コード例 #1
0
def getExtraOrdCornerIndexMask(quad_list, AVertexList, B1VertexList,
                               B2VertexList, CVertexList,
                               quad_control_point_indices, quad_index,
                               whichCorner):
    # TODO: Understand and change code
    mod_index = lambda i, modul: (i) % modul
    shifted_indices = lambda ind, modul: mod_index(
        np.array(range(modul)) + ind, modul)
    reverse_shifted_indices = lambda ind, modul: mod_index(
        np.arange(modul, 0, -1) + ind, modul)

    cornerVertexIndex = quad_list[quad_index, whichCorner]

    numberOfEdges = get_num_edges_meeting(
        AVertexList, cornerVertexIndex
    )  # todo Juan Carlos: with the objects this is very nice.
    quadLocalIndex = np.where(AVertexList[cornerVertexIndex, :,
                                          1] == quad_index)
    if checkB1B2Reversal_opt(B1VertexList, quad_list, quad_index,
                             cornerVertexIndex, quad_control_point_indices):
        if checkB1B2OrientationReversal(B2VertexList, B1VertexList, quad_list,
                                        quad_index, cornerVertexIndex):
            aroundcorner_indices = reverse_shifted_indices(
                quadLocalIndex, numberOfEdges)
        else:
            aroundcorner_indices = shifted_indices(quadLocalIndex,
                                                   numberOfEdges)

        B1Indices = B2VertexList[cornerVertexIndex, aroundcorner_indices, 0]
        B2Indices = B1VertexList[cornerVertexIndex, aroundcorner_indices, 0]

    else:
        if checkB1B2OrientationReversal(B1VertexList, B2VertexList, quad_list,
                                        quad_index, cornerVertexIndex):
            aroundcorner_indices = reverse_shifted_indices(
                quadLocalIndex, numberOfEdges)
        else:
            aroundcorner_indices = shifted_indices(quadLocalIndex,
                                                   numberOfEdges)

        B1Indices = B1VertexList[cornerVertexIndex, aroundcorner_indices, 0]
        B2Indices = B2VertexList[cornerVertexIndex, aroundcorner_indices, 0]

    AIndices = AVertexList[cornerVertexIndex, aroundcorner_indices, 0]
    CIndices = CVertexList[cornerVertexIndex, aroundcorner_indices, 0]

    indexMask = np.array([
        AIndices[:].reshape([1, numberOfEdges]), B1Indices[:].reshape(
            [1, numberOfEdges]), B2Indices[:].reshape([1, numberOfEdges]),
        CIndices[:].reshape([1, numberOfEdges])
    ],
                         dtype=int)

    return np.squeeze(indexMask)
コード例 #2
0
def getExtraOrdCornerIndexMask(quad_list,AVertexList,B1VertexList,B2VertexList,CVertexList,quad_control_point_indices,quad_index,whichCorner):
    # TODO: Understand and change code
    mod_index = lambda i, modul: (i)%modul
    shifted_indices = lambda ind, modul: mod_index(np.array(range(modul)) + ind,modul)
    reverse_shifted_indices = lambda ind, modul: mod_index(np.arange(modul,0,-1) + ind,modul)

    cornerVertexIndex = quad_list[quad_index,whichCorner]

    numberOfEdges = get_num_edges_meeting(AVertexList, cornerVertexIndex) # todo Juan Carlos: with the objects this is very nice.
    quadLocalIndex = np.where(AVertexList[cornerVertexIndex,:,1] == quad_index)
    if checkB1B2Reversal_opt(B1VertexList,quad_list,quad_index,cornerVertexIndex,quad_control_point_indices):
        if checkB1B2OrientationReversal(B2VertexList,B1VertexList,quad_list,quad_index,cornerVertexIndex):
            aroundcorner_indices = reverse_shifted_indices(quadLocalIndex,numberOfEdges)
        else:
            aroundcorner_indices = shifted_indices(quadLocalIndex,numberOfEdges)

        B1Indices = B2VertexList[cornerVertexIndex,aroundcorner_indices,0]
        B2Indices = B1VertexList[cornerVertexIndex,aroundcorner_indices,0]

    else:
        if checkB1B2OrientationReversal(B1VertexList,B2VertexList,quad_list,quad_index,cornerVertexIndex):
            aroundcorner_indices = reverse_shifted_indices(quadLocalIndex,numberOfEdges)
        else:
            aroundcorner_indices = shifted_indices(quadLocalIndex,numberOfEdges)

