コード例 #1
0
ファイル: test_var_fit2d.py プロジェクト: VChristiaens/VIP
def test_fit2d(psf_model, fit_fkt, y, x, framesize, psfsize):
    frame = np.zeros((framesize, framesize))
    psf = create_synth_psf(psf_model, shape=(psfsize, psfsize))

    inj_frame = put_center(frame, psf, y, x)

    y_out, x_out = fit_fkt(inj_frame)

    # correct "half-pixel centering", to make output of fit_2d* comparable
    # with `put`.
    if (
        (framesize % 2 == 0 and psfsize % 2 == 0) or
        (framesize % 2 == 1 and psfsize % 2 == 0)
    ):
        y_exp = y - 0.5
        x_exp = x - 0.5
    else:
        y_exp = y
        x_exp = x

    yx_real = np.unravel_index(inj_frame.argmax(), inj_frame.shape)
    print("demanded injection:   {}".format((y, x)))
    print("brightes pixel:       {}".format(yx_real))
    print("fit should return:    {}".format((y_exp, x_exp)))
    print("fitted injection:     {}".format((y_out, x_out)))

    aarc((y_out, x_out), (y_exp, x_exp), atol=0.05)
コード例 #2
0
def test_fit2d(psf_model, fit_fkt, y, x, framesize, psfsize):
    frame = np.zeros((framesize, framesize))
    psf = create_synth_psf(psf_model, shape=(psfsize, psfsize))

    inj_frame = put_center(frame, psf, y, x)

    y_out, x_out = fit_fkt(inj_frame)

    # correct "half-pixel centering", to make output of fit_2d* comparable
    # with `put`.
    if ((framesize % 2 == 0 and psfsize % 2 == 0)
            or (framesize % 2 == 1 and psfsize % 2 == 0)):
        y_exp = y - 0.5
        x_exp = x - 0.5
    else:
        y_exp = y
        x_exp = x

    yx_real = np.unravel_index(inj_frame.argmax(), inj_frame.shape)
    print("demanded injection:   {}".format((y, x)))
    print("brightes pixel:       {}".format(yx_real))
    print("fit should return:    {}".format((y_exp, x_exp)))
    print("fitted injection:     {}".format((y_out, x_out)))

    aarc((y_out, x_out), (y_exp, x_exp), atol=0.05)
コード例 #3
0
def test_find_indices_sdi(dist, index_ref, truth):
    wl = np.arange(10) + 1
    fwhm = 4

    indices = _find_indices_sdi(wl, dist, index_ref, fwhm, debug=True)

    aarc(indices, truth)
コード例 #4
0
ファイル: test_var_shapes.py プロジェクト: VChristiaens/VIP
def test_matrix_scaling():
    """
    The "truth" values were verified by hand.
    """
    m = np.array([[6, 12, 18], [0, 0, 12]], dtype=float)

    res = matrix_scaling(m, None)
    truth = m
    aarc(res, truth)

    res = matrix_scaling(m, "temp-mean")
    truth = np.array([[ 3,  6,  3],
                      [-3, -6, -3]])
    aarc(res, truth)

    res = matrix_scaling(m, "spat-mean")
    truth = np.array([[-6,  0,  6],
                      [-4, -4,  8]])
    aarc(res, truth)

    res = matrix_scaling(m, "temp-standard")
    truth = np.array([[ 1,  1,  1],
                      [-1, -1, -1]])
    aarc(res, truth)

    res = matrix_scaling(m, "spat-standard")
    truth = np.array([[-np.sqrt(3/2), 0, np.sqrt(3/2)],
                      [-np.sqrt(1/2), -np.sqrt(1/2), np.sqrt(2)]])
    aarc(res, truth)
コード例 #5
0
def test_matrix_scaling():
    """
    The "truth" values were verified by hand.
    """
    m = np.array([[6, 12, 18], [0, 0, 12]], dtype=float)

    res = matrix_scaling(m, None)
    truth = m
    aarc(res, truth)

    res = matrix_scaling(m, "temp-mean")
    truth = np.array([[3, 6, 3], [-3, -6, -3]])
    aarc(res, truth)

    res = matrix_scaling(m, "spat-mean")
    truth = np.array([[-6, 0, 6], [-4, -4, 8]])
    aarc(res, truth)

