コード例 #1
0
def getting_edge_weights(file_curr, out_dir_labels,out_dir,k, set_k = set_k_mul, normalize_k = normalize_k_mul):
    npy_files, anno_all = readTrainTestFile(file_curr)
    k_count = np.zeros((len(class_names),k,k))
    k_count_big = np.zeros((k,k))

    for npy_file,anno_curr in zip(npy_files,anno_all):
        label_file = os.path.join(out_dir_labels, os.path.split(npy_file)[1])
        labels = np.load(label_file)
        
        k_count_big = set_k(k_count_big,labels)

        for gt_idx in np.where(anno_curr)[0]:
            k_count[gt_idx] = set_k(k_count[gt_idx],labels)

        
    k_count_big = normalize_k(k_count_big)
    print k_count_big.shape
    
    out_file = os.path.join(out_dir,'all_classes_mul.npy')
    np.save(out_file, k_count_big )

    out_file = os.path.join(out_dir,'all_classes_mul.jpg')
    visualize.saveMatAsImage(k_count_big, out_file)

    for class_idx in range(len(class_names)):
        k_count[class_idx] = normalize_k(k_count[class_idx])
        class_name = class_names[class_idx]
        
        out_file = os.path.join(out_dir,class_name+'.npy')
        np.save(out_file, k_count[class_idx])

        out_file = os.path.join(out_dir,class_name+'.jpg')
        visualize.saveMatAsImage(k_count[class_idx], out_file)
    visualize.writeHTMLForFolder(out_dir)
コード例 #2
0
def plot_all_necessaries(just_vid_name, out_dir_cooc_viz, out_dir_fg,
                         out_dir_bg, gt_arr_row, gt_arr_col, arr_cooc):
    # just_vid_name = vid_name[:vid_name.rindex('.')]

    out_file_cooc = os.path.join(out_dir_cooc_viz, just_vid_name + '.jpg')
    out_file_fg = os.path.join(out_dir_fg, just_vid_name + '.jpg')
    out_file_bg = os.path.join(out_dir_bg, just_vid_name + '.jpg')

    # eye = -2*np.eye(arr_cooc.shape[0])
    # arr_cooc_h = arr_cooc+eye

    fg_all = arr_cooc[gt_arr_row > 0, :]
    fg_fg = fg_all[:, gt_arr_col > 0]
    bg_all = arr_cooc[gt_arr_row == 0, :]
    bg_bg = bg_all[:, gt_arr_col == 0]

    num_bins = np.arange(0, 1.1, .1)

    all_vals = [val.flatten() for val in [fg_all, fg_fg, bg_all, bg_bg]]

    legend_entries = ['FG All', 'FG FG', 'BG All', 'BG BG']
    xlabel = 'Cooc Value'
    ylabel = 'Frequency'
    xtick_labels = ['%.1f' % val for val in num_bins]

    title = 'Foreground Hist for ' + just_vid_name
    visualize.plotMultiHist(out_file_fg,
                            vals=all_vals[:2],
                            num_bins=[num_bins, num_bins],
                            legend_entries=legend_entries[:2],
                            title=title,
                            xlabel=xlabel,
                            ylabel=ylabel,
                            xticks=xtick_labels,
                            density=True,
                            align='mid')

    title = 'Foreground Hist for ' + just_vid_name
    visualize.plotMultiHist(out_file_bg,
                            vals=all_vals[2:],
                            num_bins=[num_bins, num_bins],
                            legend_entries=legend_entries[2:],
                            title=title,
                            xlabel=xlabel,
                            ylabel=ylabel,
                            xticks=xtick_labels,
                            density=True,
                            align='mid')

