コード例 #1
0
def script():
	client1 = request.form['client1'];
	client2 = request.form['client2'];
	legal1 = request.form['legal1'];
	legal2 = request.form['legal2'];
	from_d = request.form['from'];
	start = from_d


	df1 = model_call(str(client1),str(legal1))
	model = pickle.load(open('model.pkl', 'rb'))
	lastdate_1=give_last_date(client1, legal1)
	pred1=model.forecast(6)
	pred1_mean=round(pred1.mean(), 3)
	show_predict1=np.array(df1[str(datetime.datetime.strptime(str(lastdate_1),'%Y%m%d').date())])
	show_predict1=np.append(show_predict1, pred1)


	df2 = model_call(str(client2),str(legal2))
	model = pickle.load(open('model.pkl', 'rb'))
	lastdate_2=give_last_date(client2, legal2)
	pred2=model.forecast(6)
	pred2_mean=round(pred2.mean(), 3)
	print(lastdate_2)
	print('.............................................................')
	show_predict2=np.array(df2[str(datetime.datetime.strptime(str(lastdate_2),'%Y%m%d').date())])
	show_predict2=np.append(show_predict2, pred2)
	
	print(type(show_predict2))
	#fig = make_subplots(rows=1, cols=2)
	table_col=['Clients', 'Legal Entity', 'Mean of Predicted Paid Amount (USD)']
	table_title=""
	if pred1_mean > pred2_mean :
		table_row=[[client1, client2], [legal1, legal2], [pred1_mean, pred2_mean]]
		table_title="Client 1 and Legal Entity 1 are expected to do better business based on predicted mean amount"
	else :
		table_title="Client 2 and Legal Entity 2 are expected to do better business based on predicted mean amount "
		table_row=[[client2, client1], [legal2, legal1], [pred2_mean, pred1_mean]]

	fig = make_subplots(rows=2, cols=1,  vertical_spacing=0.03,specs=[ [{"type": "table"}],[{"type": "scatter"}] ] )
	fig.add_trace(go.Table(header=dict(values=table_col,font=dict(size=10),align="left"), cells=dict(values=table_row,  height=40,align="left")), row=1, col=1)
	fig.add_trace(go.Scatter(x =df1[start:].index,y=df1[start:],mode='lines',name='Recorded trend 1'), row=2, col=1)
	fig.add_trace(go.Scatter(x=give_dates(lastdate_1),y=show_predict1,mode='lines',name='Predicted trend 1',line=dict(width=4, dash='dot')), row=2, col=1)
	fig.add_trace(go.Scatter(x = df2[start:].index, y=df2[start:], mode='lines', name='Recorded Trend 2'),  row=2, col=1)
	fig.add_trace(go.Scatter(x=give_dates(lastdate_2), y=show_predict2, mode='lines', name='Predicted trend 2', line=dict(width=4, dash='dot')), row=2, col=1)
	fig.update_yaxes(title_text="Paid Amount", row=2, col=1)
	fig.update_xaxes(title_text='Dates', row=2, col=1)
	fig.update_layout(title_text=table_title)

	pio.write_html(fig, file='templates/output.html', auto_open=False)
	return render_template('output.html')
コード例 #2
0
def plot_com(client1, client2, legal1, legal2, from_d):
    start = from_d

    df1 = model_call(str(client1), str(legal1))
    model = pickle.load(open('model.pkl', 'rb'))
    lastdate_1 = give_last_date(client1, legal1)
    pred1 = model.forecast(6)
    show_predict1 = np.array(df1[str(
        datetime.datetime.strptime(str(lastdate_1), '%Y%m%d').date())])
    show_predict1 = np.append(show_predict1, pred1)

    df2 = model_call(str(client2), str(legal2))
    model = pickle.load(open('model.pkl', 'rb'))
    lastdate_2 = give_last_date(client2, legal2)
    pred2 = model.forecast(6)
    print(lastdate_2)
    print('.............................................................')
    show_predict2 = np.array(df2[str(
        datetime.datetime.strptime(str(lastdate_2), '%Y%m%d').date())])
    show_predict2 = np.append(show_predict2, pred2)

    print(type(show_predict2))
    #fig = make_subplots(rows=1, cols=2)
    fig = go.Figure()
    fig.add_trace(
        go.Scatter(x=df1[start:].index,
                   y=df1[start:],
                   mode='lines',
                   name='Recorded trend 1'))
    fig.add_trace(
        go.Scatter(x=give_dates(lastdate_1),
                   y=show_predict1,
                   mode='lines',
                   name='Predicted trend 1',
                   line=dict(width=4, dash='dot')))
    fig.add_trace(
        go.Scatter(x=df2[start:].index,
                   y=df2[start:],
                   mode='lines',
                   name='Recorded Trend 2'))
    fig.add_trace(
        go.Scatter(x=give_dates(lastdate_2),
                   y=show_predict2,
                   mode='lines',
                   name='Predicted trend 2',
                   line=dict(width=4, dash='dot')))
    fig.update_yaxes(title_text="Paid Amount")
    fig.update_xaxes(title_text='Dates')

    pio.write_html(fig, file='templates/output.html', auto_open=False)
コード例 #3
0
def plot_pred(cname, lename, from_d):
    df = model_call(str(cname), str(lename))
    model = pickle.load(open('model.pkl', 'rb'))
    lastdate_ = give_last_date(cname, lename)
    pred = model.forecast(6)
    pred_mean = round(pred.mean(), 3)
    start = from_d
    show_predict = np.array(df[str(
        datetime.datetime.strptime(str(lastdate_), '%Y%m%d').date())])
    show_predict = np.append(show_predict, pred)

