コード例 #1
0
def estimateFeatureTranslation(startX, startY, Ix, Iy, img1, img2):
  #Convert from RGB to grayscale
  gray1 = rgb2gray(img1)
  gray2 = rgb2gray(img2)
  
  # Get size of image and allocate space for matrices in "culmination"
  [h, w] = gray1.shape
  LHS_summation = np.zeros((2,2)) #make this an np.empty after shown to work
  RHS_summation = np.zeros((2, 1))
  
  # Get partial with respect to time
  It = gray2 - gray1
  x = np.arange(0, w)
  y = np.arange(0, h)
  f_Ix = interp2d(x, y, Ix)
  f_Iy = interp2d(x, y, Iy)
  f_It = interp2d(x, y, It)
  
  # Calculate boundaries of window (normally 10x10 except when on boundary)
  #startXWin = np.round(startX).astype(int)
  #startYWin = np.round(startY).astype(int)
  windowMinX = startX - 9 if startX - 9 > 0 else startX
  windowMaxX = startX + 10 if startX + 10 < w else w - startX
  windowMinY = startY - 9 if startY - 9 > 0 else startY
  windowMaxY = startY + 10 if startY + 10 < h else h - startY
  
  windowH = np.round(windowMaxY - windowMinY).astype(int)
  windowW = np.round(windowMaxX - windowMinX).astype(int)
  # Get window points from Ix, Iy, and It
  #Ix_window = Ix[windowMinY: windowMaxY, windowMinX: windowMaxX]
  #Iy_window = Iy[windowMinY: windowMaxY, windowMinX: windowMaxX]
  #It_window = It[windowMinY: windowMaxY, windowMinX: windowMaxX]
  Ix_window = np.zeros((windowH, windowW))
  Ix_window = getInterpolatedWindow(Ix_window, windowMinX, windowMinY, f_Ix)
  
  Iy_window = np.zeros((windowH, windowW))
  Iy_window = getInterpolatedWindow(Iy_window, windowMinX, windowMinY, f_Iy)
  
  It_window = np.zeros((windowH, windowW))
  It_window = getInterpolatedWindow(It_window, windowMinX, windowMinY, f_It)

  
  #Fill in culmination matrices
  LHS_summation[0][0] = np.sum(np.multiply(Ix_window, Ix_window))
  LHS_summation[0][1] = np.sum(np.multiply(Ix_window, Iy_window))
  LHS_summation[1][0] = np.sum(np.multiply(Ix_window, Iy_window))
  LHS_summation[1][1] = np.sum(np.multiply(Iy_window, Iy_window))
  
  RHS_summation[0][0] = -1.0 * np.sum(np.multiply(Ix_window, It_window))
  RHS_summation[1][0] = -1.0 * np.sum(np.multiply(Iy_window, It_window))
  
  #Solve for newX and newY
  LHS_inverse = np.linalg.inv(LHS_summation)
  u, v = LHS_inverse.dot(RHS_summation)
  newX = startX + u
  newY = startY + v
  return newX, newY
コード例 #2
0
def estimateAllTranslation(startXs, startYs, img1, img2):

    #Convert from RGB to grayscale
    grey1 = rgb2gray(img1)

    #find the number of total features
    [numFeatures, numFaces] = startXs.shape

    #instantiate the output
    newXs = np.zeros((numFeatures, numFaces))
    newYs = np.zeros((numFeatures, numFaces))

    #Get the gradients of the first image
    #[Ix, Iy] = np.gradient(grey1)
    Ix = cv2.Sobel(grey1, cv2.CV_64F, 1, 0, ksize=5)
    Iy = cv2.Sobel(grey1, cv2.CV_64F, 0, 1, ksize=5)

    #Loop through all the faces
    for face in range(0, numFaces):
        #Loop through all the features
        for feature in range(0, numFeatures):

            #get the current feature for the current face
            startX = startXs[feature, face]
            startY = startYs[feature, face]

            # Estimate the translation for the current feature
            [newX, newY] = estimateFeatureTranslation(startX, startY, Ix, Iy,
                                                      img1, img2)

