コード例 #1
0
ファイル: data_stream.py プロジェクト: solmur/PyStack
	def __init__(self):
		''' Reads the data from training and validation files generated with
			@{data_generation_call.generate_data}.
		'''
		# loadind valid data
		self.data = Data()
		valid_prefix = arguments.data_path + 'valid'
		self.data.valid_mask= np.load(valid_prefix + '.mask')
		self.data.valid_mask= self.data.valid_mask:repeatTensor(1,2)
		self.data.valid_targets = np.load(valid_prefix + '.targets')
		self.data.valid_inputs = np.load(valid_prefix + '.inputs')
		self.valid_data_count = self.data.valid_inputs.shape[0]
		assert(self.valid_data_count >= arguments.train_batch_size, 'Validation data count has to be greater than a train batch size!')
		self.valid_batch_count = self.valid_data_count / arguments.train_batch_size
		# loading train data
		train_prefix = arguments.data_path + 'train'
		self.data.train_mask = np.load(train_prefix + '.mask')
		self.data.train_mask = self.data.train_mask:repeatTensor(1,2)
		self.data.train_inputs = np.load(train_prefix + '.inputs')
		self.data.train_targets = np.load(train_prefix + '.targets')
		self.train_data_count = self.data.train_inputs.shape[0]
		assert(self.train_data_count >= arguments.train_batch_size, 'Training data count has to be greater than a train batch size!')
		self.train_batch_count = self.train_data_count / arguments.train_batch_size
コード例 #2
0
from collections import defaultdict
import numpy as np
import torch
from models import ConEx, ConExWithNorm
from helper_classes import Data

kg_path = 'KGs/WN18RR'
data_dir = "%s/" % kg_path
model_path = 'PretrainedModels/WN18RR/conex_WN18RR.pt'

d = Data(data_dir=data_dir, reverse=False)


class Reproduce:
    def __init__(self):
        self.cuda = False

        self.batch_size = 128

    def get_data_idxs(self, data):
        data_idxs = [
            (self.entity_idxs[data[i][0]], self.relation_idxs[data[i][1]],
             self.entity_idxs[data[i][2]]) for i in range(len(data))
        ]
        return data_idxs

    def get_er_vocab(self, data):
        er_vocab = defaultdict(list)
        for triple in data:
            er_vocab[(triple[0], triple[1])].append(triple[2])
        return er_vocab
コード例 #3
0
from collections import defaultdict
import numpy as np
import torch
from models import ConEx, ConExWithNorm
from helper_classes import Data

kg_path = 'KGs/UMLS'
data_dir = "%s/" % kg_path
model_path = 'PretrainedModels/UMLS/conex_umls.pt'

d = Data(data_dir=data_dir, reverse=True)


class Reproduce:
    def __init__(self):
        self.cuda = False

        self.batch_size = 128

    def get_data_idxs(self, data):
        data_idxs = [
            (self.entity_idxs[data[i][0]], self.relation_idxs[data[i][1]],
             self.entity_idxs[data[i][2]]) for i in range(len(data))
        ]
        return data_idxs

    def get_er_vocab(self, data):
        er_vocab = defaultdict(list)
        for triple in data:
            er_vocab[(triple[0], triple[1])].append(triple[2])
        return er_vocab