コード例 #1
0
nb_threads = 2  # for input queue

stddev_init_nn = 0.01  # neural net initialization

log_dir = 'logs_svae'

verbose = False  # log device placement

# set size_minibatch=64
schedule = create_schedule({
    'dataset': 'auto',
    'method': 'svae-cvi',
    'lr': [0.0003],  # adam stepsize
    'lrcvi': [0.2],  # cvi stepsize (convex combination)
    'decay_rate': [0.95],
    'K': 10,  # nb components
    'L': [6],  # latent dimensionality
    'U': 50,  # hidden units
    'seed': 0
})

# set size_minibatch=100 (as in Johnson+, 2016); initialize phi_gmm with gmm_prior (line 181)
schedule = create_schedule({
    'dataset': 'pinwheel',
    'method': 'svae-cvi',
    'lr': [0.01],  # adam stepsize
    'lrcvi': [0.1],  # cvi stepsize (convex combination)
    'K': 10,  # nb components
    'L': [2],  # latent dimensionality
    'U': 50,  # hidden units
コード例 #2
0
ファイル: plots.py プロジェクト: liyr/vmp-for-svae
def boxplot_noisy_pinwheel():
    # plots performance of latent SMM for increasing noise level

    path = '../noisy_pinwheel_wu'

    schedule_svae_smm = create_schedule({
        'dataset': 'noisy-pinwheel',
        'method': 'svae-cvi-smm',
        'lr': [0.01],  # adam stepsize
        'lrcvi': [0.005],  # cvi stepsize (convex combination)
        'K': 10,  # nb components
        'L': 2,  # latent dimensionality
        'U': 40,  # hidden units
        'DoF': 5,
        'noise_level': 0.1,
        'seed': range(1, 4)
    })
    _, mse1, mse1m, mse1s = load_m_std(path, schedule_svae_smm, 'mse_te')

    schedule_svae_smm = create_schedule({
        'dataset': 'noisy-pinwheel',
        'method': 'svae-cvi-smm',
        'lr': [0.01],  # adam stepsize
        'lrcvi': [0.005],  # cvi stepsize (convex combination)
        'K': 10,  # nb components
        'L': 2,  # latent dimensionality
        'U': 40,  # hidden units
        'DoF': 5,
        'noise_level': 0.3,
        'seed': range(1, 4)
    })
    _, mse3, mse3m, mse3s = load_m_std(path, schedule_svae_smm, 'mse_te')

    schedule_svae_smm = create_schedule({
        'dataset': 'noisy-pinwheel',
        'method': 'svae-cvi-smm',
        'lr': [0.01],  # adam stepsize
        'lrcvi': [0.0005],  # cvi stepsize (convex combination)
        'K': 10,  # nb components
        'L': 2,  # latent dimensionality
        'U': 40,  # hidden units
        'DoF': 5,
        'noise_level': 0.5,
        'seed': range(1, 4)
    })
    _, mse5, mse5m, mse5s = load_m_std(path, schedule_svae_smm, 'mse_te')

    schedule_svae_smm = create_schedule({
        'dataset': 'noisy-pinwheel',
        'method': 'svae-cvi-smm',
        'lr': [0.01],  # adam stepsize
        'lrcvi': [0.0005],  # cvi stepsize (convex combination)
        'K': 10,  # nb components
        'L': 2,  # latent dimensionality
        'U': 40,  # hidden units
        'DoF': 5,
        'noise_level': 0.7,
        'seed': range(1, 4)
    })
    _, mse7, mse7m, mse7s = load_m_std(path, schedule_svae_smm, 'mse_te')

    lsmm_mean = np.vstack([mse1m[-1], mse3m[-1], mse5m[-1], mse7m[-1]])
    lsmm_std = np.vstack([mse1s[-1], mse3s[-1], mse5s[-1], mse7s[-1]])

