コード例 #1
0
ファイル: h2pdf.py プロジェクト: moycat/h2pdf
def main():
    args = parse_args()

    print("Getting metadata of gallery...")
    gallery = get_gallery_metadata(args.gid, args.token)

    image_path = ROOT + "/images/" + gallery["title"]
    if args.export_images and not os.path.exists(image_path):
        os.mkdir(image_path)

    print("Getting", gallery["filecount"], "page links...")
    page_links = get_page_links(args.gid, args.token,
                                int(gallery["filecount"]), args.source,
                                args.member_id, args.pass_hash)

    print("Getting images...")
    images = []
    _get_image = partial(get_image,
                         member_id=args.member_id,
                         pass_hash=args.pass_hash,
                         raw_image=args.raw_images)
    with ThreadPoolExecutor(max_workers=args.worker) as executor:
        future = executor.map(_get_image, page_links)
        for page, image in enumerate(future, 1):
            images.append(image)
            if args.export_images:
                with open(image_path + "/" + str(page) + ".jpg", "wb") as f:
                    f.write(image)

    with open(ROOT + "/galleries/" + gallery["title"] + ".pdf", "wb") as file:
        file.write(
            img2pdf.convert([remove_transparency(image) for image in images]))
コード例 #2
0
def main(args):
    problem_ids, episodes, grid = parse_args(args)

    for problem_id in problem_ids:
        agent = ReinforcementLearningAgent(problem_id=problem_id,
                                           map_name_base=grid)
        agent.solve(episodes=episodes)
        agent.evaluate(episodes)

        passive_agent = PassiveAgent(problem_id=problem_id, map_name_base=grid)
        passive_agent.solve()
        passive_agent.evaluate(episodes)

        compare_utils(passive_agent.U, agent.U)
コード例 #3
0
def main(args):
    """Main Program."""     

    problem_ids, episodes, grid = parse_args(args)
    print('It was found out that setting the seed for random was slow.. you can turn it on with seed=True')
    print('More info in documentation...')
    
    # Reset the random generator to a known state (for reproducability)
    np.random.seed(12)

    for problem_id in problem_ids:
        # this seed doesn't work... if needed, change seed to True below
        agent = RandomAgent(problem_id=problem_id, map_name_base=grid) 
        agent.solve(episodes=episodes, seed=None)
        agent.evaluate(episodes)
コード例 #4
0
ファイル: router.py プロジェクト: vbett01/pxt-cue
    def listener(self, robot):

        while True:
            # if time.time() - last >= 60:
            #     last = time.time()
            #     self._uart.write("#")
            # elif time.time() - last >= 20:
            #     self._uart.write(",")
            # parse the serial port input for one command
            received_cmd = self._uart.readline().split("\\n")[0].split(
                "\x00")[-1]

            # split it into fn_key and then the args
            cmd_list = received_cmd.split()

            if len(cmd_list) > 0:
                fn_key = cmd_list[0]
                args = hp.parse_args(cmd_list[1:])
                # print('fn_key: ', fn_key)
                # print('args: ', args)

                if fn_key in self._properties.dict.keys():
                    val = self._properties.dict[fn_key]
                    self.send_retval_to_ub(val, delim="_")

                elif fn_key in self._functions.dict.keys():
                    # execute the function
                    todo = self._functions.dict[fn_key](*args)
                    if todo is not None:
                        todo[1]['time'] += time.time()
                        self._queued_commands.update({todo[0]: todo[1]})

                elif fn_key == "Interrupt":
                    if len(args) > 0:
                        self._event_ids.append(args[0])

                elif fn_key == "Reset":
                    self._functions.dict['reset']()

                else:
                    print(fn_key + " not a valid command")

            for key in self._queued_commands.keys():
                if time.time() > self._queued_commands[key]['time']:
                    self._functions.dict[key](
                        *self._queued_commands[key]['args'])
                    del self._queued_commands[key]
コード例 #5
0
import numpy as np
from matplotlib import pyplot as plt

from helpers import parse_args, timer

from generate_data import generate_x, find_min_max
from visualisation import visualise_x

if __name__ == '__main__':
    filename = 'task_2.log'
    args = parse_args()
    x_msg = f"X generation with N = {args.N} and M = {args.M}"
    X = timer(generate_x, filename, x_msg)(args.M, args.N)
    y_msg = "Finding optimums for X"
    YMin, YMax = timer(find_min_max, filename, y_msg)(X, args.T, args.k)

    for _ in range(args.amount_graphs):
        start = np.random.randint(0, args.N * (args.M - 1))
        visualise_x(X, start, args.N, YMin, YMax)
        plt.legend()
        plt.show()
コード例 #6
0
import torch.nn as nn
import torch.optim as optim

