コード例 #1
0
def get_test_lines(in_shape, permutation):
    """
    Create a list of strings corresponding to the lines in a single test case.

    Uses TensorFlow to compute the expected results for the given parameters,
    and provides the code to call the test fixture to run the test.
    """
    output, max_input_val = helpers.get_result_and_size(
        get_transpose_result, in_shape=in_shape, permutation=permutation)
    in_shape_str = list(map(str, in_shape))
    perm_str = list(map(str, permutation))
    test_case = TEST_CASE_TPL.format(n_dimensions=len(in_shape))
    test_name = TEST_NAME_TPL.format(n_dimensions=len(in_shape)) + "x".join(
        in_shape_str) + "_" + "x".join(perm_str)
    test_lines = [
        "TYPED_TEST({}, {}) {{".format(test_case, test_name),
        "  using DataType = typename TestFixture::DataType;",
        "  const std::vector<DataType> exp_out = {};".format(
            helpers.format_tensor(output)),
        "  const std::vector<int> sizes = {{ {size_str} }};".format(
            size_str=",".join(in_shape_str)),
        "  const std::vector<int> perm = {{ {perm_str} }};".format(
            perm_str=",".join(perm_str)),
        "  const DataType max_input_val = {:.1f};".format(max_input_val),
        "  this->run(exp_out, sizes, perm, max_input_val, 0, 0);",
        "}",
    ]
    return test_lines
コード例 #2
0
def get_test_lines(batch, m, k, n, beta, trans_lhs, trans_rhs):
    """
    Create a list of strings corresponding to the lines in a single test case.

    Uses TensorFlow to compute the expected results for the given parameters,
    and provides the code to call the test fixture to run the test.
    """
    output, max_input_val = helpers.get_result_and_size(get_matmul_result,
                                                        batch=batch,
                                                        m=m,
                                                        k=k,
                                                        n=n,
                                                        beta=beta,
                                                        trans_lhs=trans_lhs,
                                                        trans_rhs=trans_rhs)
    test_case = TEST_CASE_TPL.format(batch=batch,
                                     beta=beta,
                                     trans_lhs=trans_lhs,
                                     trans_rhs=trans_rhs)
    test_name = TEST_NAME_TPL.format(m=m, k=k, n=n)
    test_lines = [
        "TYPED_TEST({}, {}) {{".format(test_case, test_name),
        "  using DataType = typename TestFixture::DataType;",
        "  const std::vector<DataType> exp_out = {};".format(
            helpers.format_tensor(output)),
        "  const int batches = {};".format(batch),
        "  const int m = {};".format(m),
        "  const int k = {};".format(k),
        "  const int n = {};".format(n),
        "  const auto beta = static_cast<DataType>({});".format(beta),
        "  const DataType max_input_val = {:.1f};".format(max_input_val),
        "  this->run(exp_out, batches, m, k, n, beta, 0, 0, 0, max_input_val);",
        "}",
    ]
    return test_lines
コード例 #3
0
def get_result(test_case, test_params):
    output, _ = helpers.get_result_and_size(
        get_result_function(test_case),
        max_input_val=test_params.in_size,
        floor_div=True,
        pointwise_op=TENSORFLOW_OPS_MAP[test_case.test_type],
        in_size=test_params.in_size)
    return output
コード例 #4
0
def get_result(test_case, test_params):
    channel_idx = -1 if test_params.data_format == 'NHWC' else 1
    output, max_input_val = helpers.get_result_and_size(
        get_result_function(test_case),
        max_input_val=test_params.in_shape[channel_idx],
        floor_div=True,
        softmax_op=TENSORFLOW_OPS_MAP[test_case.test_type],
        input_shape=test_params.in_shape)
    return output, max_input_val
コード例 #5
0
def get_result_and_size(test_case, test_params):
    """
    Get the result of the bias-add and max input value.

    Ensures that the resulting values are less than the REQUIRED_MAX, and if
    not will adjust the maximum value to allow in the input tensors.
    """
    return helpers.get_result_and_size(get_result_function(test_case),
                                       input_shape=test_params.in_shape)
コード例 #6
0
def get_result_and_size(test_case, test_params):
    """
    Get the result of the specified convolution and max input value.

    Ensures that the resulting values are less than the REQUIRED_MAX, and if
    not will adjust the maximum value to allow in the input tensors.
    """
    window_shape = [test_case.window, test_case.window]
    stride_shape = [test_case.stride, test_case.stride]
    return helpers.get_result_and_size(get_result_function(test_case),
                                       pool_op=test_case.test_type,
                                       input_shape=test_params.in_shape,
                                       window_shape=window_shape,
                                       stride_shape=stride_shape,
                                       padding=test_params.padding)
コード例 #7
0
def get_result_and_size(test_case, test_params):
    """
    Get the result of the specified convolution and max input value.

    Ensures that the resulting values are less than the REQUIRED_MAX, and if
    not will adjust the maximum value to allow in the input tensors.
    """
    conv_fn = get_conv_fn(test_case.test_type)
    filter_shape = [
        test_case.window, test_case.window, test_params.in_shape[-1],
        test_params.features
    ]
    stride_shape = [1, test_case.stride, test_case.stride, 1]
    return helpers.get_result_and_size(conv_fn,
                                       input_shape=test_params.in_shape,
                                       filter_shape=filter_shape,
                                       stride_shape=stride_shape,
                                       padding=test_params.padding)