        B1Indices = B1VertexList[cornerVertexIndex,aroundcorner_indices,0]
        B2Indices = B2VertexList[cornerVertexIndex,aroundcorner_indices,0]

    AIndices = AVertexList[cornerVertexIndex,aroundcorner_indices,0]
    CIndices = CVertexList[cornerVertexIndex,aroundcorner_indices,0]

    indexMask = np.array([AIndices[:].reshape([1, numberOfEdges]),
                          B1Indices[:].reshape([1, numberOfEdges]),
                          B2Indices[:].reshape([1, numberOfEdges]),
                          CIndices[:].reshape([1, numberOfEdges])], dtype=int)

    return np.squeeze(indexMask)
コード例 #3
0
def checkB1B2OrientationReversal(B1,B2,quad_list,quad_index,vertex_index):
    """
    check if the B1 in the quad to the right lies along the same edge as the
    B2 in the current quad.

    :param B1:
    :param B2:
    :param quad_list:
    :param quad_index:
    :param vertex_index:
    :return: a Bool?
    """
    vertex_index = int(vertex_index)

    numberOfEdges = get_num_edges_meeting(B1, vertex_index)

    quadNumberLocal = np.where(B1[vertex_index,:,1] == quad_index)[0][0]

    B1EdgeFromB1 = np.reshape(B1[vertex_index,quadNumberLocal,2:4],2)
    shouldBeSameAsB1Edge = np.reshape(B2[vertex_index,(quadNumberLocal - 1)%numberOfEdges,2:4], 2)
    isB1IfReversed = np.reshape(B2[vertex_index,(quadNumberLocal + 1)%numberOfEdges,2:4],2)
    B2EdgeFromB2 = np.reshape(B2[vertex_index,quadNumberLocal,2:4],2)
    shouldBeSameAsB2Edge = np.reshape(B1[vertex_index,(quadNumberLocal + 1)%numberOfEdges,2:4],2)
    isB2IfReversed = np.reshape(B1[vertex_index,(quadNumberLocal - 1)%numberOfEdges,2:4],2)

    thisQuad_cornerVertices = quad_list[quad_index,:]
    whichQuadCorner = np.where(thisQuad_cornerVertices == vertex_index)[0][0]

    """
    in peter's scheme, and therefore in the parameters, B1 is the left one if
    looking into the quad corner. Since the quad corners go clockwise, that
    means the relevant quad corner and the one after should be
    """
    shouldBeB1Edge = thisQuad_cornerVertices[[whichQuadCorner,(whichQuadCorner+1)%4]]
    shouldBeB2Edge = thisQuad_cornerVertices[[whichQuadCorner, (whichQuadCorner-1)%4]]

    if len(np.intersect1d(B1EdgeFromB1,shouldBeB1Edge)) == 2 and \
        len(np.intersect1d(B2EdgeFromB2,shouldBeB2Edge)) == 2:

        if len(np.intersect1d(B1EdgeFromB1,shouldBeSameAsB1Edge)) == 2 and \
                   len(np.intersect1d(B2EdgeFromB2,shouldBeSameAsB2Edge)) == 2:
            isNotCounterClockwise = False
        elif len(np.intersect1d(B1EdgeFromB1,isB1IfReversed)) == 2 and \
                len(np.intersect1d(B2EdgeFromB2,isB2IfReversed)) == 2:
            isNotCounterClockwise = True
        else:
            raise Exception('something is seriously wrong because the edges don`t add upp. '
                            'in checkB1B2OrientationReversal')

    elif len(np.intersect1d(B1EdgeFromB1,shouldBeB2Edge)) == 2:
        raise Exception('I didn`t write this function and the other one for you to be lazy '
                        'and not use the other to check for reversed b1b2')
    else:
        print 'quad_index: '
        print quad_index
        print 'vertex_index'
        print vertex_index
        raise Exception('ERROR! Something wrong with the edges around the quads! '
                        'Function checkB1B2OrientationReversal')

    return isNotCounterClockwise
コード例 #4
0
def createGlobalControlMeshCoefs(parameterCoordinates, quad_list, AVertexList, B1VertexList, B2VertexList, CVertexList,
                                     quad_control_point_indices):
    '''
    Takes, for N datapoints, an array parameterCoordinates[Nx3](for every
    datapoint: first entry the quad index, second and third parameters
    on a patch that spans over [0,1]x[0,1]
    for the quad. The function computes the coefficient matrix for between
    each datapoint and the array of M/16 quads x [4x4] vertex control points,
    outputting the coefficients as an N x M scipy.sparse COO-type sparse matrix