    res = matrix_scaling(m, "temp-standard")
    truth = np.array([[1, 1, 1], [-1, -1, -1]])
    aarc(res, truth)

    res = matrix_scaling(m, "spat-standard")
    truth = np.array([[-np.sqrt(3 / 2), 0, np.sqrt(3 / 2)],
                      [-np.sqrt(1 / 2), -np.sqrt(1 / 2),
                       np.sqrt(2)]])
    aarc(res, truth)
コード例 #6
0
def test_find_indices_sdi(dist, index_ref, truth):
    wl = np.arange(10) + 1
    fwhm = 4

    indices = _find_indices_sdi(wl, dist, index_ref, fwhm, debug=True)

    aarc(indices, truth)
コード例 #7
0
def test_cube_rescaling_wavelengths(imlib, interpolation):
    scal_list = np.arange(10) + 1  # no zero

    # === basic function ===

    res1 = cube_rescaling_wavelengths(CUBE,
                                      scal_list,
                                      imlib=imlib,
                                      interpolation=interpolation)
    cube1, med1, y1, x1, cy1, cx1 = res1

    assert cube1.shape == (10, 1000, 1000)  # frame size x10 x10

    for i in range(cube1.shape[0]):
        aarc(cube1[i].mean() * scal_list[i]**2, 1)

    # === undo ===

    res2 = cube_rescaling_wavelengths(cube1,
                                      scal_list,
                                      imlib=imlib,
                                      interpolation=interpolation,
                                      inverse=True,
                                      x_in=100,
                                      y_in=100)
    cube2, med2, y2, x2, cy2, cx2 = res2

    aarc(cube2, CUBE)
コード例 #8
0
def test_cube_inject_companions(dataset, branches, dists):
    """
    Verify position of injected companions, for 3D and 4D cases.
    """
    def _expected(branches, dists):
        """
        Expected positions.
        """
        if branches == 1 and dists == 2:
            return [(2, 4)]
        elif branches == 2 and dists == 2:
            return [(2, 4), (2, 0)]
        elif branches == 2 and dists == [1, 2]:
            return [(2, 3), (2, 4), (2, 1), (2, 0)]

        else:
            raise ValueError("no expected result defined")

    cube, psf, angles = dataset

    c, yx = cube_inject_companions(cube,
                                   psf_template=psf,
                                   angle_list=angles,
                                   rad_dists=dists,
                                   n_branches=branches,
                                   flevel=3,
                                   full_output=True,
                                   plsc=1,
                                   verbose=True)
    yx_expected = _expected(branches, dists)

    aarc(yx, yx_expected)
コード例 #9
0
def test_saveable_dataset():
    """
    Test the HCIDataset.save() and .load() methods
    """
    # build HCIDataset
    cube = np.zeros((5, 10, 10))
    angles = np.linspace(1, 2, 5)
    fwhm = 4  # test non-numpy type saving/loading

    ds = HCIDataset(cube=cube, angles=angles, fwhm=fwhm)

    # save
    fd, fn = tempfile.mkstemp(prefix="vip_")
    ds.save(fn)

    # restore
    ds2 = HCIDataset.load(fn)

    # compare
    aarc(ds2.cube, cube)
    aarc(ds2.angles, angles)
    assert ds2.fwhm == fwhm

    # cleanup
    os.remove(fn)
コード例 #10
0
def test_cube_inject_companions(dataset, branches, dists):
    """
    Verify position of injected companions, for 3D and 4D cases.
    """
    def _expected(branches, dists):
        """
        Expected positions.
        """
        if branches == 1 and dists == 2:
            return [(2, 4)]
        elif branches == 2 and dists == 2:
            return [(2, 4), (2, 0)]
        elif branches == 2 and dists == [1, 2]:
            return [(2, 3), (2, 4), (2, 1), (2, 0)]

        else:
            raise ValueError("no expected result defined")

    cube, psf, angles = dataset

    c, yx = cube_inject_companions(cube, psf_template=psf, angle_list=angles,
                                   rad_dists=dists, n_branches=branches,
                                   flevel=3,
                                   full_output=True,
                                   plsc=1, verbose=True)
    yx_expected = _expected(branches, dists)

