def main(): # Get input arguments wddOutputRoot = sys.argv[1] inputModelFile = sys.argv[2] resultFolder = sys.argv[3] print('Folder with unfiltered dances is "', wddOutputRoot) print('Input model file is "', inputModelFile) kM = kerasModel.KerasModel() model = kM.getModel() model.load_weights(inputModelFile) # Init Confusion Matrix CM = np.zeros((2,2)) progress = 0 # Traverse folder structure and build matrix for every single dance so that CNN can test it # Set the directory you want to start from rootDir = wddOutputRoot for dirName, subdirList, fileList in os.walk(rootDir): print(dirName) if 'orient.png' in fileList: image_list = [] for fname in glob.glob(dirName + '/image*.png'): if fname != 'orient.png': im = scipy.misc.imread(fname)[:, :, 1] image_list.append(im) image_array = np.asarray(image_list) pred = classify_dance(image_array, model, kM.get_image_count()) CM = update_confusion_matrix(pred, CM, dirName, resultFolder) progress += 1 print(progress) print(CM)
def main(): validationFolder = sys.argv[1] inputModelFile = sys.argv[2] outputFolder = sys.argv[3] print('Validation folder is "', validationFolder) print('Input model file is "', inputModelFile) print('Output folder is "', outputFolder) kM = kerasModel.KerasModel() model = kM.getModel() model.load_weights(inputModelFile) # Init Confusion Matrix CM = np.zeros((2, 2)) progress = 0 # traverse folder structure and build matrix for every single dance so that CNN can test it # Set the directory you want to start from rootDir = validationFolder for dirName, subdirList, fileList in os.walk(rootDir): print("Found directory: %s" % dirName) if "gt.csv" in fileList: with open(dirName + "/gt.csv", "rt") as csvfile: spamReader = csv.reader(csvfile, delimiter=" ", quotechar="|") Y = 0 for row in spamReader: Y = row[0] if Y == "j": Y = 1 elif Y == "n": Y = 0 else: Y = -1 continue image_list = [] for fname in glob.glob(dirName + "/image*.png"): im = scipy.misc.imread(fname)[:, :, 1] image_list.append(im) image_array = np.asarray(image_list) pred = classify_dance(image_array, model, kM.get_image_count()) CM = update_confusion_matrix(pred, CM, Y, dirName, outputFolder) progress += 1 print(progress) print(CM)
def main(): # Get input arguments validationFolderRoot = sys.argv[1] inputModelFile = sys.argv[2] print('Validation folder root is "', validationFolderRoot) print('Input model file is "', inputModelFile) kM = kerasModel.KerasModel() model = kM.getModel() model.load_weights(inputModelFile) # Init Confusion Matrix CM = np.zeros((2,2)) progress = 0 # Traverse folder structure and build matrix for every single dance so that CNN can test it # Set the directory you want to start from rootDir = validationFolderRoot for dirName, subdirList, fileList in os.walk(rootDir): print('Found directory: %s' % dirName) if 'gt.csv' in fileList: with open(dirName+'/gt.csv', 'rt') as csvfile: spamReader = csv.reader(csvfile, delimiter=' ', quotechar='|') Y = 0 for row in spamReader: Y = row[0] if Y == 'j': Y = 1 elif Y == 'n': Y = 0 else: Y = -1 continue image_list = [] for fname in glob.glob(dirName + '/image*.png'): im = scipy.misc.imread(fname)[:, :, 1] image_list.append(im) image_array = np.asarray(image_list) pred = classify_dance(image_array, model, kM.get_image_count()) CM = update_confusion_matrix(pred, CM, Y) progress += 1; print(progress) print(CM)