コード例 #1
0
def GENERATE_RANDOM_EXPANDERS(K, size_H, EPSILON, samples):

    NAME = '[RANDOM' + str(K) + ']'

    print NAME + " Generating " + str(
        samples) + " H (adjacency list matrices) of size " + str(
            size_H) + " x " + str(K) + " ... "
    print "\n"

    eigenvalue = 0

    for sampling in range(samples):
        print NAME + " ##  " + str(sampling) + "  //  " + str(
            samples) + "  ## "

        H = generate_expander(K, size_H)
        eigenvalue_aux = helpers.generate_eigenvalue(H, size_H, K, EPSILON,
                                                     NAME)

        eigenvalue += eigenvalue_aux

    eigenvalue = eigenvalue / samples

    print NAME + " Calculated average of second highest eigenvalue for " + str(
        samples) + " matrices H."

    helpers.write_result(NAME, size_H, K, eigenvalue)
    helpers.cleanup(".aux")
コード例 #2
0
def GENERATE_ANGLUIN_EXPANDERS(size, A_indices, n, EPSILON):
    size_H = 2 * size

    print NAME + " Generating H (adjacency list matrix) of size " + str(
        size_H) + " x " + str(K) + " ... "

    H = numpy.empty(
        shape=(size_H, K),
        dtype=numpy.int32)  # Generate H, empty adjacency list matrix

    for row in A_indices:
        for element_index in row:  # Get the tuple index from the matrix of indices (A)
            x0 = element_index / n  # Grab first value
            y0 = element_index % n  # Grab second value

            i = element_index  # Grab the index of the (x0, y0) element

            # connect to (x, y) in B
            x = x0
            y = y0
            j = (x * n + y % n) + size  # add the shift in the H indexing

            H[i][0] = j  # node with index i is connected to node with index j
            H[j][0] = i  # vice-versa

            # connect to (x + y, y) in B
            x = (x0 + y0) % n
            y = y0
            j = (x * n + y % n) + size

            H[i][1] = j
            H[j][1] = i

            # connect to (y + 1, -x) in B
            x = (y0 + 1) % n
            y = (-x0) % n
            j = (x * n + y % n) + size

            H[i][2] = j
            H[j][2] = i

    print NAME + " Generated adjacency list matrix H."

    print NAME + " Calculating second highest eigenvalue of H ... "

    eigenvalue = helpers.generate_eigenvalue(H, size_H, K, EPSILON, NAME)

    print NAME + " Calculated second highest eigenvalue of H."

    helpers.write_result(NAME, size_H, K, eigenvalue)
    helpers.cleanup(".aux")
コード例 #3
0
def GENERATE_ANGLUIN_EXPANDERS(size, A_indices, n, EPSILON):
  size_H = 2 * size

  print NAME + " Generating H (adjacency list matrix) of size " + str(size_H) + " x " + str(K) + " ... "

  H = numpy.empty(shape=(size_H, K), dtype=numpy.int32)   # Generate H, empty adjacency list matrix

  for row in A_indices:
    for element_index in row:   # Get the tuple index from the matrix of indices (A)
      x0 = element_index / n   # Grab first value
      y0 = element_index % n   # Grab second value

      i = element_index       # Grab the index of the (x0, y0) element

      # connect to (x, y) in B
      x = x0
      y = y0
      j = (x * n + y % n) + size   # add the shift in the H indexing       

      H[i][0] = j      # node with index i is connected to node with index j
      H[j][0] = i      # vice-versa

      # connect to (x + y, y) in B
      x = (x0 + y0) % n
      y = y0
      j = (x * n + y % n) + size

      H[i][1] = j
      H[j][1] = i

      # connect to (y + 1, -x) in B
      x = (y0 + 1) % n
      y = (-x0) % n
      j = (x * n + y % n) + size

      H[i][2] = j
      H[j][2] = i


  print NAME + " Generated adjacency list matrix H."

  print NAME + " Calculating second highest eigenvalue of H ... "

  eigenvalue = helpers.generate_eigenvalue(H, size_H, K, EPSILON, NAME)

  print NAME + " Calculated second highest eigenvalue of H."

  helpers.write_result(NAME, size_H, K, eigenvalue) 
  helpers.cleanup(".aux") 
コード例 #4
0
def GENERATE_RANDOM_EXPANDERS(K, size_H, EPSILON, samples):

  NAME = '[RANDOM' + str(K) + ']'

  print NAME + " Generating " + str(samples) + " H (adjacency list matrices) of size " + str(size_H) + " x " + str(K) + " ... "
  print "\n"

  eigenvalue = 0

  for sampling in range(samples):
    print NAME + " ##  " + str(sampling) + "  //  " + str(samples) + "  ## "

    H = generate_expander(K, size_H)
    eigenvalue_aux = helpers.generate_eigenvalue(H, size_H, K, EPSILON, NAME)

    eigenvalue += eigenvalue_aux

  eigenvalue = eigenvalue / samples

  print NAME + " Calculated average of second highest eigenvalue for " + str(samples) + " matrices H."

  helpers.write_result(NAME, size_H, K, eigenvalue) 
  helpers.cleanup(".aux")