    aarc(yx, yx_expected)
コード例 #11
0
def test_reshape_matrix():
    vectorized_frames = np.array([[1, 1, 1, 2, 2, 2], [1, 2, 3, 4, 5, 6]])
    cube = reshape_matrix(vectorized_frames, 2, 3)

    assert cube.shape == (2, 2, 3)  # 2 frames of 2x3

    cube_truth = np.array([[[1, 1, 1], [2, 2, 2]], [[1, 2, 3], [4, 5, 6]]])

    aarc(cube, cube_truth)
コード例 #12
0
ファイル: test_var_shapes.py プロジェクト: VChristiaens/VIP
def test_reshape_matrix():
    vectorized_frames = np.array([[1, 1, 1, 2, 2, 2], [1, 2, 3, 4, 5, 6]])
    cube = reshape_matrix(vectorized_frames, 2, 3)

    assert cube.shape == (2, 2, 3)  # 2 frames of 2x3

    cube_truth = np.array([[[1, 1, 1],
                            [2, 2, 2]],

                           [[1, 2, 3],
                            [4, 5, 6]]])

    aarc(cube, cube_truth)
コード例 #13
0
ファイル: test_var_shapes.py プロジェクト: VChristiaens/VIP
def test_mask_circle():

    size = 5
    radius = 2

    ones = np.ones((size, size))

    # "in" and "out" should be complementary
    res_in = mask_circle(ones, radius=radius, mode="in")
    res_out = mask_circle(ones, radius=radius, mode="out")
    aarc(res_in+res_out, ones)

    # radius=2 -> central region should be 3x3 pixels = 9 pixels
    aarc(res_out.sum(), 9)
コード例 #14
0
def test_mask_circle():

    size = 5
    radius = 2

    ones = np.ones((size, size))

    # "in" and "out" should be complementary
    res_in = mask_circle(ones, radius=radius, mode="in")
    res_out = mask_circle(ones, radius=radius, mode="out")
    aarc(res_in + res_out, ones)

    # radius=2 -> central region should be 3x3 pixels = 9 pixels
    aarc(res_out.sum(), 9)
コード例 #15
0
def test_check_scal_vector():
    scal_vec = np.array([2, 8, 4])

    # === basic function ===

    res = check_scal_vector(scal_vec)
    truth = np.array([4, 1, 2])

    aarc(res, truth)

    # === do nothing if min factor is already 1 ===

    res2 = check_scal_vector(res)
    aarc(res2, res)

    # === wrong input value ===
    with raises(TypeError):
        check_scal_vector(42)
コード例 #16
0
def test_check_scal_vector():
    scal_vec = np.array([2, 8, 4])

    # === basic function ===

    res = check_scal_vector(scal_vec)
    truth = np.array([4, 1, 2])

    aarc(res, truth)

    # === do nothing if min factor is already 1 ===

    res2 = check_scal_vector(res)
    aarc(res2, res)

    # === wrong input value ===
    with raises(TypeError):
        check_scal_vector(42)
コード例 #17
0
ファイル: test_shapes.py プロジェクト: r4lv/VIP
def test_get_circle():

    ar = np.ones((10, 10), dtype=int)
    aarc(
        vip.var.get_circle(ar, radius=4, output_values=False),
        np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0,
                   0], [0, 0, 0, 1, 1, 1, 1, 0, 0, 0],
                  [0, 0, 1, 1, 1, 1, 1, 1, 0,
                   0], [0, 1, 1, 1, 1, 1, 1, 1, 1, 0],
                  [0, 1, 1, 1, 1, 1, 1, 1, 1,
                   0], [0, 1, 1, 1, 1, 1, 1, 1, 1, 0],
                  [0, 1, 1, 1, 1, 1, 1, 1, 1,
                   0], [0, 0, 1, 1, 1, 1, 1, 1, 0, 0],
                  [0, 0, 0, 1, 1, 1, 1, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]))

    aarc(
        vip.var.get_circle(pretty_odd, radius=4, output_values=True),
        np.array([
            1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 3, 2, 1, 1, 2, 2, 2, 1, 1, 1,
            1, 1, 1
        ]))

    aarc(
        vip.var.get_circle(pretty_even, radius=4, output_values=True),
        np.array([
            1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 3,
            2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1
        ]))
コード例 #18
0
def test_get_circle():

