コード例 #1
0
    xdim    = image.shape[1] - wSize + 1
    output  = []
    xran    = np.linspace(0,xdim,(xdim/stride))
    yran    = np.linspace(0,ydim,(ydim/stride))
    
    for y in yran:
        for x in xran:
            output.append(canvas[y:y+wSize,x:x+wSize])
    
    return np.reshape(np.array(output),(len(output),1,wSize,wSize))


#Process the arguments given (see helperFuncs.py for details)
size, indir, binarize, blur, padding, targetType = helperFuncs.dataProcessorArgs(sys.argv[1:])
targets, labels     = helperFuncs.getTargets(targetType)
outsize             = helperFuncs.getOutSize(targets)


#wait until the folder exists
while not isdir(indir+"tempTrain/"):
    time.sleep(10.)
    print "I'm sleeping", isdir(indir), indir, "                     \r",

if not isdir(indir+"tempTrainNP/"):
    mkdir(indir+"tempTrainNP/")
    mkdir(indir+"tempTestNP/")
    
#define folders
trainFolder     = indir+"tempTrain/"
trainNPfolder   = indir+"tempTrainNP/"
testFolder      = indir+"tempTest/"
コード例 #2
0
#    stop = raw_input("Loading from folder "+folder+" : Hit enter to proceed or ctrl+C to cancel")
#else:
#    print "Initializing in folder "+folder
"""Load the train/test split information if update, else split and write out which images are in which dataset"""
trainFs, testFs = helperFuncs.getTrainTestSplit(False, folder, numEx,
                                                trainTestSplit, ld)
trainL = len(trainFs)
testL = len(testFs)

print "number of examples: ", numEx
print "training examples : ", trainL
print "test examples : ", testL

features, labels = helperFuncs.getTargets(
    "justbonds")  #get the target vector for each CID
outsize = helperFuncs.getOutSize(features)
"""DEFINE THE MODEL HERE"""

model = Sequential()

model.add(Convolution2D(8, 8, 8, input_shape=(1, size, size)))
model.add(Activation('relu'))

model.add(Convolution2D(8, 5, 5))
model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(3, 3)))
model.add(Dropout(0.25))

model.add(Convolution2D(8, 5, 5))
model.add(Activation('relu'))