    @param parameterCoordinates: Nx3 numpy.ndarray of datapoint parameters
    @param quad_list:
    @param AVertexList:
    @param B1VertexList:
    @param B2VertexList:
    @param CVertexList:
    @param quad_control_point_indices: (M/16)x16 numpy.ndarray of control points on each quad
    @return: NxM scipy.sparse COO-type sparse matrix of coefficients, maximum 22 nonzero entries per row
    '''


    N = parameterCoordinates.shape[0]
    M = quad_control_point_indices.shape[0] * quad_control_point_indices.shape[1]
    max_size = N*28 #4 types of vertices times maximum 7 quads around an extraordinary vertex (large estimate)
    rows = np.zeros(max_size, dtype=int)
    cols = np.zeros(max_size, dtype=int)
    data = np.zeros(max_size)

    """
    Precalculate the coefficients between all the vertex control points and
    the bezier control points for 7 different number of intersecting
    edges as a start

    (number of incoming edges(between 3 an 7 hardcoded), [A,B1,B2,C], [in which quad 1-7], bezier point
    first coord, bezier point second coord)
    """

    ACoefsRaw = np.zeros((7,7,4,4))
    B1CoefsRaw = np.zeros((7,7,4,4))
    B2CoefsRaw = np.zeros((7,7,4,4))
    CCoefsRaw  = np.zeros((7,7,4,4))

    for num_quads in range(3,8):
        [ACoefsRaw[num_quads-1, 0:num_quads, :, :],
         B1CoefsRaw[num_quads-1, 0:num_quads, :, :],
         B2CoefsRaw[num_quads-1, 0:num_quads, :, :],
         CCoefsRaw[num_quads-1, 0:num_quads, :, :]] = createBicubicCoefMatrices(num_quads) # compared to matlab by Saumi & Benni -> VALID

    coefsRawTemp = np.zeros((4,7,4,4))

    indexCounter = 0

    print "Main Loop Coefs"
    for p in range(N):
        if p%100 == 0:
            print "processing point %d of %d..." % (p, N)
        #check if on a corner patch : if both coords are outside [0.25,0.75]
        quadParameters = parameterCoordinates[p, 1:3]
        quad_index = int(parameterCoordinates[p, 0])
        [localCoords, whichCorner, whichPatch] = createLocalParamsExtraordinary(global_quad_params=quadParameters)
        #print "p=%d"%p # todo for p=1 get3x3... fails! -> Resolved(?).
        #print "whichPatch="+str(whichPatch)
        # if there is a specified corner set
        if whichCorner != -1:

            cornerVertexIndex = quad_list[quad_index, whichCorner]

            numberOfEdges = get_num_edges_meeting(AVertexList, cornerVertexIndex)
            #TODO: Check output PROBLEM!
            indexMask = getExtraOrdCornerIndexMask(quad_list, AVertexList, B1VertexList, B2VertexList, CVertexList,
                                                   quad_control_point_indices, quad_index, whichCorner)

            coefsRawTemp[0, 0:numberOfEdges, :, :] = ACoefsRaw[numberOfEdges-1, 0:numberOfEdges, :, :]
            coefsRawTemp[1, 0:numberOfEdges, :, :] = B1CoefsRaw[numberOfEdges-1, 0:numberOfEdges, :, :]
            coefsRawTemp[2, 0:numberOfEdges, :, :] = B2CoefsRaw[numberOfEdges-1, 0:numberOfEdges, :, :]
            coefsRawTemp[3, 0:numberOfEdges, :, :] = CCoefsRaw[numberOfEdges-1, 0:numberOfEdges, :, :]

            patchCoefsMatrix = getBicubicBezierPointCoefs(localCoords, coefsRawTemp[:, 0:numberOfEdges, :, :])

            numberOfEntries = numberOfEdges*4

            rows[indexCounter:(indexCounter + numberOfEntries)] = p
            cols[indexCounter:(indexCounter + numberOfEntries)] = indexMask.flatten()[:]
            data[indexCounter:(indexCounter + numberOfEntries)] = patchCoefsMatrix.flatten()[:]

