コード例 #1
0
ファイル: __main__.py プロジェクト: pszostek/runstuff
def get_stats(results):
    """ Produces statistics for various metrics from many runs
        INPUT:
            results is a dictionary: {id : [{}, {}, {}]}
        OUTPUT:
            DataFrame with statistics on different parameters
    """

    ret = OrderedDict()
    for id_, res_list in results.items():
        average_res = OrderedDict()
        metrics = res_list[0].keys()
        for metric in metrics:
            try:
                metric_results = [float(result[metric]) for result in res_list]
                stats = Stats(intigerize(min(metric_results)),
                              intigerize(max(metric_results)),
                              intigerize(mean(metric_results)),
                              intigerize(median(metric_results)),
                              intigerize(stddev(metric_results)))
                average_res[metric] = stats
            except ValueError:
                # we fall back here is every run was executed only once
                average_res[metric] = res_list[0][metric]
        ret[id_] = average_res
    return ret
コード例 #2
0
def create_main_node(tableT, table):
    income_low_average = helper.mean(tableT[2])
    income_hgh_average = helper.mean(tableT[3])
    working_seAk = helper.seAk(tableT[4])

    node = Node()

    for row in table:
        city = row[0]
        affil = row[1]
        income = 'low' if row[3] < income_hgh_average else 'high'
        working = 'low' if row[4] < working_seAk[0] else (
            'high' if row[4] < working_seAk[1] else 'medium')

        node.vec.append((city, affil, income, working))

    return node
コード例 #3
0
    def __init__(self,data):
        for i in range(len(data)):
            self.Mean.append(hp.mean(data[i]))

        X = [[] for i in range(3)]
        Y = [[] for i in range(3)]
        sum=0
        for i in np.arange(min1,max,0.1):
            for j in np.arange(miny,may,0.1):
                sum=sum+1
                G = [ 0 for i in range(3)]
                for k in range(3):
                    G[k] = self.get_Gx(i,j,k);
                C=G.index(max(G));
                X[C].append(i)
                Y[C].append(j)
        print sum
        for i in range(3):
            prob[i]=len(X[i])/sum
            print(prob[i])

        # plt.plot(X[0],Y[0],colour='Red',label= "Class_1")
        # plt.plot(X[1],Y[1],colour='Blue',label= "Class_1")
        # plt.plot(X[2],Y[2],colour='Black',label= "Class_1")
        # plt.show()

        c1_mat = hp.get_mat(data[0])
        c2_mat = hp.get_mat(data[1])
        c3_mat = hp.get_mat(data[2])
        for i in range(2):
            for j in range(2):
                if i==j:
                    self.matrix[i][j]=c1_mat[i][j]+c2_mat[i][j]+c3_mat[i][j]
                    self.matrix[i][j]/3
                else:
                    self.matrix[i][j]=0

        for i in range(2):
            self.var = self.var+self.matrix[i][i]
        self.var=self.var/2;
        self.matrix[0][0]=self.var
        self.matrix[1][1]=self.var
        print "variance:",self.var
        # setting line parameters
        for i in range(len(data)):
            self.W[i][0] = self.Mean[i][0]/self.var
            self.W[i][1] = self.Mean[i][1]/self.var
            self.W[i][2] = np.log(self.prob[i])-((self.Mean[i][0]*self.Mean[i][0]+self.Mean[i][1]*self.Mean[i][1]))/(2*self.var)
コード例 #4
0
async def main_loop(app):
    state = app['state']
    state['buffer'] = []
    state['client'] = None

    state['current_run'] = None
    rates = []
    msg = ["Results:"]
    try:
        while True:
            outs = helper.update_client(state, timeout=1)
            if outs is not None:
                if outs.timeout:
                    points = (0 if state['current_run'] is None else
                              state['current_run'][0])
                    rates.append(points / STATIONS)
                    msg.append("- Timeout (partial run possible)")
                    state['current_run'] = None
                elif outs.code != 0:
                    helper.eprint(outs, state['current_run'])
                    points = (0 if state['current_run'] is None else
                              state['current_run'][0])
                    rates.append(points / STATIONS)
                    msg.append(f"- Runtime error (partial run possible)\n")
                    state['current_run'] = None
                elif state['current_run'] is None:
                    msg.append("- Session wasn't started")
                    rates.append(0)
                else:
                    msg.append("- Normal run (either good or bad)")
                    rates.append(state['current_run'][0] / STATIONS)
                    state['current_run'] = None
            elif state['current_run']:
                if state['current_run'][1] is None:
                    helper.eprint("early_bird", state['current_run'])
                    msg.append("- Normal run (either good or bad)")
                    rates.append(state['current_run'][0] / STATIONS)
                    helper.kill_client(state)
                    state['current_run'] = None
            await asyncio.sleep(0.005)
            if len(rates) >= 20:
                score = helper.mean(rates)
                helper.exit_grader(score, "\n".join(msg))
    except asyncio.CancelledError:
        pass
    except Exception as e:
        helper.bail_exception()
コード例 #5
0
 def __init__(self, data):
     self.class_data = data
     for i in range(len(data)):
         self.Mean.append(hp.mean(data[i]))
     c1_mat = hp.get_mat(data[0])
     c2_mat = hp.get_mat(data[1])
     c3_mat = hp.get_mat(data[2])
     for i in range(2):
         for j in range(2):
             self.matrix[i][j] = c1_mat[i][j] + c2_mat[i][j] + c3_mat[i][j]
             self.matrix[i][j] = self.matrix[i][j] / 3
     inv = np.linalg.inv(self.matrix)
     for i in range(len(data)):
         mn = np.matrix(self.Mean[i]).transpose()
         term = np.dot(inv, mn)
         # print(mn.transpose())
         self.W[i].append(-0.5 * inv)
         self.W[i].append(term.transpose())
         self.W[i].append(-0.5 * (np.log(np.linalg.det(self.matrix)) +
                                  np.dot(mn.transpose(), term)))
コード例 #6
0
    def evaluate(self,
                 query_id='all',
                 metric='F',
                 method='ltn-lnn',
                 verbose=False):
        should_divide = (method[2] == 'c')
        scores = []
        for i, (q, res) in enumerate(self.q_and_res_path(query_id)):
            with open(q, 'r') as f:
                lines = f.read().split('\n')
                if len(lines) < 1:
                    raise ValueError('file has no lines')
                query_title = lines[0]
                if len(lines) > 1 and len(lines[1].replace(' ', '')) > 0:
                    query_text = lines[1]
                else:
                    query_text = query_title
#                if verbose:
#                    print("Query title: %s, query text: %s" % (query_title, query_text))
#                    print('\n'.join(map(str, Text_cleaner.query_cleaner(query_title))))
                top_k = self.retrieval_index.query(query_title, query_text,
                                                   should_divide)