    title = 'Mat ' + just_vid_name
    arr_cooc_mat = arr_cooc
    arr_cooc_mat[arr_cooc_mat < 0] = 0
    visualize.saveMatAsImage(arr_cooc_mat, out_file_cooc, title=title)
    print out_file_cooc
コード例 #3
0
def save_graphs_to_look_at(model_file, graph_nums):
    out_dir_meta = model_file[:model_file.rindex('.')]
    out_dir_meta_meta = out_dir_meta + '_graph_etc'
    out_dir_viz = out_dir_meta_meta + '_viz'
    util.mkdir(out_dir_viz)
    for graph_num in graph_nums:
        out_dir_meta = out_dir_meta_meta + '_' + str(graph_num)
        assert os.path.exists(out_dir_meta)
        vid_files = glob.glob(os.path.join(out_dir_meta, '*test*.npz'))

        for vid_file in vid_files:

            npz_data = np.load(vid_file)
            vid_file = os.path.split(vid_file)[1]
            affinity = npz_data['affinity']

            gt_vecs = npz_data['gt_vecs']
            gt_classes = npz_data['gt_classes']
            x_all = npz_data['x_all']

            plotter = []
            legend_entries = []
            for gt_idx, gt_class in enumerate(gt_classes):
                gt_vec = gt_vecs[gt_idx]
                val_rel = x_all[0, :, gt_class]
                gt_vec = gt_vec / np.max(gt_vec)
                gt_vec = gt_vec * np.max(val_rel)
                # (gt_idx+1)
                x_axis = range(gt_vec.size)
                plotter.append((x_axis, gt_vec))
                plotter.append((x_axis, val_rel))
                legend_entries.append(class_names[gt_class])
                legend_entries.append(class_names[gt_class] + ' pred')

            out_file = os.path.join(
                out_dir_viz, vid_file[:vid_file.rindex('.')] + '_gt.jpg')
            visualize.plotSimple(plotter,
                                 out_file=out_file,
                                 xlabel='time',
                                 ylabel='',
                                 legend_entries=legend_entries,
                                 outside=True)

            out_file = os.path.join(
                out_dir_viz, vid_file[:vid_file.rindex('.')] + '_' +
                str(graph_num) + '.jpg')
            visualize.saveMatAsImage(affinity, out_file)

            visualize.writeHTMLForFolder(out_dir_viz)
コード例 #4
0
def save_neg_cooc_graphs(out_dir):
    all_file = os.path.join(out_dir,'all_classes_mul.npy')
    all_cooc = np.load(all_file)
    for class_name in class_names:
        in_file = os.path.join(out_dir,class_name+'.npy')
        curr_cooc = np.load(in_file)
        out_cooc = curr_cooc - all_cooc
        out_cooc = out_cooc + np.eye(out_cooc.shape[0])
        out_file = os.path.join(out_dir,class_name+'neg.jpg')
        visualize.saveMatAsImage(out_cooc, out_file)
        # print 'curr_cooc',curr_cooc.shape,np.min(curr_cooc),np.max(curr_cooc)
        # print 'out_cooc',out_cooc.shape,np.min(out_cooc),np.max(out_cooc)
        # print 'all_cooc',all_cooc.shape,np.min(all_cooc),np.max(all_cooc)
        # print out_file
        out_file = os.path.join(out_dir,class_name+'neg.npy')
        np.save(out_file, out_cooc)
    visualize.writeHTMLForFolder(out_dir)
コード例 #5
0
def save_neg_exp_cooc_graphs(out_dir):
    for class_name in class_names:
        in_file = os.path.join(out_dir,class_name+'neg.npy')
        curr_cooc = np.load(in_file)
        print np.min(curr_cooc),np.max(curr_cooc)
        out_cooc = np.exp(curr_cooc-1)
        print np.min(out_cooc),np.max(out_cooc)

        
        out_file = os.path.join(out_dir,class_name+'negexp.jpg')
        visualize.saveMatAsImage(out_cooc, out_file)
        # print out_file
        # print 'curr_cooc',curr_cooc.shape,np.min(curr_cooc),np.max(curr_cooc)
        # print 'out_cooc',out_cooc.shape,np.min(out_cooc),np.max(out_cooc)
        # print 'all_cooc',all_cooc.shape,np.min(all_cooc),np.max(all_cooc)
        