            indexCounter += numberOfEntries


        else:
            neighbourMask = get3x3ControlPointIndexMask(quad_list=quad_list,
                                                        quad_control_point_indices=quad_control_point_indices,
                                                        quad_index=quad_index,
                                                        localIndexXY=whichPatch)
            neighbourCoefs = getBezierPointCoefs(localCoords)

            numberOfEntries = 9

            rows[indexCounter:(indexCounter + numberOfEntries)] = p
            cols[indexCounter:(indexCounter + numberOfEntries)] = neighbourMask.flatten()[:]
            data[indexCounter:(indexCounter + numberOfEntries)] = neighbourCoefs.flatten()[:]

            indexCounter += numberOfEntries

    print "Main Loop Coeffs Done."

    return ssp.coo_matrix((data, (rows, cols)), shape=(N, M))
コード例 #5
0
ファイル: sortAB1B2VIndices.py プロジェクト: FMenhorn/BGCEGit
def sortAB1B2VIndices(oldA,oldB1,oldB2,oldC):

    def mimic_matlab_row_intersect(M1, M2):
        M1_dict = {tuple(M1[i,:]):i for i in range(M1.shape[0])}
        M2_dict = {tuple(M2[i,:]):i for i in range(M2.shape[0])}

        keys = M1_dict.viewkeys() & M2_dict.viewkeys()
        MM = []
        for key in keys:
            MM.append(list(key))

        MM = np.array(MM)

        i = np.lexsort((MM[:,1],MM[:,0]))

        MM=MM[i]

        M1_ids = []
        M2_ids = []
        for key in MM:
            M1_ids.append(M1_dict[tuple(key)])
            M2_ids.append(M2_dict[tuple(key)])

        return MM, M1_ids, M2_ids

    assert type(oldA) is np.ndarray
    assert type(oldB1) is np.ndarray
    assert type(oldB2) is np.ndarray
    assert type(oldC) is np.ndarray

    newB1 = -1*np.ones(oldB1.shape)
    newB2 = -1*np.ones(oldB2.shape)
    newA = -1*np.ones(oldA.shape)
    newC = -1*np.ones(oldC.shape)

    for i in range(oldB2.shape[0]):
        m = get_num_edges_meeting(oldB2, i)
        indicesLocB1 = np.zeros(m,dtype=int)
        indicesLocB2 = np.zeros(m,dtype=int)
        indicesLocA = np.zeros(m,dtype=int)
        indicesLocC = np.zeros(m,dtype=int)

        BB1 = np.reshape(oldB1[i,0:m,2:4],[m,2])
        BB2 = np.reshape(oldB2[i,0:m,2:4],[m,2])
        idontcare,B1Indices,B2Indices = mimic_matlab_row_intersect(BB1,BB2) #todo hopefully this is right...


        nextIndex = 0
        for local_quad_index in range(m):
            current_quad = B2Indices[nextIndex]
            neighbour = B1Indices[nextIndex]
            neighbourQuad = oldB1[i,neighbour,1]
            neighbourAIndex = np.where(oldA[i,0:m,1] == neighbourQuad)[0][0]
            neighbourB2Index = np.where(oldB2[i,0:m,1] == neighbourQuad)[0][0]
            neighbourCIndex = np.where(oldC[i,0:m,1] == neighbourQuad)[0][0]
            nextIndex = np.where(B2Indices == neighbourB2Index)[0][0]
            indicesLocA[(local_quad_index+1)%m] = int(neighbourAIndex)
            indicesLocB1[(local_quad_index+1)%m] = int(neighbour)
            indicesLocC[(local_quad_index+1)%m]= int(neighbourCIndex)
            indicesLocB2[local_quad_index] = current_quad

        newA[i,0:m,:] = oldA[i,indicesLocA,:]
        newB1[i,0:m,:] = oldB1[i,indicesLocB1,:]
        newB2[i,0:m,:] = oldB2[i,indicesLocB2,:]
        newC[i,0:m,:] = oldC[i,indicesLocC,:]

    return newA,newB1,newB2,newC
コード例 #6
0
def sortAB1B2VIndices(oldA,oldB1,oldB2,oldC):

    def mimic_matlab_row_intersect(M1, M2):
        M1_dict = {tuple(M1[i,:]):i for i in range(M1.shape[0])}
        M2_dict = {tuple(M2[i,:]):i for i in range(M2.shape[0])}

        keys = M1_dict.viewkeys() & M2_dict.viewkeys()
        MM = []
        for key in keys:
            MM.append(list(key))