            #append the newX and newY for the current feature to the list of new featuers
            newXs[feature, face] = newX
            newYs[feature, face] = newY

    return newXs, newYs
コード例 #3
0
def estimateFeatureTranslation(startX, startY, Ix, Iy, img1, img2):
    #TODO: Your code here

    # if np.ndim(img1) == 3:
    #     img1 = rgb2gray(img1)
    # if np.ndim(img2) == 3:
    #     img2 = rgb2gray(img2)

    win_width = 10
    win_height = 10

    nr = win_height / 2
    nc = win_width / 2

    newX = []
    newY = []

    # keep within image boundaries
    if startY - nr > 0 and startX - nc > 0 and startY + nr < img1.shape[
            0] and startX + nc < img1.shape[1]:

        # extract an image patch (10 x 10 window) from first image (centered on startX, startY)
        im1_patch = getPatch(img1, startX, startY, win_width, win_height)

        # use starting location of search in second image and patches to track a feature point from image 1 to 2
        p = [0, 0, 0, 0, 2, 3]
        delta_p = 7
        threshold = 0.01

        x, y = np.meshgrid(range(0,
                                 np.shape(im1_patch)[0]),
                           range(0,
                                 np.shape(im1_patch)[1]))
        patch_center = np.hstack(
            (np.shape(im1_patch)[0] / 2, np.shape(im1_patch)[1] / 2))
        x = x - patch_center[0]
        y = y - patch_center[1]

        It = rgb2gray(img2 - img1)

        It_patch = getPatch(It, startX, startY, win_width, win_height)
        Ix_patch = getPatch(Ix, startX, startY, win_width, win_height)
        Iy_patch = getPatch(Iy, startX, startY, win_width, win_height)

        Ixx_patch = Ix_patch * Ix_patch
        Iyy_patch = Iy_patch * Iy_patch
        Ixy_patch = Ix_patch * Iy_patch
        Ixt_patch = Ix_patch * It_patch
        Iyt_patch = Iy_patch * It_patch

        a = np.array([[np.sum(Ixx_patch), np.sum(Ixy_patch)],
                      [np.sum(Ixy_patch), np.sum(Iyy_patch)]])
        b = -np.array([[np.sum(Ixt_patch)], [np.sum(Iyt_patch)]])
        x = np.linalg.solve(a, b)
        u = x.item(0)
        v = x.item(1)

        newX = startX + u
        newY = startY + v

#        while np.linalg.norm(delta_p) > threshold: # L2 norm of vector delta_p
#            # affine matrix
#            W_p = np.vstack(( [1+p[0], p[2], p[4]], [p[1], 1+p[3], p[5]] ))
#            # warp img
#            img2_patch = getPatch(img2, startX, startY, win_width, win_height);
#            img2_warped = cv2.warpAffine(img2_patch,W_p,(img2_patch.shape[1],img2_patch.shape[0]))
#            # subtract warp from original (temporal gradient)
#            img_err = im1_patch - img2_warped
#            # img_err = getPatch(im_temp, startX, startY, win_width, win_height);
#            # img_err = im1_patch - img_warped
#            # break if outside image boundaries
#            if p[4]>img2.shape[0]-1 or p[5]>img2.shape[1]-1 or p[4]<0 or p[5]<0 :
#                break
#            # warp gradient
#            Ix_patch = getPatch(Ix, startX, startY, win_width, win_height);
#            Iy_patch = getPatch(Iy, startX, startY, win_width, win_height);
#            Ix_warped = cv2.warpAffine(Ix_patch,W_p,(win_width, win_height))
#            Iy_warped = cv2.warpAffine(Iy_patch,W_p,(win_width, win_height))
#            # evaluate Jacobian of the warp
#            x_coord = x.flatten()
#            x_coord = np.array([x_coord])
#            x_coord = x_coord.T
#            y_coord = y.flatten()
#            y_coord = np.array([y_coord])
#            y_coord = y_coord.T
#            Jacobian_x = np.hstack(([x_coord, np.zeros((np.shape(x_coord))), y_coord, np.zeros((np.shape(x_coord))), np.ones((np.shape(x_coord))), np.zeros((np.shape(x_coord)))]))
#            Jacobian_y = np.hstack(([np.zeros((np.shape(x_coord))), x_coord, np.zeros((np.shape(x_coord))), y_coord, np.zeros((np.shape(x_coord))), np.ones((np.shape(x_coord)))]))
#            # compute steepest descent
#            I_steepest = np.zeros((im1_patch.size, 6))
#            Ix_warped = Ix_warped.flatten()
#            Iy_warped = Iy_warped.flatten()
#            for j in range(0, x.size):
#                Jacobian = np.vstack((Jacobian_x[j,:], Jacobian_y[j,:]))
#                grad = np.hstack((Ix_warped[j], Iy_warped[j]))
#                I_steepest[j,range(0,6)] = grad.dot(Jacobian)
#            # compute Hessian
#            H = np.zeros((6,6))
#            for j in range(0, x.size):
#                H = H + I_steepest[j][:].flatten().dot(I_steepest[j][:])
#            # multipy steepest descend with error
#            final = np.zeros((6,1))
#            img_err = img_err.flatten()
#            for j in range(0, x.size):
#                I_steep = I_steepest[j][:]
#                I_steep = np.array([I_steep])
#                I_steep = I_steep.T
#                final = final + I_steep.dot(img_err[j])
#            # compute delta_p
#            delta_p = np.linalg.lstsq(H, final)[0]
#            # update p
#            p = p + delta_p.flatten()
#
#        newX = p[5]
#        newY = p[4]