    # extract svae gmm
    lgmm_mean = np.zeros(4)
    lgmm_std = np.zeros(4)
    for i, lvl in enumerate([0.1, 0.3, 0.5, 0.7]):
        schedule_svae_gmm = create_schedule({
            'dataset': 'noisy-pinwheel',
            'method': 'svae-cvi',
            'lr': [0.01],  # adam stepsize
            'lrcvi': [0.005],  # cvi stepsize (convex combination)
            'K': 10,  # nb components
            'L': 2,  # latent dimensionality
            'U': 40,  # hidden units
            'DoF': 5,
            'noise_level': lvl,
            'seed': range(1, 4)
        })
        _, mse, mean, std = load_m_std(path, schedule_svae_gmm, 'mse_te')

        lgmm_mean[i] = mean[-1]
        lgmm_std[i] = std[-1]

    # extract simple gmm
    gmm_mean = np.zeros(4)
    gmm_std = np.zeros(4)
    for i, lvl in enumerate([0.1, 0.3, 0.5, 0.7]):
        schedule_svae_gmm = create_schedule({
            'dataset': 'noisy-pinwheel',
            'method': 'gmm',
            'K': 10,  # nb components
            'noise_level': lvl,
            'seed': range(1, 4)
        })
        _, mse, mean, std = load_m_std(path, schedule_svae_gmm, 'mse_te')
        gmm_mean[i] = mean[-1]
        gmm_std[i] = std[-1]

    fig, ax = newfig(0.5, ratio_hw=customized_figsize)
    # ax.set_xscale('log')
    ax.set_yscale('log')

    #(4, 3)
    ax.errorbar(np.transpose([1, 2, 3, 4]),
                gmm_mean,
                yerr=gmm_std,
                color="C0",
                label="GMM")
    ax.errorbar(np.transpose([1, 2, 3, 4]),
                lgmm_mean,
                yerr=lgmm_std,
                color="C3",
                label="SAN-GMM")
    ax.errorbar(np.transpose([1, 2, 3, 4]),
                lsmm_mean,
                yerr=lsmm_std,
                color="C8",
                label="SAN-TMM")

    ax.set_xticklabels(["10%", "30%", "50%", "70%"])
    ax.set_xticks([1, 2, 3, 4])
    ax.set_xlim([0.7, 4.3])
    ax.set_ylim([0.5, 200])
    ax.set_xlabel('Ratio Outliers')
    ax.set_ylabel('MSE')
    ax.grid(which='both', linewidth=width_gridlines)
    ax.legend()
    save_plot('noisy-pinwheel_errorbars', path='./')
コード例 #3
0
ファイル: plots.py プロジェクト: liyr/vmp-for-svae
def compare_auto():
    mpl.rcParams.update({"legend.fontsize": 4})

    # path_svae = '../raiden_auto/auto_svae'
    path_svae_smm = '../auto_svae_smm'
    path_svae = '../logs_svae'
    path_vae = '../logs_vae'
    path_gmm = '../auto_gmm'

    # load SVAE-GMM
    schedule_svae = create_schedule({
        'dataset': 'auto',
        'method': 'svae-cvi',
        'lr': [0.0003],  # adam stepsize
        'lrcvi': [0.2],  # cvi stepsize (convex combination)
        'decay_rate': [0.95],
        'K': 10,  # nb components
        'L': [6],  # latent dimensionality
        'U': 50,  # hidden units
        'seed': range(0, 10)  # todo
    })

    # load SVAE-SMM
    schedule_svae_smm = create_schedule({
        'dataset': 'auto',
        'method': 'svae-cvi-smm',
        'lr': [0.0003],  # adam stepsize
        'lrcvi': [0.2],  # cvi stepsize (convex combination)
        'decay_rate': [0.95],
        'K': 10,  # nb components
        'L': [6],  # latent dimensionality
        'U': 50,  # hidden units
        'DoF': 5,
        'seed': range(10)  # todo
    })