    fig = go.Figure()
    fig.add_trace(
        go.Scatter(x=df[start:].index,
                   y=df[start:],
                   mode='lines',
                   name='Recorded'))
    fig.add_trace(
        go.Scatter(x=give_dates(lastdate_),
                   y=show_predict,
                   mode='lines',
                   name='Predicted',
                   line=dict(width=4, dash='dot')))

    final_verdict = ''
    if pred_mean > 0:
        final_verdict = "Mean paid amount of next 6 months is {m}.<br>So, considering this it is beneficial to work with this client.".format(
            m=pred_mean)
    else:
        final_verdict = "Mean paid amount of next 6 months is {m}.<br>So, considering this it is not beneficial to work with this client.".format(
            m=pred_mean)
    fig.update_layout(title_text=final_verdict)
    fig.update_yaxes(title_text="Paid Amount")
    fig.update_xaxes(title_text='Dates')
    pio.write_html(fig, file='templates/predict.html', auto_open=False)
コード例 #4
0
def plot_pred(cname, lename, from_d):
    df = model_call(str(cname), str(lename))
    model = pickle.load(open('model.pkl', 'rb'))
    lastdate_ = give_last_date(cname, lename)
    pred = model.forecast(6)
    start = from_d
    show_predict = np.array(df[str(
        datetime.datetime.strptime(str(lastdate_), '%Y%m%d').date())])
    show_predict = np.append(show_predict, pred)

    fig = go.Figure()
    fig.add_trace(
        go.Scatter(x=df[start:].index,
                   y=df[start:],
                   mode='lines',
                   name='Recorded'))
    fig.add_trace(
        go.Scatter(x=give_dates(lastdate_),
                   y=show_predict,
                   mode='lines',
                   name='Predicted',
                   line=dict(width=4, dash='dot')))
    slope = pred[-1] - df.iloc[-1]
    final_verdict = ''
    if slope > 0:
        final_verdict = "Beneficial to work with this client"
    else:
        final_verdict = "Not beneficial to work with this client"
    fig.update_layout(title_text=final_verdict)
    fig.update_yaxes(title_text="Paid Amount")
    fig.update_xaxes(title_text='Dates')
    pio.write_html(fig, file='templates/predict.html', auto_open=False)
コード例 #5
0
def plot_topN(final_result, allClients, number):
    x_bar = list()
    name_scatter = []
    now_date = str(date.today())
    new_now_date = ""
    for w in now_date:
        if (w != '-'):
            new_now_date += w
    x_scatter_temp = give_dates(new_now_date, 6)
    x_scatter = x_scatter_temp[1:]
    y_bar = list()
    y_scatter = list()
    table_col = list()
    table_col.append('Clients')
    for var in x_scatter:
        table_col.append(str(var))
    table_col.append('Predicted Successful Paid Amt Mean(USD)')
    table_col.append('Predicted %<br>of Successful<br> Transaction')
    table_row = list()

    i = 0
    for key in final_result.keys():
        x_bar.append(key)
        y_bar.append(int(final_result[key][0]))
        table_row_temp = list()
        table_row_temp.append(key)
        y_scatter_temp = list()
        j = 2
        while j < len(final_result[key]):
            y_scatter_temp.append(final_result[key][j])
            table_row_temp.append(final_result[key][j])
            j = j + 1
        table_row_temp.append(final_result[key][0])
        table_row_temp.append(final_result[key][1])
        y_scatter.append(y_scatter_temp)
        table_row.append(table_row_temp)
        i = i + 1
        if i == int(number):
            break

    new_table_row = []
    for i in range(len(table_row[0])):
        table_row_temp_new = []
        for elem in table_row:
            table_row_temp_new.append(elem[i])
        new_table_row.append(table_row_temp_new)

    for word in x_bar:
        if len(word) < 12:
            name_scatter.append(word)
        else:
            small_word = ""
            for i in range(12):
                small_word += word[i]
            name_scatter.append(small_word + "...")

    fig = make_subplots(rows=3,
                        cols=1,
                        vertical_spacing=0.09,
                        specs=[[{
                            "type": "table"
                        }], [{
                            "type": "bar"
                        }], [{
                            "type": "scatter"
                        }]])
    fig.add_trace(go.Table(header=dict(values=table_col,
                                       font=dict(size=10),
                                       align="left"),
                           cells=dict(values=new_table_row,
                                      height=40,
                                      align="left")),
                  row=1,
                  col=1)
    fig.add_trace(go.Bar(x=name_scatter, y=y_bar, textposition='outside'),
                  row=2,
                  col=1)
    fig.update_yaxes(title_text="Mean Successful<br>Prdicted Amt(USD)",
                     row=2,
                     col=1)
    fig.update_yaxes(
        title_text="Monthly Successful<br>Predicted Paid Amt(USD) ",
        row=3,
        col=1)
    fig.update_xaxes(title_text="Dates", row=3, col=1)
    fig.update_layout(title_text="")

    i = 0
    for element_y in y_scatter:
        fig.add_trace(go.Scatter(x=x_scatter,
                                 y=element_y,
                                 name=name_scatter[i]),
                      row=3,
                      col=1)
        i = i + 1
    pio.write_html(fig, file='templates/topNClientsGraph.html')