            with open(res, 'r') as f:
                real_best = f.read().replace(',', '').split()

            scores.append(IREvaluator.funcs[metric](real_best, top_k))
            if verbose:
                print(top_k)
                print(query_text)
                print(query_title)
                print(real_best)
                print("i = %d, q = %s" % (i, q))
                #                print("query = %s" % query_title)
                print("metric = %s, Element %.2f, runing mean = %.2f" %
                      (metric, scores[-1], mean(scores)))
                print()

        assert len(scores) > 0
        return sum(scores) / len(scores)
コード例 #7
0
ファイル: case3.py プロジェクト: npav5057/Pattern-Recognition
    def __init__(self, data):
        self.class_data = data
        for i in range(len(data)):
            self.Mean.append(hp.mean(data[i]))
        self.matrix[0] = hp.get_mat(data[0])
        self.matrix[1] = hp.get_mat(data[1])
        self.matrix[2] = hp.get_mat(data[2])
        for i in range(2):
            for j in range(2):
                if i != j:
                    self.matrix[0][i][j] = 0
                    self.matrix[1][i][j] = 0
                    self.matrix[2][i][j] = 0

        for i in range(len(data)):
            inv = np.linalg.inv(self.matrix[i])
            mn = np.matrix(self.Mean[i]).transpose()
            term = np.dot(inv, mn)
            # print(mn.transpose())
            self.W[i].append(-0.5 * inv)
            self.W[i].append(term.transpose())
            self.W[i].append(-0.5 * (np.log(np.linalg.det(self.matrix[i])) +
                                     np.dot(mn.transpose(), term)))
コード例 #8
0
ファイル: main.py プロジェクト: npav5057/K-Means-Clustering
    # K points are chosen randomly from data as mean
    mean = fun.set_random_mean(data, k)

    itr = 0
    final_distortion = 999999.9
    init_distortion = 0.0
    while (abs(final_distortion - init_distortion) > error):
        cluster = [[] for i in range(k)]
        itr = itr + 1
        init_distortion = final_distortion
        final_distortion = 0
        for point in data:
            assigned_cluster, min_distortion = fun.get_Cluster(point, mean, k)
            cluster[assigned_cluster].append(point)
            final_distortion = final_distortion + min_distortion
        for i in range(k):
            mean[i] = fun.mean(cluster[i])
        print("Iteration:", itr, "     Distortion measure Error:",
              abs(final_distortion - init_distortion))

    colour = fun.get_random_colour(k)
    for t in range(k):
        for data in cluster[t]:
            plt.plot(data[0],
                     data[1],
                     color=colour[t],
                     marker='o',
                     markersize=1)

    plt.savefig(sys.argv[1] + "_cluster_" + str(k) + ".png")
コード例 #9
0
# Q8: What are the minimum, mean, median, and maximum salaries?
import helper

data = helper.read_salaries()

salaries = []
# TODO: get non-empty salaries from data

print('Minimum:', min(salaries))
print('Mean:', helper.mean(salaries))
print('Median:', helper.median(salaries))
print('Maximum:', max(salaries))
コード例 #10
0
#!/usr/bin/env python

from matplotlib import pyplot as plt
from collections import Counter
import random
import helper

xs = [random.uniform(0, 100) for _ in range(0, 100)]
ys = [random.uniform(0, 100) for _ in range(0, 100)]

min_xs = min(xs)
max_xs = max(xs)
length = len(xs)
mean_xs = helper.mean(xs)
variance_xs = helper.variance(xs)
std_xs = helper.std(xs)
median_xs = helper.median(xs)
data_range_xs = helper.data_range(xs)

print("min: %s" % min_xs)
print("max: %s" % max_xs)
print("varaince: %s" % variance_xs)
print("std: %s" % std_xs)
print("length: %s" % length)
print("mean: %s" % mean_xs)
print("median: %s" % median_xs)
print("range: %s" % data_range_xs)

covariance_xsys = helper.covariance(xs, ys)
correlation_xsys = helper.correlation(xs, ys)
print("covariance: %s" % covariance_xsys)