# else:
#     newX = [];
#     newY = [];

    return newX, newY
コード例 #4
0
def faceTracking(rawVideo):
    #TODO: Your code here

    ind = 0
    trackedVideo = []
    nFrames = len(rawVideo)

    # detect faces
    bbox = detectFace(rawVideo[0])

    # detect features
    gray_im = rgb2gray(rawVideo[0])
    x, y = getFeatures(gray_im, bbox)

    for f in range(0, x.shape[1]):
        x[:, f] = x[:, f] + bbox[f][0][1]  # row coords
        y[:, f] = y[:, f] + bbox[f][0][0]  # col coords

    for i in range(0, nFrames - 1):

        if x.shape[0] < 15:
            # detect faces
            bbox = detectFace(rawVideo[0])

            # detect features
            gray_im = rgb2gray(rawVideo[0])
            x, y = getFeatures(gray_im, bbox)

            for f in range(0, x.shape[1]):
                x[:, f] = x[:, f] + bbox[f][0][1]  # row coords
                y[:, f] = y[:, f] + bbox[f][0][0]  # col coords

        # get frames
        img1 = rawVideo[ind]
        img2 = rawVideo[ind + 1]

        # track features from first frame to second using KLT procedure

        newX, newY = estimateAllTranslation(x, y, img1, img2)

        # apply resulting transformation
        newXs, newYs, bbox = applyGeometricTransformation(
            x, y, newX, newY, bbox)
        # apply tracked features and bounding box to frames, update output array
        for f in range(0, newXs.shape[1]):
            im = cv2.rectangle(img2, (int(bbox[f][0][0]), int(bbox[f][0][1])),
                               (int(bbox[f][2][0]), int(bbox[f][2][1])),
                               (0, 0, 0), 3)
            for j in range(0, len(newXs)):
                im = cv2.circle(im, (int(newYs[j][f]), int(newXs[j][f])), 1,
                                (0, 0, 255), 2)

        trackedVideo.append(im)

        ind = ind + 1

        x = newXs
        y = newYs

    trackedVideo = np.array(trackedVideo)

    return trackedVideo
コード例 #5
0
# handle any extra rows by assigning it to last worker
if image_x % (size - 1) != 0 and rank == (size - 1):
    image_y = image_x // (size - 1) + image_x % (size - 1)
else:
    image_y = image_x // (size - 1)
    image_y_bottom = image_x // (size - 1) + image_x % (size - 1)

################################################################################################
######## Split Up and Send Out Initial Data : Begin ########