    ar = np.ones((10, 10), dtype=int)
    aarc(
        get_circle(ar, radius=4),
        np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0,
                   0], [0, 0, 0, 1, 1, 1, 1, 0, 0, 0],
                  [0, 0, 1, 1, 1, 1, 1, 1, 0,
                   0], [0, 1, 1, 1, 1, 1, 1, 1, 1, 0],
                  [0, 1, 1, 1, 1, 1, 1, 1, 1,
                   0], [0, 1, 1, 1, 1, 1, 1, 1, 1, 0],
                  [0, 1, 1, 1, 1, 1, 1, 1, 1,
                   0], [0, 0, 1, 1, 1, 1, 1, 1, 0, 0],
                  [0, 0, 0, 1, 1, 1, 1, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]))

    aarc(
        get_circle(PRETTY_ODD, radius=4, mode="val"),
        np.array([
            1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 3, 2, 1, 1, 2, 2, 2, 1, 1, 1,
            1, 1, 1
        ]))

    aarc(
        get_circle(PRETTY_EVEN, radius=4, mode="val"),
        np.array([
            1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 3,
            2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1
        ]))
コード例 #19
0
def test_cube_rescaling_wavelengths(imlib, interpolation):
    scal_list = np.arange(10) + 1  # no zero

    # === basic function ===

    res1 = cube_rescaling_wavelengths(CUBE, scal_list, imlib=imlib,
                                      interpolation=interpolation)
    cube1, med1, y1, x1, cy1, cx1 = res1

    assert cube1.shape == (10, 1000, 1000)  # frame size x10 x10

    for i in range(cube1.shape[0]):
        aarc(cube1[i].mean() * scal_list[i]**2, 1)

    # === undo ===

    res2 = cube_rescaling_wavelengths(cube1, scal_list, imlib=imlib,
                                      interpolation=interpolation,
                                      inverse=True, x_in=100, y_in=100)
    cube2, med2, y2, x2, cy2, cx2 = res2

    aarc(cube2, CUBE)
コード例 #20
0
ファイル: test_var_shapes.py プロジェクト: VChristiaens/VIP
def test_get_circle():

    ar = np.ones((10, 10), dtype=int)
    aarc(get_circle(ar, radius=4),
         np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 1, 1, 1, 1, 0, 0, 0],
                   [0, 0, 1, 1, 1, 1, 1, 1, 0, 0],
                   [0, 1, 1, 1, 1, 1, 1, 1, 1, 0],
                   [0, 1, 1, 1, 1, 1, 1, 1, 1, 0],
                   [0, 1, 1, 1, 1, 1, 1, 1, 1, 0],
                   [0, 1, 1, 1, 1, 1, 1, 1, 1, 0],
                   [0, 0, 1, 1, 1, 1, 1, 1, 0, 0],
                   [0, 0, 0, 1, 1, 1, 1, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]))

    aarc(get_circle(PRETTY_ODD, radius=4, mode="val"),
         np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 3, 2, 1, 1, 2, 2,
                   2, 1, 1, 1, 1, 1, 1]))

    aarc(get_circle(PRETTY_EVEN, radius=4, mode="val"),
         np.array([1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 3, 3, 2, 1,
                   1, 2, 3, 3, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1]))
コード例 #21
0
def test_andromeda(example_dataset):
    # TODO: test `fast`
    # TODO: test `nsnmooth_snr`
    # TODO: test `homogeneous_variance`
    # TODO: test `filtering_fraction`
    # TODO: test `oversampling_fact`
    # TODO: test `min_sep`
    # TODO: test `opt_method`

    global IDL_DATA

    out = andromeda(
        example_dataset.cube,
        angles=-example_dataset.angles,
        # VIP uses other PA convention than IDL version.
        # the IDL_DATA was created with the IDL version, so we need
        # to match its PA convention.
        psf=example_dataset.psf,
        oversampling_fact=1,
        filtering_fraction=1,  # turn off high pass
        min_sep=0.3,
        opt_method="no",
        nsmooth_snr=0,  # turn off smoothing
        homogeneous_variance=True,
    )
    contrast, snr, snr_norm, stdcontrast, stdcontrast_norm, likelihood, _ = out