from torchtext import data

import helpers
import model_helpers
import simplelstm

BATCH_SIZE = 32
DEFAULT_ARTICLE_FOLDER = "./articles"
SEED = 0
DEFAULT_TRAIN_DEVICE = 'cpu'

if __name__ == "__main__":
    args = helpers.parse_args()

    if args.input:
        ARTICLE_FOLDER = args.input
    else:
        ARTICLE_FOLDER = DEFAULT_ARTICLE_FOLDER

    if args.device:
        TRAIN_DEVICE = args.device
    else:
        TRAIN_DEVICE = DEFAULT_TRAIN_DEVICE

    torch.manual_seed(SEED)
    device = torch.device(TRAIN_DEVICE)

    theme_folders = helpers.get_article_themes(ARTICLE_FOLDER)
コード例 #7
0
    if 'old' in parsed_args.keys():
        set_global_command(parsed_args['old'])
    else:
        set_global_command('ax64')

    runs, actions, passalong = genruns(parsed_args)
    comment(total_runs=len(runs), actions=actions, passalong=passalong)

    fname = 'runs.txt'
    comment('W {} runs to {}'.format(len(runs), fname))
    pretty_print('W {} runs to {}'.format(len(runs), fname))

    write_runs_to_file(runs, actions, passalong, fname)
    comment('=' * 16, 'running...')
    runs_output, vectors = do_runs(runs, actions, passalong)
    comment('=' * 16, 'done!')
    write_csv('times.csv', 'NO.,TIME', runs_output)
    write_csv('vectors.csv', 'IP,OP,KEY,ROUNDS,IV,LZS', vectors)

    comment('W {} runtimes to times.csv'.format(len(runs_output)))
    pretty_print('W {} runtimes to times.csv'.format(len(runs_output)))

    comment('W {} test vectors written vectors.csv'.format(len(vectors)))
    pretty_print('W {} test vectors written vectors.csv'.format(len(vectors)))


if __name__ == '__main__':
    # try catch around this please!
    parsed_args = parse_args(sys.argv)
    main(parsed_args)
コード例 #8
0
ファイル: main.py プロジェクト: MMichotte/project_generator
from colors import colors as c
try:
    import requests
    if not hasattr(requests, 'post'):
        raise ImportError
    from decouple import config
except ImportError:
    print(
        f'{c.yellow}WARNING:{c.rst} Some modules are missing, trying to install them :'
    )
    try:
        subprocess.check_call(
            [sys.executable, "-m", "pip", "install", 'requests'])
        subprocess.check_call(
            [sys.executable, "-m", "pip", "install", 'python-decouple'])
        print(
            f'{c.green}SUCCES:{c.rst} All required modules were successfully installed.'
        )
        sys.exit(0)
    except Exception:
        print(f'{c.red}ERROR:{c.rst} Some modules couldn\'t be installed.')
        sys.exit(1)
import helpers as h
import services as s

if __name__ == "__main__":
    repo = h.parse_args()
    h.check_for_dir(repo)
    new_repo = s.create_github_repo(repo)
    h.create_local_project(new_repo)
    sys.exit(0)
コード例 #9
0
ファイル: download_file.py プロジェクト: pklaus/rs_rtb2000
#!/usr/bin/env python

from helpers import parse_args, get_instrument, write, query, ieee_488_2_block_data

import os


def download_file(path, device=None, backend=None):
    dirname, filename = os.path.split(path)
    inst = get_instrument(device, backend=backend)
    data = inst.write('MMEM:CDIR "' + dirname + '"')
    data = inst.query_raw('MMEM:DATA? "' + filename + '"')
    data = ieee_488_2_block_data(data)
    with open(filename, 'wb') as f:
        f.write(data)


if __name__ == "__main__":

    def add_more_args(parser):
        parser.add_argument('--filename')

    args = parse_args(add_more_args)
    download_file(args.filename, args.device, args.backend)
コード例 #10
0
ファイル: main.py プロジェクト: fobikr/ild-cnn
You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.