    # load VAE
    schedule_vae = create_schedule({
        'dataset': 'auto',
        'method': 'vae',
        'lr': [0.0003],  # adam stepsize
        'L': [6],  # latent dimensionality
        'U': 50,  # hidden units
        'seed': range(10)
    })

    # load VAE
    schedule_gmm = create_schedule({
        'method': 'gmm',
        'dataset': 'auto',
        'K': 5,
        'seed': range(10)
    })

    label_svae_smm = 'SAN-SMM'
    label_svae = 'SAN-GMM'
    label_vae = 'VAE'
    label_gmm = 'GMM'

    fig, ax = newfig(0.5, ratio_hw=customized_figsize)
    plot_summary(path_gmm, schedule_gmm, 'mse_te', ax, label_gmm, marker='o')
    plot_summary(path_vae, schedule_vae, 'mse_te', ax, label_vae, marker='+')
    plot_summary(path_svae,
                 schedule_svae,
                 'mse_te',
                 ax,
                 label_svae,
                 marker='D')
    plot_summary(path_svae_smm,
                 schedule_svae_smm,
                 'mse_te',
                 ax,
                 label_svae_smm,
                 marker='s')
    ax.set_xscale('log')
    ax.set_yscale('log')
    ax.set_xlim([400, 100000])
    ax.set_ylim([1, 200])
    ax.grid(which='both', linewidth=width_gridlines)
    ax.set_xlabel('Iterations')
    ax.set_ylabel('MSE')

    # import matplotlib.lines as mlines
    # handles, labels = ax.get_legend_handles_labels()
    # handles.insert(2, mlines.Line2D([], [], color='C1', marker='x', markersize=7))
    # labels.insert(2, 'SVAE (Johnson et. al.)')
    # ax.legend(handles, labels, loc='lower left')
    ax.legend()

    save_plot('auto_mse_te_smm', path='./')
コード例 #4
0
ファイル: plots.py プロジェクト: liyr/vmp-for-svae
def compare_pinwheel():

    # path = '../pinwheel'
    path_san = '../pinwheel_new'
    path_mjj = '../../svae/experiments/pinwheel_new'

    # load SVAE
    schedule_svae = create_schedule({
        'dataset': 'pinwheel',
        'method': 'svae-cvi',
        'lr': [0.01],  # adam stepsize
        'lrcvi': [0.1],  # cvi stepsize (convex combination)
        'decay_rate': 1,
        'delay': 0,
        'K': 10,  # nb components
        'L': 2,  # latent dimensionality
        'U': 40,  # hidden units
        'seed': range(10)
    })

    # load VAE
    schedule_vae = create_schedule({
        'dataset': 'pinwheel',
        'method': 'vae',
        'lr': [0.005],  # adam stepsize
        'L': 2,  # latent dimensionality
        'U': 40,  # hidden units
        'seed': range(10)
    })

    # load GMM
    schedule_gmm = create_schedule({
        'method': 'gmm',
        'dataset': 'pinwheel',
        'K': 10,
        'seed': range(10)
    })

    # load SVAE-Johnson
    schedule_mjj = create_schedule({
        'method': 'svae_mjj',
        'dataset': 'pinwheel',
        'inner_loop': [100],
        'sgd_step_size': [10],
        'adam_step_size': [0.005],
        'K': 10,
        'seed': range(10)
    })

    label_svae = 'SAN-GMM'
    label_mjj = 'SVAE (Johnson et. al.)'
    label_vae = 'VAE'
    label_gmm = 'GMM'