    aarc(contrast, IDL_DATA["andromeda_contrast_1"], atol=1e-2)
    aarc(snr, IDL_DATA["andromeda_snr_1"], atol=1e-4)
    aarc(snr_norm, IDL_DATA["andromeda_snr_norm_1"], atol=1e-4)
    aarc(stdcontrast, IDL_DATA["andromeda_stdcontrast_1"])
    aarc(stdcontrast_norm, IDL_DATA["andromeda_stdcontrast_norm_1"])
    aarc(likelihood, IDL_DATA["andromeda_likelihood_1"], atol=1e-4)
コード例 #22
0
ファイル: test_var_filters.py プロジェクト: VChristiaens/VIP
def test_fft_ifft():
    global FRAME
    FRAME = np.arange(100).reshape((10, 10))

    res = ifft(fft(FRAME))
    aarc(res, FRAME)
コード例 #23
0
ファイル: test_var_shapes.py プロジェクト: VChristiaens/VIP
def test_get_annulus_segments():
    arr = np.ones((10, 10))

    # single segment, like the old get_annulus. Note the ``[0]``.

    res = get_annulus_segments(arr, 2, 3)[0]

    truth = (np.array([0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3,
                       3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6,
                       6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9,
                       9, 9]),
             np.array([3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1,
                       2, 3, 6, 7, 8, 9, 0, 1, 2, 7, 8, 9, 0, 1, 2, 7, 8, 9, 0, 1, 2, 3,
                       6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 3, 4,
                       5, 6]))

    aarc(res, truth)

    res = get_annulus_segments(arr, 2, 3, mode="val")[0]
    truth = np.array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
                      1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
                      1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
                      1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

    aarc(res, truth)

    # multiple segments:

    res = get_annulus_segments(PRETTY_EVEN, 2, 3, nsegm=2)
    truth = [(np.array([0, 0, 0, 1, 1, 2, 3, 4, 4, 5, 5, 5]),
              np.array([3, 4, 5, 4, 5, 5, 5, 4, 5, 3, 4, 5])),
             (np.array([0, 0, 0, 1, 1, 2, 3, 4, 4, 5, 5, 5]),
              np.array([0, 1, 2, 0, 1, 0, 0, 0, 1, 0, 1, 2]))]

    aarc(res, truth)

    res = get_annulus_segments(PRETTY_EVEN, 2, 3, nsegm=3)
    truth = [(np.array([2, 3, 4, 4, 5, 5, 5]),
              np.array([5, 5, 4, 5, 3, 4, 5])),
             (np.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1]),
              np.array([0, 1, 2, 3, 4, 5, 0, 1, 4, 5])),
             (np.array([2, 3, 4, 4, 5, 5, 5]),
              np.array([0, 0, 0, 1, 0, 1, 2]))]

    assert repr(res) == repr(truth)
    # TODO: cannot compare using `allclose`, as elements have variable length!

    # tuple as input:

    res = get_annulus_segments((6, 6), 2, 3, nsegm=3)
    assert repr(res) == repr(truth)

    # masked arr:

    res = get_annulus_segments(arr, 2, 3, mode="mask")[0]
    truth = np.array([[0., 0., 0., 1., 1., 1., 1., 0., 0., 0.],
                      [0., 1., 1., 1., 1., 1., 1., 1., 1., 0.],
                      [0., 1., 1., 1., 1., 1., 1., 1., 1., 0.],
                      [1., 1., 1., 1., 0., 0., 1., 1., 1., 1.],
                      [1., 1., 1., 0., 0., 0., 0., 1., 1., 1.],
                      [1., 1., 1., 0., 0., 0., 0., 1., 1., 1.],
                      [1., 1., 1., 1., 0., 0., 1., 1., 1., 1.],
                      [0., 1., 1., 1., 1., 1., 1., 1., 1., 0.],
                      [0., 1., 1., 1., 1., 1., 1., 1., 1., 0.],
                      [0., 0., 0., 1., 1., 1., 1., 0., 0., 0.]])
    aarc(res, truth)

