コード例 #1
0
    analyse_replay = True
    TFR = True
    save = False
    verbose = True

    f_in = "wmx_%s_%.1f_linear.pkl" % (
        STDP_mode, place_cell_ratio) if linear else "wmx_%s_%.1f.pkl" % (
            STDP_mode, place_cell_ratio)
    PF_pklf_name = os.path.join(base_path, "files", "PFstarts_%s_linear.pkl" %
                                place_cell_ratio) if linear else None
    dir_name = os.path.join(
        base_path, "figures", "%.2f_replay_det_%s_%.1f" %
        (1, STDP_mode, place_cell_ratio)) if linear else None

    wmx_PC_E = load_wmx(os.path.join(base_path, "files",
                                     f_in)) * 1e9  # *1e9 nS conversion
    SM_PC, SM_BC, RM_PC, RM_BC, selection, StateM_PC, StateM_BC = run_simulation(
        wmx_PC_E, STDP_mode, cue=cue, save=save, seed=seed, verbose=verbose)
    _ = analyse_results(SM_PC,
                        SM_BC,
                        RM_PC,
                        RM_BC,
                        selection,
                        StateM_PC,
                        StateM_BC,
                        seed=seed,
                        multiplier=1,
                        linear=linear,
                        pklf_name=PF_pklf_name,
                        dir_name=dir_name,
                        analyse_replay=analyse_replay,
コード例 #2
0
        Ap = 0.01
        Am = -Ap
        wmax = 4e-8  # S
        scale_factor = 1.27
    elif STDP_mode == "sym":
        taup = taum = 62.5 * ms
        Ap = Am = 4e-3
        wmax = 2e-8  # S
        scale_factor = 0.62
    Ap *= wmax; Am *= wmax  # needed to reproduce Brian1 results

    f_name = os.path.join(base_path, "files", f_in)
    spiking_neurons, spike_times = load_spike_trains(f_name)

    pklf_name = os.path.join(base_path, "files", f_in_wmx)
    intermediate_weightmx = load_wmx(pklf_name) / scale_factor  # (scale only once, at the end)

    weightmx = learning_2nd_env(spiking_neurons, spike_times, taup, taum, Ap, Am, wmax, intermediate_weightmx)
    weightmx *= scale_factor  # quick and dirty additional scaling! (in an ideal world the STDP parameters should be changed to include this scaling...)


    pklf_name = os.path.join(base_path, "files", f_out)
    save_wmx(weightmx, pklf_name)

    plot_wmx(weightmx, save_name=f_out[:-4])
    plot_wmx_avg(weightmx, n_pops=100, save_name="%s_avg"%f_out[:-4])
    plot_w_distr(weightmx, save_name="%s_distr"%f_out[:-4])
    selection = np.array([500, 2400, 4000, 5500, 7015])
    plot_weights(save_selected_w(weightmx, selection), save_name="%s_sel_weights"%f_out[:-4])
    plt.show()
コード例 #3
0
ファイル: analyse_EPS.py プロジェクト: KaliLab/ca3net
        return np.max(EPSP) - Vrest_Pyr/mV


if __name__ == "__main__":

    try:
        n = int(sys.argv[1])
    except:
        n = 500  # number of random weights

    v_hold = -70.  # mV
    i_hold = 20.967  # pA (calculated by `clamp_cell.py`)

    f_in = "wmx_sym_0.5_linear.pkl"
    pklf_name = os.path.join(base_path, "files", "paper", f_in)
    wmx_PC_E = load_wmx(pklf_name) * 1e9  # *1e9 nS conversion

    nonzero_weights = wmx_PC_E[np.nonzero(wmx_PC_E)]
    print "mean(nonzero weights): %s (nS)"%np.mean(nonzero_weights)

    np.random.seed(12345)
    weights = np.random.choice(nonzero_weights, n, replace=False)

    EPSPs = np.zeros((n, 4000)); EPSCs = np.zeros((n, 4000))  # 4000 is hard coded for sim length
    peak_EPSPs = np.zeros(n); peak_EPSCs = np.zeros(n)
    for i, weight in enumerate(tqdm(weights)):
        t_, EPSP, EPSC = sym_paired_recording(weight, i_hold)
        EPSPs[i,:] = EPSP; EPSCs[i,:] = EPSC
        peak_EPSPs[i] = get_peak_EPSP(t_, EPSP, i_hold, v_hold)
        peak_EPSCs[i] = np.max(EPSC)
コード例 #4
0
if __name__ == "__main__":

    try:
        STDP_mode = sys.argv[1]
    except:
        STDP_mode = "sym"
    assert STDP_mode in ["sym", "asym"]

    place_cell_ratio = 0.5
    linear = True
    f_in = "wmx_%s_%.1f_linear.pkl" % (
        STDP_mode, place_cell_ratio) if linear else "wmx_%s_%.1f.pkl" % (
            STDP_mode, place_cell_ratio)

    pklf_name = os.path.join(base_path, "files", f_in)
    wmx_orig = load_wmx(pklf_name)

    #wmx_modified = shuffle(wmx_orig); f_out = "%s_shuffled_linear.pkl"%f_in[:-11] if linear else "%s_shuffled.pkl"%f_in[:-4]
    #wmx_modified = column_shuffle(wmx_orig); f_out = "%s_cshuffled_linear.pkl"%f_in[:-11] if linear else "%s_cshuffled.pkl"%f_in[:-4]
    #wmx_modified = shuffle_blocks(wmx_orig); f_out = "%s_block_shuffled_linear.pkl"%f_in[:-11] if linear else "%s_block_shuffled.pkl"%f_in[:-4]
    wmx_modified = binarize(wmx_orig)
    f_out = "%s_binary_linear.pkl" % f_in[:
                                          -11] if linear else "%s_binary.pkl" % f_in[:
                                                                                     -4]

    assert np.shape(wmx_modified) == (
        nPCs, nPCs), "Output shape is not %i*%i" % (nPCs, nPCs)
    assert (wmx_modified >=
            0.0).all(), "Negative weights in the modified matrix!"

    pklf_name = os.path.join(base_path, "files", f_out)