        MM = np.array(MM)

        i = np.lexsort((MM[:,1],MM[:,0]))

        MM=MM[i]

        M1_ids = []
        M2_ids = []
        for key in MM:
            M1_ids.append(M1_dict[tuple(key)])
            M2_ids.append(M2_dict[tuple(key)])

        return MM, M1_ids, M2_ids

    assert type(oldA) is np.ndarray
    assert type(oldB1) is np.ndarray
    assert type(oldB2) is np.ndarray
    assert type(oldC) is np.ndarray

    newB1 = -1*np.ones(oldB1.shape)
    newB2 = -1*np.ones(oldB2.shape)
    newA = -1*np.ones(oldA.shape)
    newC = -1*np.ones(oldC.shape)

    for i in range(oldB2.shape[0]):
        m = get_num_edges_meeting(oldB2, i)
        indicesLocB1 = np.zeros(m,dtype=int)
        indicesLocB2 = np.zeros(m,dtype=int)
        indicesLocA = np.zeros(m,dtype=int)
        indicesLocC = np.zeros(m,dtype=int)

        BB1 = np.reshape(oldB1[i,0:m,2:4],[m,2])
        BB2 = np.reshape(oldB2[i,0:m,2:4],[m,2])
        idontcare,B1Indices,B2Indices = mimic_matlab_row_intersect(BB1,BB2) #todo hopefully this is right...


        nextIndex = 0
        for local_quad_index in range(m):
            current_quad = B2Indices[nextIndex]
            neighbour = B1Indices[nextIndex]
            neighbourQuad = oldB1[i,neighbour,1]
            neighbourAIndex = np.where(oldA[i,0:m,1] == neighbourQuad)[0][0]
            neighbourB2Index = np.where(oldB2[i,0:m,1] == neighbourQuad)[0][0]
            neighbourCIndex = np.where(oldC[i,0:m,1] == neighbourQuad)[0][0]
            nextIndex = np.where(B2Indices == neighbourB2Index)[0][0]
            indicesLocA[(local_quad_index+1)%m] = int(neighbourAIndex)
            indicesLocB1[(local_quad_index+1)%m] = int(neighbour)
            indicesLocC[(local_quad_index+1)%m]= int(neighbourCIndex)
            indicesLocB2[local_quad_index] = current_quad

        newA[i,0:m,:] = oldA[i,indicesLocA,:]
        newB1[i,0:m,:] = oldB1[i,indicesLocB1,:]
        newB2[i,0:m,:] = oldB2[i,indicesLocB2,:]
        newC[i,0:m,:] = oldC[i,indicesLocC,:]

    return newA,newB1,newB2,newC
コード例 #7
0
def createGlobalControlMeshCoefs(parameterCoordinates, quad_list, AVertexList, B1VertexList, B2VertexList, CVertexList,
                                     quad_control_point_indices):
    """
    Takes, for N datapoints, an array parameterCoordinates[Nx3](for every
    datapoint: first entry the quad index, second and third parameterson a patch that spans over [0,1]x[0,1]
    for the quad. The function computes the coefficient matrix for between
    each datapoint and the array of M/16 quads x [4x4] vertex control points,
    outputting the coefficients as an N x M matrix.
    """

    N = parameterCoordinates.shape[0]
    M = quad_control_point_indices.shape[0] * quad_control_point_indices.shape[1]
    coefsMatrix = np.zeros((N,M))

    """
    Precalculate the coefficients between all the vertex control points and
    the bezier control points for 7 different number of intersecting
    edges as a start

    (number of incoming edges(between 3 an 7 hardcoded), [A,B1,B2,C], [in which quad 1-7], bezier point
    first coord, bezier point second coord)
    """