    # tuple as input:

    res = get_annulus_segments((10, 10), 2, 3, mode="mask")[0]
    # masking a zeros array -> only zeros left!
    assert res.sum() == 0
コード例 #24
0
ファイル: test_andromeda.py プロジェクト: VChristiaens/VIP
def test_idl_where():
    a = np.arange(3*3, dtype=int).reshape((3, 3))

    aarc(idl_where(a <= 3), [0, 1, 2, 3])  # WHERE(a LE 3)
    aarc(idl_where(a == 5), [5])  # WHERE(a EQ 5)
    aarc(idl_where(a > 20), [])  # WHERE(a GT 20) -> returns [-1]
コード例 #25
0
ファイル: test_shapes.py プロジェクト: r4lv/VIP
def test_get_annulus_segments():
    arr = np.ones((10, 10))

    # single segment, like the old get_annulus. Note the ``[0]``.

    res = vip.var.get_annulus_segments(arr, 2, 3)[0]

    truth = (np.array([
        0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3,
        3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6,
        7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9
    ]),
             np.array([
                 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 0,
                 1, 2, 3, 6, 7, 8, 9, 0, 1, 2, 7, 8, 9, 0, 1, 2, 7, 8, 9, 0, 1,
                 2, 3, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7,
                 8, 3, 4, 5, 6
             ]))

    aarc(res, truth)

    res = vip.var.get_annulus_segments(arr, 2, 3, mode="val")[0]
    truth = np.array([
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.
    ])

    aarc(res, truth)

    # multiple segments:

    res = vip.var.get_annulus_segments(pretty_even, 2, 3, nsegm=2)
    truth = [(np.array([0, 0, 0, 1, 1, 2, 3, 4, 4, 5, 5,
                        5]), np.array([3, 4, 5, 4, 5, 5, 5, 4, 5, 3, 4, 5])),
             (np.array([0, 0, 0, 1, 1, 2, 3, 4, 4, 5, 5,
                        5]), np.array([0, 1, 2, 0, 1, 0, 0, 0, 1, 0, 1, 2]))]

    aarc(res, truth)

    res = vip.var.get_annulus_segments(pretty_even, 2, 3, nsegm=3)
    truth = [(np.array([2, 3, 4, 4, 5, 5, 5]), np.array([5, 5, 4, 5, 3, 4,
                                                         5])),
             (np.array([0, 0, 0, 0, 0, 0, 1, 1, 1,
                        1]), np.array([0, 1, 2, 3, 4, 5, 0, 1, 4, 5])),
             (np.array([2, 3, 4, 4, 5, 5, 5]), np.array([0, 0, 0, 1, 0, 1,
                                                         2]))]

    assert repr(res) == repr(truth)
    # TODO: cannot compare using `allclose`, as elements have variable length!

    # masked arr

    res = vip.var.get_annulus_segments(arr, 2, 3, mode="mask")[0]
    truth = np.array([[0., 0., 0., 1., 1., 1., 1., 0., 0., 0.],
                      [0., 1., 1., 1., 1., 1., 1., 1., 1., 0.],
                      [0., 1., 1., 1., 1., 1., 1., 1., 1., 0.],
                      [1., 1., 1., 1., 0., 0., 1., 1., 1., 1.],
                      [1., 1., 1., 0., 0., 0., 0., 1., 1., 1.],
                      [1., 1., 1., 0., 0., 0., 0., 1., 1., 1.],
                      [1., 1., 1., 1., 0., 0., 1., 1., 1., 1.],
                      [0., 1., 1., 1., 1., 1., 1., 1., 1., 0.],
                      [0., 1., 1., 1., 1., 1., 1., 1., 1., 0.],
                      [0., 0., 0., 1., 1., 1., 1., 0., 0., 0.]])
    aarc(res, truth)
コード例 #26
0
ファイル: test_andromeda.py プロジェクト: VChristiaens/VIP
def test_andromeda(example_dataset):
    # TODO: test `fast`
    # TODO: test `nsnmooth_snr`
    # TODO: test `homogeneous_variance`
    # TODO: test `filtering_fraction`
    # TODO: test `oversampling_fact`
    # TODO: test `min_sep`
    # TODO: test `opt_method`

