return "\\overline{" + render(e) + "}", sols
コード例 #4
0
ファイル: algebra.py プロジェクト: al8/examgen
def make_quadratic_eq(var="x", rhs = None, integer=[0, 1]):
    """
    Generates quadratic equation problem expression and
    set of solutions

    x : charector for the variable to be solved for. defaults to "x".
                            OR
        a list of possible charectors. A random selection will be made from them.
    
    rhs : value to set for the right-hand side. If not given, the 
          right-hand side will be a randomly generated polynomial expression
          of degree <= 2, in the same variable.

    integer : determines whether generated problem will have integer roots or
              not. Default is a random selection.
    """
    if isinstance(var, str):
        var = sympy.Symbol(var)
    elif isinstance(var, list):
        var = sympy.Symbol(random.choice(var))
    if isinstance(integer, list):
        integer = random.choice(integer)
    if integer:
        r1 = random.choice(digits_nozero)
        r2 = random.choice(digits_nozero)
        lhs = (var - r1) * (var - r2)
        lhs = lhs.expand()
        rhs = 0
    else:
        c1, c2, c3 = get_coefficients(3)
        lhs = c1*var**2 + c2*var + c3

    if rhs == None:
        c4, c5, c6 = get_coefficients(3, first_nonzero=False)
        rhs = c4*var**2 + c5*var + c6
    
    e = sympy.Eq(lhs, rhs)
    pvar = str(var)
    sols = ', '.join([pvar+" = " + sympy.latex(ex) for ex in sympy.solve(e, var)])
    sols = "$$" + sols + "$$"
    if len(sols) == 0:
        return make_quadratic_eq()
    return render(e), sols
コード例 #5
0
ファイル: calc1.py プロジェクト: spmartin823/examgen
def poly1(x):
    vals = sum([k * x**i for i, k in enumerate(reversed(get_coefficients(2)))])
    return vals