    ACoefsRaw = np.zeros((7,7,4,4))
    B1CoefsRaw = np.zeros((7,7,4,4))
    B2CoefsRaw = np.zeros((7,7,4,4))
    CCoefsRaw  = np.zeros((7,7,4,4))

    for num_quads in range(3,8):
        [ACoefsRaw[num_quads-1, 0:num_quads, :, :],
         B1CoefsRaw[num_quads-1, 0:num_quads, :, :],
         B2CoefsRaw[num_quads-1, 0:num_quads, :, :],
         CCoefsRaw[num_quads-1, 0:num_quads, :, :]] = createBicubicCoefMatrices(num_quads) # compared to matlab by Saumi & Benni -> VALID

    coefsRawTemp = np.zeros((4,7,4,4))

    print "Main Loop Coeffs"
    for p in range(N):
        if p%100 == 0:
            print "processing point %d of %d..." % (p, N)
        #check if on a corner patch : if both coords are outside [0.25,0.75]
        quadParameters = parameterCoordinates[p, 1:3]
        quad_index = int(parameterCoordinates[p, 0])
        [localCoords, whichCorner, whichPatch] = createLocalParamsExtraordinary(global_quad_params=quadParameters)
        #print "p=%d"%p # todo for p=1 get3x3... fails! -> Resolved(?).
        #print "whichPatch="+str(whichPatch)
        # if there is a specified corner set
        if whichCorner != -1:

            cornerVertexIndex = quad_list[quad_index, whichCorner]

            numberOfEdges = get_num_edges_meeting(AVertexList, cornerVertexIndex)
            #TODO: Check output PROBLEM!
            indexMask = getExtraOrdCornerIndexMask(quad_list, AVertexList, B1VertexList, B2VertexList, CVertexList,
                                                   quad_control_point_indices, quad_index, whichCorner)

            coefsRawTemp[0, 0:numberOfEdges, :, :] = ACoefsRaw[numberOfEdges-1, 0:numberOfEdges, :, :]
            coefsRawTemp[1, 0:numberOfEdges, :, :] = B1CoefsRaw[numberOfEdges-1, 0:numberOfEdges, :, :]
            coefsRawTemp[2, 0:numberOfEdges, :, :] = B2CoefsRaw[numberOfEdges-1, 0:numberOfEdges, :, :]
            coefsRawTemp[3, 0:numberOfEdges, :, :] = CCoefsRaw[numberOfEdges-1, 0:numberOfEdges, :, :]

            patchCoefsMatrix = getBicubicBezierPointCoefs(localCoords, coefsRawTemp[:, 0:numberOfEdges, :, :])

            coefsMatrix[p][indexMask[:]] = patchCoefsMatrix[:]

        else:
            neighbourMask = get3x3ControlPointIndexMask(quad_list=quad_list,
                                                        quad_control_point_indices=quad_control_point_indices,
                                                        quad_index=quad_index,
                                                        localIndexXY=whichPatch)
            neighbourCoefs = getBezierPointCoefs(localCoords)

            for j in range(3):
                for i in range(3):
                    coefsMatrix[p, neighbourMask[i, j]] = neighbourCoefs[i, j]
    print "Main Loop Coeffs Done."

    return coefsMatrix
コード例 #8
0
def createGlobalControlMeshCoefs(parameterCoordinates, quad_list, AVertexList,
                                 B1VertexList, B2VertexList, CVertexList,
                                 quad_control_point_indices):
    '''
    Takes, for N datapoints, an array parameterCoordinates[Nx3](for every
    datapoint: first entry the quad index, second and third parameters
    on a patch that spans over [0,1]x[0,1]
    for the quad. The function computes the coefficient matrix for between
    each datapoint and the array of M/16 quads x [4x4] vertex control points,
    outputting the coefficients as an N x M scipy.sparse COO-type sparse matrix

    @param parameterCoordinates: Nx3 numpy.ndarray of datapoint parameters
    @param quad_list:
    @param AVertexList:
    @param B1VertexList:
    @param B2VertexList:
    @param CVertexList:
    @param quad_control_point_indices: (M/16)x16 numpy.ndarray of control points on each quad
    @return: NxM scipy.sparse COO-type sparse matrix of coefficients, maximum 22 nonzero entries per row
    '''

    N = parameterCoordinates.shape[0]
    M = quad_control_point_indices.shape[0] * quad_control_point_indices.shape[
        1]
    max_size = N * 28  #4 types of vertices times maximum 7 quads around an extraordinary vertex (large estimate)
    rows = np.zeros(max_size, dtype=int)
    cols = np.zeros(max_size, dtype=int)
    data = np.zeros(max_size)
    """
    Precalculate the coefficients between all the vertex control points and
    the bezier control points for 7 different number of intersecting
    edges as a start