        out_file = os.path.join(out_dir,class_name+'negexp.npy')
        print out_file
        np.save(out_file, out_cooc)
        # raw_input()
    visualize.writeHTMLForFolder(out_dir)
コード例 #6
0
def save_sim_viz(vid_name,
                 out_shape_curr,
                 sim_mat,
                 class_idx,
                 out_dir,
                 dataset='ucf'):
    gt_vals, det_times = get_gt_vector(vid_name,
                                       out_shape_curr,
                                       class_idx,
                                       dataset=dataset)
    if dataset.startswith('activitynet'):
        class_names = globals.class_names_activitynet
    else:
        class_names = globals.class_names
    out_dir_curr = os.path.join(out_dir, class_names[class_idx])
    util.mkdir(out_dir_curr)
    pos_rows = sim_mat[gt_vals > 0, :]
    pos_rows = np.mean(pos_rows, axis=0)

    neg_rows = sim_mat[gt_vals < 1, :]

    neg_rows = np.mean(neg_rows, axis=0)
    # for idx_pos_row, pos_row in enumerate(pos_rows):
    max_val = max(np.max(pos_rows), np.max(neg_rows))
    gt_vals_curr = gt_vals * max_val

    arr_plot = [(det_times, curr_arr)
                for curr_arr in [gt_vals_curr, pos_rows, neg_rows]]
    legend_entries = ['gt', 'pos', 'neg']
    # idx_pos_row = str(idx_pos_row)
    out_file_curr = os.path.join(out_dir_curr, vid_name + '.jpg')
    title = vid_name
    # +' '+idx_pos_row

    # visualize.plotSimple(arr_plot, out_file = out_file_curr, title = title, xlabel = 'time', ylabel = 'max sim', legend_entries = legend_entries)
    # print out_file_curr

    # print
    np.save(out_file_curr.replace('.jpg', '.npy'), sim_mat)
    visualize.saveMatAsImage(sim_mat, out_file_curr, title=title)
コード例 #7
0
def get_distance_from_perfect(model_file, graph_num):

    out_dir_meta = model_file[:model_file.rindex('.')]
    out_dir_meta_meta = out_dir_meta + '_graph_etc'

    out_dir_meta = out_dir_meta_meta + '_' + str(graph_num)
    out_dir_viz = out_dir_meta + '_dist_perfectG'
    print out_dir_viz

    util.mkdir(out_dir_viz)
    assert os.path.exists(out_dir_meta)
    vid_files = glob.glob(os.path.join(out_dir_meta, '*validation*.npz'))

    class_collations = [[] for idx in range(len(class_names))]
    class_collations_pos = [[] for idx in range(len(class_names))]
    viz = True
    threshes = np.arange(0.1, 1.1, 0.1)
    print threshes

    for vid_file in vid_files:
        print vid_file
        npz_data = np.load(vid_file)
        vid_file = os.path.split(vid_file)[1]
        affinity = npz_data['affinity']

        gt_vecs = npz_data['gt_vecs']
        gt_classes = npz_data['gt_classes']

        if viz:
            out_file = os.path.join(
                out_dir_viz, vid_file[:vid_file.rindex('.')] + '_' +
                str(graph_num) + '.jpg')
            visualize.saveMatAsImage(affinity, out_file)

            plotter = []
            legend_entries = []
            for gt_idx, gt_class in enumerate(gt_classes):
                gt_vec = gt_vecs[gt_idx]
                gt_vec = gt_vec / np.max(gt_vec)
                gt_vec = gt_vec * (gt_idx + 1)
                x_axis = range(gt_vec.size)
                plotter.append((x_axis, gt_vec))
                legend_entries.append(class_names[gt_class])

            out_file = os.path.join(
                out_dir_viz, vid_file[:vid_file.rindex('.')] + '_gt.jpg')
            visualize.plotSimple(plotter,
                                 out_file=out_file,
                                 xlabel='time',
                                 ylabel='',
                                 legend_entries=legend_entries)