    global IDL_DATA

    out = andromeda(example_dataset.cube,
                    angles=-example_dataset.angles,
                    # VIP uses other PA convention than IDL version.
                    # the IDL_DATA was created with the IDL version, so we need
                    # to match its PA convention.
                    psf=example_dataset.psf,
                    oversampling_fact=1,
                    filtering_fraction=1,  # turn off high pass
                    min_sep=0.3,
                    opt_method="no",
                    nsmooth_snr=0,  # turn off smoothing
                    homogeneous_variance=True,
                    )
    contrast, snr, snr_norm, stdcontrast, stdcontrast_norm, likelihood, _ = out

    aarc(contrast, IDL_DATA["andromeda_contrast_1"], atol=1e-2)
    aarc(snr, IDL_DATA["andromeda_snr_1"], atol=1e-4)
    aarc(snr_norm, IDL_DATA["andromeda_snr_norm_1"], atol=1e-4)
    aarc(stdcontrast, IDL_DATA["andromeda_stdcontrast_1"])
    aarc(stdcontrast_norm, IDL_DATA["andromeda_stdcontrast_norm_1"])
    aarc(likelihood, IDL_DATA["andromeda_likelihood_1"], atol=1e-4)
コード例 #27
0
ファイル: test_shapes.py プロジェクト: r4lv/VIP
def test_get_square():
    aarc(vip.var.get_square(pretty_odd, size=3, x=2, y=2),
         np.array([[2, 2, 2], [2, 3, 2], [2, 2, 2]]))

    aarc(vip.var.get_square(pretty_odd, size=2, x=2, y=2),
         np.array([[2, 2, 2], [2, 3, 2], [2, 2, 2]]))
    # -> prints warning

    aarc(vip.var.get_square(pretty_odd, size=2, x=2, y=2, force=True),
         np.array([[2, 2], [2, 3]]))

    aarc(vip.var.get_square(pretty_even, size=2, x=3, y=3),
         np.array([[3, 3], [3, 3]]))

    aarc(vip.var.get_square(pretty_even, size=3, x=3, y=3),
         np.array([[2, 2, 2, 2], [2, 3, 3, 2], [2, 3, 3, 2], [2, 2, 2, 2]]))
    # -> prints warning

    aarc(vip.var.get_square(pretty_even, size=2, x=4, y=2, force=True),
         np.array([[2, 2], [3, 2]]))
コード例 #28
0
def test_get_square():
    aarc(get_square(PRETTY_ODD, size=3, x=2, y=2),
         np.array([[2, 2, 2], [2, 3, 2], [2, 2, 2]]))

    aarc(get_square(PRETTY_ODD, size=2, x=2, y=2),
         np.array([[2, 2, 2], [2, 3, 2], [2, 2, 2]]))
    # -> prints warning

    aarc(get_square(PRETTY_ODD, size=2, x=2, y=2, force=True),
         np.array([[2, 2], [2, 3]]))

    aarc(get_square(PRETTY_EVEN, size=2, x=3, y=3), np.array([[3, 3], [3, 3]]))

    aarc(get_square(PRETTY_EVEN, size=3, x=3, y=3),
         np.array([[2, 2, 2, 2], [2, 3, 3, 2], [2, 3, 3, 2], [2, 2, 2, 2]]))
    # -> prints warning

    aarc(get_square(PRETTY_EVEN, size=2, x=4, y=2, force=True),
         np.array([[2, 2], [3, 2]]))
コード例 #29
0
def test_fft_ifft():
    global FRAME
    FRAME = np.arange(100).reshape((10, 10))

    res = ifft(fft(FRAME))
    aarc(res, FRAME)
コード例 #30
0
def test_idl_where():
    a = np.arange(3 * 3, dtype=int).reshape((3, 3))

    aarc(idl_where(a <= 3), [0, 1, 2, 3])  # WHERE(a LE 3)
    aarc(idl_where(a == 5), [5])  # WHERE(a EQ 5)
    aarc(idl_where(a > 20), [])  # WHERE(a GT 20) -> returns [-1]
コード例 #31
0
ファイル: test_var_shapes.py プロジェクト: VChristiaens/VIP
def test_get_square():
    aarc(get_square(PRETTY_ODD, size=3, x=2, y=2),
         np.array([[2, 2, 2],
                   [2, 3, 2],
                   [2, 2, 2]]))