# master sends out partitions of data, slaves receive the data
if rank == 0:
    # read in image, strip rgb values, convert to numpy array
    img = plt.imread("test_image3.jpeg")
    gray = rgb2gray(img)
    clean_image = np.matrix.round(gray).astype(int)
    for i in range(1, size):
        # if last worker, handle extra rows
        if i == (size - 1):
            data_send = clean_image[image_y * (i - 1):, :image_x]
        else:
            data_send = clean_image[image_y * (i - 1):image_y * (i), :image_x]
        comm.Send(data_send, dest=i)
        print("Master: Image partition sent to slave %d." % i)
        sys.stdout.flush()
else:
    #allocate space for incoming data
    data_recv = np.empty((image_y, image_x), dtype='int')
    comm.Recv(data_recv, source=0)
    print("Slave %d: Image partition received from master." % rank)
コード例 #6
0
from getFeatures import getFeatures
from estimateAllTranslation import estimateAllTranslation
from applyGeometricTransformation import applyGeometricTransformation
from helper import rgb2gray
import numpy as np
import cv2

ind = 0
trackedVideo = []
nFrames = len(rawVideo)

# detect faces
bbox = detectFace(rawVideo[0])

# detect features
gray_im = rgb2gray(rawVideo[0])
x, y = getFeatures(gray_im, bbox)

for f in range(0, x.shape[1]):
    x[:, f] = x[:, f] + bbox[f][0][1]  # row coords
    y[:, f] = y[:, f] + bbox[f][0][0]  # col coords

# detect faces
bbox = detectFace(rawVideo[0])

# detect features
gray_im = rgb2gray(rawVideo[0])
x, y = getFeatures(gray_im, bbox)

for f in range(0, x.shape[1]):
    x[:, f] = x[:, f] + bbox[f][0][1]  # row coords
コード例 #7
0
        break

    # Find face
    dets = detector(frame, 0)

    # For each face
    for i, d in enumerate(dets):

        # Crop the image to the face
        crop = frame[d.top():d.bottom(), d.left():d.right()]

        # Resize for CNN
        newimg = cv2.resize(crop, (64, 64))

        # Turn to grayscale
        gray = rgb2gray(np.array(newimg))

        # Reshape for CNN input
        reshape = np.reshape(gray, (1, 64, 64, 1))

        # Predict output and print informative prompt
        prediction = new_model.predict(reshape)

        if prediction[0][1] > 0.85:
            print("Smiling")
        elif prediction[0][0] > 0.85:
            print("Not smiling")
        else:
            print("Unsure")

        # Show image
コード例 #8
0
Created on Tue Nov 21 13:57:25 2017

@author: rajivpatel-oconnor
"""

from detectFace import detectFace
from getFeatures import getFeatures
from estimateAllTranslation import estimateAllTranslation
from applyGeometricTransformation import applyGeometricTransformation
from helper import rgb2gray, overlay_points
import matplotlib.pyplot as plt
import cv2

#create all the images
color_img1 = plt.imread('./data/easy/TheMartian0.jpg')
img1 = rgb2gray(color_img1)

color_img2 = plt.imread('./data/easy/TheMartian130.jpg')
img2 = rgb2gray(color_img2)

#find the bounding boxes
bbox = detectFace(color_img1)

#find the positions of all the features
startXs, startYs = getFeatures(img1, bbox)
#overlay_points(img1, startXs, startYs, 'postGetFeatures_TheMartian1')

#draw the bounding boxes
first = bbox[0,0,:]
second = bbox[0,3,:]
cv2.rectangle(img1,(first[0],first[1]), (second[0],second[1]),color=(0,255,0))
コード例 #9
0
def estimateFeatureTranslation_new(startX, startY, Ix, Iy, img1, img2):
  #TODO: Your code here

    if np.ndim(img1) == 3:
        img1 = rgb2gray(img1)
    if np.ndim(img2) == 3:
        img2 = rgb2gray(img2)

    win_width   = 10
    win_height  = 10
    nr = win_height/2
    nc = win_width/2

    im1_patch = getPatch(img1, startY, startX, win_width, win_height);

    newX = []
    newY = []
    sXtemp = startX
    sYtemp = startY
    x, y = np.meshgrid(range(0,np.shape(im1_patch)[0]),range(0,np.shape(im1_patch)[1]))
    patch_center = np.hstack((np.shape(im1_patch)[0]/2,np.shape(im1_patch)[1]/2))
    x = x-patch_center[0]
    y = y-patch_center[1]
    x = x+startX
    y = y+startY

    im2_patch = getPatch(img2, startY, startX, win_width, win_height);
    Ix_patch = getPatch(Ix, startY, startX, win_width, win_height);
    Iy_patch = getPatch(Iy, startY, startX, win_width, win_height);