        for idx_gt, gt_vec in enumerate(gt_vecs):
            gt_class = gt_classes[idx_gt]
            class_name = class_names[gt_class]
            gt_vec = gt_vec[:, np.newaxis]
            perfectG = np.dot(gt_vec, gt_vec.T)
            aff = np.array(affinity)
            aff_just_pos = aff * perfectG
            diff = get_l2_diff(aff, perfectG, threshes)
            diff_pos = get_l2_diff(aff_just_pos, perfectG, threshes)

            class_collations[gt_class].append(diff)
            class_collations_pos[gt_class].append(diff_pos)

            plotter = [(threshes, diff), (threshes, diff_pos)]
            legend_entries = ['All', 'Pos']
            out_file = os.path.join(
                out_dir_viz, vid_file[:vid_file.rindex('.')] + '_' +
                class_name + '_diff.jpg')
            visualize.plotSimple(plotter,
                                 out_file=out_file,
                                 xlabel='Thresh',
                                 ylabel='Diff',
                                 legend_entries=legend_entries)

            if viz:
                out_file = os.path.join(
                    out_dir_viz, vid_file[:vid_file.rindex('.')] + '_' +
                    class_name + '_perfectG.jpg')
                visualize.saveMatAsImage(perfectG, out_file)

        visualize.writeHTMLForFolder(out_dir_viz)

    for idx_class in range(len(class_names)):

        class_name = class_names[idx_class]
        cc = np.array(class_collations[idx_class])
        ccp = np.array(class_collations_pos[idx_class])
        cc = np.mean(cc, axis=0)
        ccp = np.mean(ccp, axis=0)
        plotter = [(threshes, cc), (threshes, ccp)]
        legend_entries = ['All', 'Pos']
        out_file = os.path.join(out_dir_viz,
                                'average_' + class_name + '_diff.jpg')
        visualize.plotSimple(plotter,
                             out_file=out_file,
                             title=class_name,
                             xlabel='Thresh',
                             ylabel='Diff',
                             legend_entries=legend_entries)

    visualize.writeHTMLForFolder(out_dir_viz)
コード例 #8
0
def check_graph():
    # model_file = '../experiments/graph_multi_video_pretrained_F_flexible_alt_temp_train_normalize_True_True_non_lin_HT_sparsify_True_num_switch_5_5_graph_size_32_focus_1_deno_8_n_classes_20_in_out_2048_64_2048_64_method_cos_pretrained_ucf_ucf/all_classes_False_just_primary_False_limit_500_cw_True_MultiCrossEntropy_500_step_500_0.1_0.0001_0.001_0.001_FIXED/model_199.pt'
    model_file = '../experiments/graph_multi_video_pretrained_F_flexible_alt_train_temp_normalize_True_True_non_lin_HT_sparsify_True_num_switch_5_5_graph_size_32_focus_1_deno_8_n_classes_20_in_out_2048_64_2048_64_method_cos_pretrained_ucf_ucf/all_classes_False_just_primary_False_limit_500_cw_True_MultiCrossEntropy_500_step_500_0.1_0.0001_0.001_0.001_FIXED/model_299.pt'

    model_file = '../experiments/graph_multi_video_pretrained_F_flexible_alt_train_temp_normalize_True_True_non_lin_HT_sparsify_True_num_switch_5_5_graph_size_2_focus_1_deno_8_n_classes_20_in_out_2048_64_2048_64_method_cos_pretrained_ucf_ucf/all_classes_False_just_primary_False_limit_500_cw_True_MultiCrossEntropy_500_step_500_0.1_0.0001_0.001_0.001_ABS/model_499.pt'

    model_file = '../experiments/graph_multi_video_multi_F_joint_train_normalize_True_True_non_lin_HT_sparsify_True_graph_size_2_deno_8_n_classes_20_in_out_2048_64_feat_dim_2048_64_method_cos_ucf/all_classes_False_just_primary_False_limit_500_cw_True_MultiCrossEntropyMultiBranch_300_step_300_0.1_0.001_0.001_lw_0.5_0.5_ABS/model_299.pt'

    model = torch.load(model_file).cuda()
    model.eval()

    train_data, test_train_data, test_data, n_classes, trim_preds = emb.get_data(
        'ucf', 500, False, just_primary=False, gt_vec=False)