For more information please read the README file. The files can also 
be found at: https://github.com/intact-project/ild-cnn
'''

import helpers as H
import cnn_model as CNN

# debug
from ipdb import set_trace as bp

# initialization
args         = H.parse_args()                          # Function for parcing command-line arguments
train_params = {
     'do' : float(args.do) if args.do else 0.5,        # Dropout Parameter
     'a'  : float(args.a) if args.a else 0.3,          # Conv Layers LeakyReLU alpha param [if alpha set to 0 LeakyReLU is equivalent with ReLU]
     'k'  : int(args.k) if args.k else 4,              # Feature maps k multiplier
     's'  : float(args.s) if args.s else 1,            # Input Image rescale factor
     'pf' : float(args.pf) if args.pf else 1,          # Percentage of the pooling layer: [0,1]
     'pt' : args.pt if args.pt else 'Avg',             # Pooling type: Avg, Max
     'fp' : args.fp if args.fp else 'proportional',    # Feature maps policy: proportional, static
     'cl' : int(args.cl) if args.cl else 5,            # Number of Convolutional Layers
     'opt': args.opt if args.opt else 'Adam',          # Optimizer: SGD, Adagrad, Adam
     'obj': args.obj if args.obj else 'ce',            # Minimization Objective: mse, ce
     'patience' : args.pat if args.pat else 200,       # Patience parameter for early stoping
     'tolerance': args.tol if args.tol else 1.005,     # Tolerance parameter for early stoping [default: 1.005, checks if > 0.5%]
     'res_alias': args.csv if args.csv else 'res'      # csv results filename alias
}
コード例 #11
0
ファイル: main.py プロジェクト: LiuFang816/SALSTM_py_data
You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.

For more information please read the README file. The files can also 
be found at: https://github.com/intact-project/ild-cnn
'''

import helpers as H
import cnn_model as CNN

# debug
from ipdb import set_trace as bp

# initialization
args = H.parse_args()  # Function for parcing command-line arguments
train_params = {
    'do': float(args.do) if args.do else 0.5,  # Dropout Parameter
    'a': float(args.a) if args.a else
    0.3,  # Conv Layers LeakyReLU alpha param [if alpha set to 0 LeakyReLU is equivalent with ReLU]
    'k': int(args.k) if args.k else 4,  # Feature maps k multiplier
    's': float(args.s) if args.s else 1,  # Input Image rescale factor
    'pf':
    float(args.pf) if args.pf else 1,  # Percentage of the pooling layer: [0,1]
    'pt': args.pt if args.pt else 'Avg',  # Pooling type: Avg, Max
    'fp': args.fp if args.fp else
    'proportional',  # Feature maps policy: proportional, static
    'cl': int(args.cl) if args.cl else 5,  # Number of Convolutional Layers
    'opt': args.opt if args.opt else 'Adam',  # Optimizer: SGD, Adagrad, Adam
    'obj': args.obj if args.obj else 'ce',  # Minimization Objective: mse, ce
    'patience':
コード例 #12
0
def main(args):
    print(args)
    problem_ids, episodes, grid = parse_args(args)

    for problem_id in problem_ids:
        # this seed doesn't work... if needed, change seed to True below
        random_agent = RandomAgent(problem_id=problem_id, map_name_base=grid)
        random_agent.solve(episodes=episodes, seed=None)
        random_agent.evaluate(episodes)

        simple_agent = SimpleAgent(problem_id=problem_id, map_name_base=grid)
        simple_agent.solve(episodes=episodes)
        simple_agent.evaluate(episodes)

        rl_agent = ReinforcementLearningAgent(problem_id=problem_id,
                                              map_name_base=grid)
        rl_agent.solve(episodes=episodes)
        rl_agent.evaluate(episodes)

        passive_agent = PassiveAgent(problem_id=problem_id, map_name_base=grid)
        passive_agent.solve()
        passive_agent.evaluate(episodes)

        # Adding the plots for evaluation
        labels = ['Episodes', 'Mean Reward']
        agents = {
            'random': random_agent,
            'simple': simple_agent,
            'rl': rl_agent
        }

        title = 'Problem {}. Episodes vs Mean Reward Plot'.format(problem_id)

        filename = '{}_{}_first_1000_training'.format(problem_id,
                                                      random_agent.env.ncol)
        subtitle = 'First 1000 Episodes vs Mean Reward (Training Phase)'
        plot_eval(agents, range(999), labels, filename, title, subtitle)

        filename = '{}_{}_training'.format(problem_id, random_agent.env.ncol)
        subtitle = 'Episodes Number vs Mean Reward (Training Phase)'
        plot_eval(agents, range(episodes), labels, filename, title, subtitle)

        filename = '{}_{}_first_1000_evaluation'.format(
            problem_id, random_agent.env.ncol)
        subtitle = 'First 1000 episodes vs Mean Reward (Evaluation Phase)'
        plot_eval(agents,
                  range(999),
                  labels,
                  filename,
                  title,
                  subtitle,
                  training=False)

        filename = '{}_{}_evaluation'.format(problem_id, random_agent.env.ncol)
        subtitle = 'Episodes Number vs Mean Reward (Evaluation Phase)'
        plot_eval(agents,
                  range(episodes),
                  labels,
                  filename,
                  title,
                  subtitle,
                  training=False)

        compare_utils(passive_agent.U, rl_agent.U)