    aarc(get_square(PRETTY_ODD, size=2, x=2, y=2),
         np.array([[2, 2, 2],
                   [2, 3, 2],
                   [2, 2, 2]]))
    # -> prints warning

    aarc(get_square(PRETTY_ODD, size=2, x=2, y=2, force=True),
         np.array([[2, 2],
                   [2, 3]]))

    aarc(get_square(PRETTY_EVEN, size=2, x=3, y=3),
         np.array([[3, 3],
                  [3, 3]]))

    aarc(get_square(PRETTY_EVEN, size=3, x=3, y=3),
         np.array([[2, 2, 2, 2],
                   [2, 3, 3, 2],
                   [2, 3, 3, 2],
                   [2, 2, 2, 2]]))
    # -> prints warning

    aarc(get_square(PRETTY_EVEN, size=2, x=4, y=2, force=True),
         np.array([[2, 2],
                   [3, 2]]))
コード例 #32
0
def test_get_annulus_segments():
    arr = np.ones((10, 10))

    # single segment, like the old get_annulus. Note the ``[0]``.

    res = get_annulus_segments(arr, 2, 3)[0]

    truth = (np.array([
        0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3,
        3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6,
        7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9
    ]),
             np.array([
                 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 0,
                 1, 2, 3, 6, 7, 8, 9, 0, 1, 2, 7, 8, 9, 0, 1, 2, 7, 8, 9, 0, 1,
                 2, 3, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7,
                 8, 3, 4, 5, 6
             ]))

    aarc(res, truth)

    res = get_annulus_segments(arr, 2, 3, mode="val")[0]
    truth = np.array([
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.
    ])

    aarc(res, truth)

    # multiple segments:

    res = get_annulus_segments(PRETTY_EVEN, 2, 3, nsegm=2)
    truth = [(np.array([0, 0, 0, 1, 1, 2, 3, 4, 4, 5, 5,
                        5]), np.array([3, 4, 5, 4, 5, 5, 5, 4, 5, 3, 4, 5])),
             (np.array([0, 0, 0, 1, 1, 2, 3, 4, 4, 5, 5,
                        5]), np.array([0, 1, 2, 0, 1, 0, 0, 0, 1, 0, 1, 2]))]

    aarc(res, truth)

    res = get_annulus_segments(PRETTY_EVEN, 2, 3, nsegm=3)
    truth = [(np.array([2, 3, 4, 4, 5, 5, 5]), np.array([5, 5, 4, 5, 3, 4,
                                                         5])),
             (np.array([0, 0, 0, 0, 0, 0, 1, 1, 1,
                        1]), np.array([0, 1, 2, 3, 4, 5, 0, 1, 4, 5])),
             (np.array([2, 3, 4, 4, 5, 5, 5]), np.array([0, 0, 0, 1, 0, 1,
                                                         2]))]

    assert repr(res) == repr(truth)
    # TODO: cannot compare using `allclose`, as elements have variable length!

    # tuple as input:

    res = get_annulus_segments((6, 6), 2, 3, nsegm=3)
    assert repr(res) == repr(truth)

    # masked arr:

    res = get_annulus_segments(arr, 2, 3, mode="mask")[0]
    truth = np.array([[0., 0., 0., 1., 1., 1., 1., 0., 0., 0.],
                      [0., 1., 1., 1., 1., 1., 1., 1., 1., 0.],
                      [0., 1., 1., 1., 1., 1., 1., 1., 1., 0.],
                      [1., 1., 1., 1., 0., 0., 1., 1., 1., 1.],
                      [1., 1., 1., 0., 0., 0., 0., 1., 1., 1.],
                      [1., 1., 1., 0., 0., 0., 0., 1., 1., 1.],
                      [1., 1., 1., 1., 0., 0., 1., 1., 1., 1.],
                      [0., 1., 1., 1., 1., 1., 1., 1., 1., 0.],
                      [0., 1., 1., 1., 1., 1., 1., 1., 1., 0.],
                      [0., 0., 0., 1., 1., 1., 1., 0., 0., 0.]])
    aarc(res, truth)

    # tuple as input:

    res = get_annulus_segments((10, 10), 2, 3, mode="mask")[0]
    # masking a zeros array -> only zeros left!
    assert res.sum() == 0