    # test_data = train_data
    # test_bool = False
    # test_data.feature_limit = None

    batch_size = 1
    branch_to_test = 1
    test_bool = True

    out_dir_meta = model_file[:model_file.rindex('.')]
    out_dir_meta = out_dir_meta + '_visualizing_' + str(branch_to_test)
    util.mkdir(out_dir_meta)
    print out_dir_meta

    anno_file = test_data.anno_file

    vid_names, annos = readTrainTestFile(anno_file)

    test_dataloader = torch.utils.data.DataLoader(
        test_data,
        batch_size=batch_size,
        collate_fn=test_data.collate_fn,
        shuffle=False,
        num_workers=1)

    import torch.nn.functional as F
    preds = []
    labels = []

    for idx_data, data in enumerate(test_dataloader):
        gt_classes = np.where(annos[idx_data])[0]
        vid_name = os.path.split(vid_names[idx_data])[1]
        vid_name = vid_name[:vid_name.rindex('.')]

        out_dir_curr = os.path.join(out_dir_meta, vid_name)
        util.mkdir(out_dir_curr)

        label = data['label'].cpu().data.numpy()
        affinity = model.get_similarity(data['features'], sparsify=True)

        x_all, pmf = model(data['features'], branch_to_test=branch_to_test)
        assert len(pmf) == 1

        x_all = torch.cat([x_all_curr.unsqueeze(0) for x_all_curr in x_all], 0)

        x_all = F.softmax(x_all, dim=1)
        x_all = x_all.data.cpu().numpy()
        affinity = affinity.data.cpu().numpy()

        for gt_class in gt_classes:
            affinity_copy = np.array(affinity)
            x_rel = x_all[:, gt_class]

            thresh = np.max(x_rel) - (np.max(x_rel) - np.min(x_rel)) * 0.5
            gt_vec, _ = get_gt_vector(vid_name,
                                      x_rel.shape[0],
                                      gt_class,
                                      test=test_bool)

            if np.sum(gt_vec) == 0:
                'we got an anno problem', vid_name
                continue

            bin_keep = gt_vec.astype(int)
            bin_keep_rot = np.roll(bin_keep, 1)
            bin_keep_rot[0] = 0
            diff = bin_keep - bin_keep_rot
            idx_start_all = list(np.where(diff == 1)[0])
            idx_end_all = list(np.where(diff == -1)[0])
            idx_borders = np.array(idx_start_all + idx_end_all)

            affinity_copy[:, idx_borders] = np.max(affinity_copy)
            affinity_copy[idx_borders, :] = np.max(affinity_copy)

            gt_vec = gt_vec * np.max(x_rel)
            x_axis = range(x_rel.size)

            thresh = thresh * np.ones(x_rel.shape)

            out_file_curr = os.path.join(
                out_dir_curr, 'det_confs_' + class_names[gt_class] + '.jpg')

            visualize.plotSimple([(x_axis, x_rel), (x_axis, gt_vec),
                                  (x_axis, thresh)],
                                 out_file=out_file_curr,
                                 title=class_names[gt_class],
                                 xlabel='time',
                                 ylabel='det conf',
                                 legend_entries=['Det', 'GT', 'Thresh'])

            out_file_mat = os.path.join(
                out_dir_curr, 'mat_' + class_names[gt_class] + '.jpg')
            visualize.saveMatAsImage(affinity_copy, out_file_mat)

        preds.append(F.softmax(pmf[0]).data.cpu().numpy())

        labels.append(label)
        visualize.writeHTMLForFolder(out_dir_curr)
        print out_dir_curr
        raw_input()

    labels = np.concatenate(labels, axis=0)
    preds = np.concatenate(preds, axis=0)
    labels[labels > 0] = 1

    accuracy = sklearn.metrics.average_precision_score(labels, preds)
    print accuracy