    # W1 = scipy.interpolate.interp2d(img1, x, y, kind='linear') 
    # W2 = scipy.interpolate.interp2d(im2_patch, x, y, kind='linear') 
    # dx1 = scipy.interpolate.interp2d(Ix_patch, x, y, kind='linear') 
    # dy1 = scipy.interpolate.interp2d(Iy_patch, x, y, kind='linear') 
    W1 = im1_patch
    W2 = im2_patch
    dx1 = Ix_patch
    dy1 = Iy_patch

    It = W2-W1
    I1x = dx1**2
    I1y = dy1**2
    I1xy = dx1*dy1
    SigX1 = np.sum(I1x)
    SigY1 = np.sum(I1y)
    SigXY1 = np.sum(I1xy)
    SigXIT = np.sum(dx1*It)
    SigYIT = np.sum(dy1*It)

    M = np.vstack(((SigX1, SigXY1),(SigXY1, SigY1)))
    if np.linalg.cond(M) < 1/sys.float_info.epsilon: # if M is not singular
        
        a = np.array([[SigX1,SigXY1],[SigXY1,SigY1]])
        b = -np.array([[SigXIT],[SigYIT]])
        UVMat = np.linalg.solve(a,b)
        u = UVMat.item(0)
        v = UVMat.item(1)

        old_xrange = x
        old_yrange = y
        new_xrange = x
        new_yrange = y
        oldscore = np.sum((W2-W1)**2)
        stopscore = 9999
        count = 1
        xtemp = 0
        ytemp = 0

        startX = []
        startY = []
        while stopscore > .1 and count < 40  :
            #recompute window, matrix, u,v
            startX = new_xrange[0,x.shape[0]/2]
            startY = new_yrange[x.shape[1]/2,0]
            Wprime = getPatch(img2, startY, startX, win_width, win_height);
            if (Wprime.shape!=W1.shape):
                break
            It = Wprime-W1
            SigXIT = np.sum(dx1*It)
            SigYIT = np.sum(dy1*It)
            M = np.vstack(((SigX1, SigXY1),(SigXY1, SigY1)))
            a = np.array([[SigX1,SigXY1],[SigXY1,SigY1]])
            b = -np.array([[SigXIT],[SigYIT]])
            UVMat = np.linalg.solve(a,b)
            u = UVMat.item(0)
            v = UVMat.item(1)
            new_xrange_t = old_xrange + u
            new_yrange_t = old_yrange + v
            newscore = np.sum((W2-Wprime)**2)
            #in case loop goes past optimal (which is not w/in range of
            #stopping condition)
            if (oldscore < newscore):
                break
            stopscore = np.absolute(oldscore-newscore)
            oldscore = newscore
            old_xrange = new_xrange
            old_yrange = new_yrange
            new_xrange = new_xrange_t
            new_yrange = new_yrange_t
            #keep track of path
            xtemp = xtemp + u
            ytemp = ytemp + v
            count = count+1

        if np.any(np.absolute(xtemp)<win_width) and np.any(np.absolute(ytemp)<win_width) :
            newX = sXtemp + xtemp
            newY = sYtemp + ytemp
        else:
            newX = sXtemp
            newY = sYtemp
    else:
        newX = sXtemp
        newY = sYtemp

    return newX, newY
コード例 #10
0
def adaptive_hist_eq_cuda(img, slider_len):
    """ Apply sliding window adaptive histogram equalization to an image
    for improved local contrast. """
    