    (number of incoming edges(between 3 an 7 hardcoded), [A,B1,B2,C], [in which quad 1-7], bezier point
    first coord, bezier point second coord)
    """

    ACoefsRaw = np.zeros((7, 7, 4, 4))
    B1CoefsRaw = np.zeros((7, 7, 4, 4))
    B2CoefsRaw = np.zeros((7, 7, 4, 4))
    CCoefsRaw = np.zeros((7, 7, 4, 4))

    for num_quads in range(3, 8):
        [
            ACoefsRaw[num_quads - 1, 0:num_quads, :, :],
            B1CoefsRaw[num_quads - 1, 0:num_quads, :, :],
            B2CoefsRaw[num_quads - 1,
                       0:num_quads, :, :], CCoefsRaw[num_quads - 1,
                                                     0:num_quads, :, :]
        ] = createBicubicCoefMatrices(
            num_quads)  # compared to matlab by Saumi & Benni -> VALID

    coefsRawTemp = np.zeros((4, 7, 4, 4))

    indexCounter = 0

    print "Main Loop Coefs"
    for p in range(N):
        if p % 100 == 0:
            print "processing point %d of %d..." % (p, N)
        #check if on a corner patch : if both coords are outside [0.25,0.75]
        quadParameters = parameterCoordinates[p, 1:3]
        quad_index = int(parameterCoordinates[p, 0])
        [localCoords, whichCorner, whichPatch
         ] = createLocalParamsExtraordinary(global_quad_params=quadParameters)
        #print "p=%d"%p # todo for p=1 get3x3... fails! -> Resolved(?).
        #print "whichPatch="+str(whichPatch)
        # if there is a specified corner set
        if whichCorner != -1:

            cornerVertexIndex = quad_list[quad_index, whichCorner]

            numberOfEdges = get_num_edges_meeting(AVertexList,
                                                  cornerVertexIndex)
            #TODO: Check output PROBLEM!
            indexMask = getExtraOrdCornerIndexMask(quad_list, AVertexList,
                                                   B1VertexList, B2VertexList,
                                                   CVertexList,
                                                   quad_control_point_indices,
                                                   quad_index, whichCorner)

            coefsRawTemp[0, 0:numberOfEdges, :, :] = ACoefsRaw[
                numberOfEdges - 1, 0:numberOfEdges, :, :]
            coefsRawTemp[1, 0:numberOfEdges, :, :] = B1CoefsRaw[
                numberOfEdges - 1, 0:numberOfEdges, :, :]
            coefsRawTemp[2, 0:numberOfEdges, :, :] = B2CoefsRaw[
                numberOfEdges - 1, 0:numberOfEdges, :, :]
            coefsRawTemp[3, 0:numberOfEdges, :, :] = CCoefsRaw[
                numberOfEdges - 1, 0:numberOfEdges, :, :]

            patchCoefsMatrix = getBicubicBezierPointCoefs(
                localCoords, coefsRawTemp[:, 0:numberOfEdges, :, :])

            numberOfEntries = numberOfEdges * 4

            rows[indexCounter:(indexCounter + numberOfEntries)] = p
            cols[indexCounter:(indexCounter +
                               numberOfEntries)] = indexMask.flatten()[:]
            data[indexCounter:(
                indexCounter +
                numberOfEntries)] = patchCoefsMatrix.flatten()[:]

            indexCounter += numberOfEntries

        else:
            neighbourMask = get3x3ControlPointIndexMask(
                quad_list=quad_list,
                quad_control_point_indices=quad_control_point_indices,
                quad_index=quad_index,
                localIndexXY=whichPatch)
            neighbourCoefs = getBezierPointCoefs(localCoords)

            numberOfEntries = 9

            rows[indexCounter:(indexCounter + numberOfEntries)] = p
            cols[indexCounter:(indexCounter +
                               numberOfEntries)] = neighbourMask.flatten()[:]
            data[indexCounter:(indexCounter +
                               numberOfEntries)] = neighbourCoefs.flatten()[:]

            indexCounter += numberOfEntries

    print "Main Loop Coeffs Done."

    return ssp.coo_matrix((data, (rows, cols)), shape=(N, M))