    # ax = ax3
    fig, ax = newfig(0.5, ratio_hw=customized_figsize)
    ax.set_xscale('log')
    ax.set_yscale('log')
    ax.grid(which='both', linewidth=width_gridlines)
    ax.set_xlim([100, 10000])
    ax.set_ylim([0.5, 100])
    plot_summary(path_san,
                 schedule_gmm,
                 'mse_te',
                 ax,
                 label_gmm,
                 marker='o',
                 start=1)
    plot_summary(path_san,
                 schedule_vae,
                 'mse_te',
                 ax,
                 label_vae,
                 marker='+',
                 start=1)
    plot_summary(path_mjj,
                 schedule_mjj,
                 'test_rmse_100',
                 ax,
                 label_mjj,
                 marker='x',
                 start=1)
    plot_summary(path_san,
                 schedule_svae,
                 'mse_te',
                 ax,
                 label_svae,
                 marker='D',
                 start=1)
    ax.set_xlabel('Iterations')
    ax.set_ylabel('MSE')
    ax.grid(which='both', linewidth=width_gridlines)
    # ax.legend()
    # plt.show()
    save_plot('pinwheel_mse_te', path='./')
コード例 #5
0
    measurement_freq = 2500
    imputation_freq = 50000
    checkpoint_freq = 25000

    seed_data = 0

    log_dir = '../logs_vae'

    nb_threads = 5     # for input queue

    stddev_init = 0.01

    schedule = create_schedule({
        'dataset': 'auto',
        'method': 'vae',
        'lr': [0.0003],  # adam stepsize
        'L': [6],  # latent dimensionality
        'U': 50,  # hidden units
        'seed': range(0, 10)
    })

    # schedule = create_schedule({
    #     'dataset': 'mnist-small',
    #     'method': 'vae',
    #     'lr': [0.001],  # adam stepsize
    #     'L': [10],  # latent dimensionality
    #     'U': 50,  # hidden units
    #     'seed': 0
    # })


    ####################################################################################################################
コード例 #6
0
    path_dataset = '../datasets'
    ratio_tr = 0.7
    ratio_val = None
    missing_data_ratio = 0.1

    nb_iters = 200

    seed = 0
    seed_data = 0

    log_dir = '../debug'

    schedule = create_schedule({
        'method': 'smm',
        'dataset': 'aggregation',  # 't4.8k',
        'K': 10,
        'kappa': 9999,
        'seed': 0
    })


    ####################################################################################################################

    for config_id, config in enumerate(schedule):
        K = config['K']
        kappa = config['kappa']
        seed = config['seed']
        dataset = config['dataset']

        print("Experiment %d with config\n%s\n" % (config_id, str(config)))
コード例 #7
0
ファイル: gmm.py プロジェクト: liyr/vmp-for-svae
    ratio_val = None
    missing_data_ratio = 0.1

    nb_iters = 500
    measurement_freq = 10

    K = 10  # nb components

    seed = 0
    seed_data = 0

    log_dir = '../pinwheel_new'

    schedule = create_schedule({
        'method': 'gmm',
        'dataset': 'pinwheel',
        'K': 8,
        'seed': range(10)
    })
    #
    # schedule = create_schedule({
    #     'method': 'gmm',
    #     'dataset': 'auto',
    #     'K': 10,
    #     'seed': 10
    # })

    schedule = create_schedule({
        'method': 'gmm',
        'dataset': 'aggregation',
        'K': 10,
        'seed': 0
コード例 #8
0
ファイル: gmm.py プロジェクト: zcmail/vmp-for-svae
    ratio_val = None
    missing_data_ratio = 0.1

    nb_iters = 500
    measurement_freq = 10

    K = 10  # nb components

    seed = 0
    seed_data = 0

    log_dir = '../pinwheel_new'

    schedule = create_schedule({
        'method': 'gmm',
        'dataset': 'pinwheel',
        'K': 8,
        'seed': range(10)
    })
    #
    # schedule = create_schedule({
    #     'method': 'gmm',
    #     'dataset': 'auto',
    #     'K': 10,
    #     'seed': 10
    # })

    ####################################################################################################################

    for config_id, config in enumerate(schedule):
        K = config['K']
        seed = config['seed']