    # make a copy of original to replace pixels
    final_img = pycuda.driver.mem_alloc(img.nbytes)
    n = len(img)
    m = len(img[0])

    gap = int(slider_len[0]// 2)  # left and right shifts

    for i in range(gap):
        for j in range(gap, m-gap):
            center_pixel_val = np.int32(img[i, j])
            img_subset = copy(img[:i+gap,j-gap:j+gap])
            n_temp = np.int32(len(img_subset))
            m_temp = np.int32(len(img_subset[0]))
            img_temp = pycuda.driver.mem_alloc(img_subset.nbytes)
            pycuda.driver.memcpy_htod(img_temp, img_subset)
            window_hist(img_temp, n_temp, m_temp, center_pixel_val, np.int32(0), np.int32(0), final_img, np.int32(i), np.int32(j), block=(32,32,1), grid=(2,2))
            
    for i in range(n-gap, n):
        for j in range(gap, m-gap):
            center_pixel_val = img[i, j]
            window_hist(img[i-gap:n,j-gap:j+gap], center_pixel_val, None, final_img, [i,j])
            
    for i in range(gap, n-gap):
        for j in range(gap):
            center_pixel_val = img[i, j]
            window_hist(img[i-gap:i+gap,:j+gap], center_pixel_val, None, final_img, (i,j))
            
    for i in range(gap, n-gap):
        for j in range(m-gap, m):
            center_pixel_val = img[i, j]
            window_hist(img[i-gap:i+gap,j-gap:m], center_pixel_val, None, final_img, (i,j))
            
    for i in range(gap):
        for j in range(gap):
            center_pixel_val = img[i, j]
            window_hist(img[:i+gap,:j+gap], center_pixel_val, None, final_img, (i,j))
    
    for i in range(n-gap, n):
        for j in range(m-gap, m):
            center_pixel_val = img[i, j]
            window_hist(img[i-gap:,j-gap:], center_pixel_val, None, final_img, (i,j))
            
    for i in range(n-gap, n):
        for j in range(gap):
            center_pixel_val = img[i, j]
            window_hist(img[i-gap:,:j+gap], center_pixel_val, None, final_img, (i,j))
            
    for i in range(gap):
        for j in range(m-gap, m):
            center_pixel_val = img[i, j]
            window_hist(img[:i+gap,j-gap:], center_pixel_val, None, final_img, (i,j))
    
    # for each pixel in the center of the image, apply adaptive histogram equalization
    for i in range(gap, n - gap):
        for j in range(gap, m - gap):
            center_pixel_val = img[i, j]
            window_hist(img[i-gap:i+gap, j-gap:j+gap], center_pixel_val, slider_len, final_img, (i,j))

    return final_img.astype(int)


    if __name__ == "__main__":

    	source_module = pycuda.compiler.SourceModule \
		(
		"""
		__global__ void window_hist( 
		    unsigned int* img , int n , 
		    int m , int center_pixel_val , 
		    int slider_X, int slider_Y ,
		    unsigned int* final_img , 
		    int index_X, 
		    int index_Y)
		{


		    int pixel_freq[255];
		    int pdf[255];
		    int cdf[255];

		    int pixel_count;

		    if(slider_X != 0 && slider_Y){
		        pixel_count = slider_X * slider_Y;
		    }
		    else{
		        pixel_count = n * m;
		        slider_X = n;
		        slider_Y = m;
		    }
		    for(int i =0; i<slider_X; i++){
		        for(int j = 0; i<slider_Y; j++){
		            pixel_freq[ img[i,j] ]++;
		        }
		    }

		    for(int k = 0; k<255; k++){
		        pdf[ k ] = pixel_freq[k] / pixel_count;
		    }

		    int prev = 0;
		    for(int l = 0; l<255 ; l++){
		        cdf[l] = prev + pdf[l];
		        prev = cdf[l];
		        int temp = (cdf[l] * 250);
		        //int temp1 = (int)(( temp - floor(temp) > 0.5 ) ? ceil(temp) : floor(temp));
		        cdf[l] = temp;

		        if( l == center_pixel_val){
		            break;
		        }
		            

		    final_img[index_X*n + index_Y] = cdf[center_pixel_val];
		    }
		}
		"""
		)

		img = plt.imread("test_image3.jpeg")
		gray = rgb2gray(img)
		clean_image = np.matrix.round(gray).astype(np.int32)
		plt.figure(figsize=(13,7))

		window_hist = source_module.get_function("window_hist")

		final_img = adaptive_hist_eq_cuda(clean_image, (1, 1))