コード例 #1
0
 def test_compare_bp_and_rprop(self):
     compare_networks(
         # Test classes
         partial(algorithms.GradientDescent, batch_size=None),
         partial(algorithms.RPROP, maxstep=0.1),
         # Test data
         (simple_x_train, simple_y_train),
         # Network configurations
         network=self.network,
         step=0.1,
         shuffle_data=True,
         verbose=False,
         # Test configurations
         epochs=50,
         show_comparison_plot=False)
コード例 #2
0
ファイル: test_hessian.py プロジェクト: zeroyou/neupy
 def test_compare_bp_and_hessian(self):
     x_train, x_test, y_train, y_test = simple_classification()
     compare_networks(
         # Test classes
         partial(algorithms.GradientDescent, batch_size=None),
         partial(algorithms.Hessian, penalty_const=1),
         # Test data
         (x_train, y_train, x_test, y_test),
         # Network configurations
         network=[layers.Input(10),
                  layers.Sigmoid(15),
                  layers.Sigmoid(1)],
         shuffle_data=True,
         verbose=False,
         show_epoch=1,
         # Test configurations
         epochs=5,
         show_comparison_plot=False)
コード例 #3
0
ファイル: test_lvq.py プロジェクト: zeroyou/neupy
    def test_compare_lvq_and_lvq21(self):
        dataset = datasets.load_iris()
        data, target = dataset.data, dataset.target

        # Prepare the same weights for the fair comparison
        lvq = algorithms.LVQ(n_inputs=4, n_subclasses=3, n_classes=3)
        lvq.train(data, target, epochs=1)
        prepared_lvq_weights = lvq.weight

        compare_networks(
            algorithms.LVQ,
            partial(algorithms.LVQ21, epsilon=0.1),
            data=[data, target],
            epochs=10,
            show_comparison_plot=False,
            n_inputs=4,
            n_subclasses=3,
            n_classes=3,
            weight=prepared_lvq_weights,
        )
コード例 #4
0
ファイル: test_lvq.py プロジェクト: zeroyou/neupy
    def test_compare_lvq_and_lvq3(self):
        dataset = datasets.load_iris()
        data, target = dataset.data, dataset.target

        # Prepare the same weights for the fair comparison
        lvq = algorithms.LVQ(n_inputs=4, n_subclasses=6, n_classes=3)
        lvq.train(data, target, epochs=1)
        prepared_lvq_weights = lvq.weight

        compare_networks(
            algorithms.LVQ,
            partial(algorithms.LVQ3, epsilon=0.4),
            data=[data, target],
            epochs=100,
            show_comparison_plot=False,
            n_inputs=4,
            n_subclasses=6,
            n_classes=3,
            prototypes_per_class=[4, 1, 1],
            step=0.001,
            weight=prepared_lvq_weights,
        )
コード例 #5
0
ファイル: test_optimizers.py プロジェクト: zeroyou/neupy
 def test_momentum_with_minibatch(self):
     x_train, _, y_train, _ = simple_classification()
     compare_networks(
        # Test classes
        partial(algorithms.Momentum, batch_size=None),
        partial(algorithms.Momentum, batch_size=1),
        # Test data
        (x_train, y_train),
        # Network configurations
        network=[
            layers.Input(10),
            layers.Sigmoid(20),
            layers.Sigmoid(1)
        ],
        step=0.25,
        momentum=0.1,
        shuffle_data=True,
        verbose=False,
        # Test configurations
        epochs=40,
        show_comparison_plot=False,
     )
コード例 #6
0
ファイル: test_hessdiag.py プロジェクト: zeroyou/neupy
    def test_compare_bp_and_hessian(self):
        x_train, _, y_train, _ = simple_classification()
        params = dict(weight=init.Uniform(-0.1, 0.1),
                      bias=init.Uniform(-0.1, 0.1))

        compare_networks(
            # Test classes
            partial(algorithms.GradientDescent, batch_size=None),
            partial(algorithms.HessianDiagonal, min_eigval=0.1),
            # Test data
            (x_train, y_train),
            # Network configurations
            network=[
                layers.Input(10),
                layers.Sigmoid(20, **params),
                layers.Sigmoid(1, **params),
            ],
            step=0.1,
            shuffle_data=True,
            verbose=False,
            # Test configurations
            epochs=50,
            show_comparison_plot=False)
コード例 #7
0
    def test_compare_bp_and_cg(self):
        x_train, x_test, y_train, y_test = simple_classification()

        compare_networks(
            # Test classes
            partial(
                partial(algorithms.GradientDescent, batch_size=None),
                step=1.0,
            ),
            partial(algorithms.ConjugateGradient,
                    update_function='fletcher_reeves'),
            # Test data
            (asfloat(x_train), asfloat(y_train)),
            # Network configurations
            network=layers.join(
                layers.Input(10),
                layers.Sigmoid(5),
                layers.Sigmoid(1),
            ),
            loss='mse',
            shuffle_data=True,
            # Test configurations
            epochs=50,
            show_comparison_plot=False)